

## **MATHS**

# BOOKS - INDEPENDENTLY PUBLISHED MATHS (ENGLISH)

### TRIANGLE TRIGONOMETRY

Example

**1.** Solve

 $\Delta ABC$ 

if

 $m\angle A=45^{\circ}, m\angle B=57^{\circ}, a=4.$ 



**2.** Solve  $\Delta ABC$  if  $a=7, b=12, m \angle C=62^{\circ}$ 

**Watch Video Solution** 

**3.** Sovle  $\triangle ABC$  if a=3, b=5, c=7.



4.

Sovle

 $\Delta ABC$ 

if

 $m \angle A = 125^{\circ}, a = 10, b = 8.$ 



Watch Video Solution

**5.** Sovle  $\triangle ABC$  if  $m\angle A=90^{\circ}$  , a=7,b=5.



**Watch Video Solution** 

**6.** Solve  $\triangle ABC$  if  $m\angle A=50^{\circ}$  , a=3,b=5.



**7.** Solve  $\triangle ABC$  if  $m\angle A=50^{\circ}$  , a=7,b=5.



## Watch Video Solution

**8.** Solve  $\triangle ABC$  if  $m\angle A=50^{\circ}$ , a=4,b=5.



**Watch Video Solution** 

9. Find the area of the triangle if  $m \angle A = 62^{\circ}, b = 6, c = 12.$ 

# **Exercises**

**1.** the exact value of  $an(\,-60^\circ)$  is

A. 
$$-\sqrt{3}$$

$$B. - 1$$

$$\mathsf{C.} - \frac{\mathsf{-}}{\sqrt{3}}$$

$$D. - \frac{\sqrt{3}}{2}$$

Answer: A

**2.** The exact value of  $\cos \frac{3\pi}{4}$  is

$$A. - 1$$

$$\mathsf{B.}-\frac{\sqrt{3}}{2}$$

$$\mathsf{C.} - \frac{\sqrt{2}}{2}$$

D. 
$$-\frac{1}{2}$$
.

**Answer: C** 



**3.** Csc  $540^{\circ}$  is

A. 0

$$B.-\sqrt{3}$$

$$\mathsf{C.}-\sqrt{2}$$

D. undefined

**Answer: D** 



**4.** In

$$riangle ABC, extstyle A=30^\circ, b=8, ext{ and } a=4\sqrt{2},$$

angle C could equal

A.  $45^{\circ}$ 

B.  $135^{\circ}$ 

C.  $60^{\circ}$ 

D.  $15^{\circ}$ 

#### **Answer: D**



**5.** In  $\triangle ABC$ ,  $\angle A=30^{\circ}$ , a=6 and c=8.

or

Which of the following must be true?

A. 
$$0^{\circ} < \angle C < 90^{\circ}$$

B. 
$$90^{\circ} < \angle C < 135^{\circ}$$

C. 
$$45^{\circ}$$
  $<$   $\angle C$   $<$   $135^{\circ}$ 

D. 
$$0^{\circ} < \angle C < 45^{\circ}$$

$$135^{\circ} < \angle C < 180^{\circ}$$

#### **Answer: D**



**6.** The angles of a triangle are in a ratio of 8:3:1. the ratio of the longest side of the triangle to the next longest side is

- A.  $\sqrt{6}:2$
- B. 8:3
- C.  $\sqrt{3}:1$
- D.8:5

#### **Answer: A**



**7.** The sides of a triangle are in a ratio of 4:5:6. the smallest angle is

- A.  $82^{\circ}$
- B.  $69^{\circ}$
- C.  $56^{\circ}$
- D.  $41^{\circ}$

**Answer: D** 



**8.** Find the length of the longer diagonal of a parallelogram if the sides are 6 inches and 8 inches and the smaller angle is  $60^{\circ}$ 

A. 8

B. 11

C. 12

D. 7

#### **Answer: C**



**9.** What are all values of side a in the figure below such that two triangles can be constructed?



A. 
$$a>4\sqrt{3}$$

C. 
$$a=4\sqrt{3}$$

D. 
$$4\sqrt{3} < a < 8$$

#### **Answer: D**



**View Text Solution** 

**10.** In

$$riangle ABC, extstyle B=30^{\circ}, extstyle C=105^{\circ}, ext{ and } b=10$$

. The length of side a equals.



**A.** 7

B. 9

C. 10

D. 14

#### **Answer: D**



## **View Text Solution**

**11.** The area of  $\triangle$  ABC,  $=24\sqrt{3}$ , side a=6, annd side b=16. the value of  $\angle C$  is

A.  $30^{\circ}$ 

B.  $30^{\circ}$  or  $150^{\circ}$ 

 $\mathsf{C.}\,60^\circ$ 

D.  $60^{\circ}$  or  $120^{\circ}$ 

#### **Answer: D**



# **Watch Video Solution**

**12.** The area off  $\triangle ABC = 12\sqrt{3}$ , side a=6, and side b=9 side c=

A. 
$$2\sqrt{37}$$

B. 
$$2\sqrt{13}$$

C. 
$$2\sqrt{37}$$
 or  $2\sqrt{13}$ 

#### **Answer: C**



## **Watch Video Solution**

**13.** Given the following data which, can form two triangles?

I. 
$$\angle C=30^{\circ}$$
 ,  $c=8, b=12$ 

II. 
$$\angle B=45^\circ$$
 ,  $a=12\sqrt{2}, b=12\sqrt{2}$ 

III. 
$$\angle C=60^{\circ}$$
 ,  $b=12, c=5\sqrt{3}$ 

A. only I

B. only II

C. only III

D. only I and II

**Answer: A** 

