

MATHS

BOOKS - INDEPENDENTLY PUBLISHED MATHS (ENGLISH)

POLAR COORDINATES

Example

1. Express point P whose rectangular coordinates are $(3,3\sqrt{3})$ in terms of polar

coordinates

$$r^2 = x^2 + y^2 = 9 + 27 = 36$$

r = 6

$$r\cos\theta = x$$

$$\cos\theta = \frac{3}{6} = \frac{1}{2}$$

Therefore $heta=60^\circ$ and $(6,60^\circ)$ are the polar coordinates of P

Watch Video Solution

2. Describe the graphs of r=2

$$r^2 = x^2 + y^2$$

r = 2

Therefore $x^2+y^2=4$ which is the equation of a circle whose center is at the origin and whose radius is 2

Watch Video Solution

3. Describe the graph of $r=rac{1}{\sin heta}$

1. A point has polar coordinate $(2,60^{\circ})$ The same point can be represented by

A.
$$(\,-2,240^{\,\circ}\,)$$

B.
$$(2,240^\circ)$$

C. (
$$-2,60^{\circ}$$
)

D.
$$(2, -60^{\circ})$$

Answer: a

2. The polar coordinates of a point P are $(2,200^{\circ})$ The rectangular coordinates of P are

A. (-1.88, -0.68)

B. (-0.68, -1.88)

C. (-0.34, -0.94)

D. (-0.47, -0.17)

Answer: a

3. Describe the graph of
$$r=rac{3}{\cos heta}$$

A. a parabola

B. an ellipse

C. a circle

D. a vertical line

Answer: d

