

MATHS

BOOKS - INDEPENDENTLY PUBLISHED MATHS (ENGLISH)

TRIGONOMETRIC FUNCTIONS

Example

1. Express $\sin 320^\circ$ in terms of θ_R .

2. Express $\cot 200^{\circ}$ in terms of θ_R .

Watch Video Solution

3. Express $\cos 130^\circ$ in terms of θ_R .

Watch Video Solution

4. If both the angles are acute and $\sin(3x+20^\circ)=\cos(2x-40^\circ)$, find x

5. In each of the following, convert the degrees to radians or the radians to degrees.

(if no unit of measurement is indicated, radians are assumed.)

Q. 30°

6. In each of the following, convert the degrees to radians or the radians to degrees.

(if no unit of measurement is indicated, radians are assumed.)

Q. 270°

Watch Video Solution

7. In each of the following, convert the degrees to radians or the radians to degrees.

(if no unit of measurement is indicated,

radians are assumed.)

Q. $\frac{\pi}{4}$

Watch Video Solution

8. In each of the following, convert the degrees to radians or the radians to degrees.

(if no unit of measurement is indicated, radians are assumed.)

Q. $\frac{17\pi}{3}$

9. In each of the following, convert the degrees to radians or the radians to degrees.

(if no unit of measurement is indicated, radians are assumed.)

Q. 24

Watch Video Solution

10. Find the area of the sector and length of the arc subtended by a central angle of $\frac{2\pi}{3}$ radians in a circle whose radius is 6 inches.

11. In a circle of radius 8 inches, find the area of the sector whose are length is 6π inches.

Watch Video Solution

12. Find the length of the radius of a circle in which a central angle of 60° subtends an are of length 8π inches.

13. Determinee the amplitude, period, and phase shift of $y=2\sin 2x$ and sketch at least one period of the graph.

Watch Video Solution

14. Determine the amplitude, period, and phase shift of $y=\frac{1}{2}\cos\left(\frac{1}{2}x-\frac{\pi}{3}\right)$ and sketch at leasst one period of the graph.

15. Determine the amplitude,period, and phase shift to y=-2sin $(\pi x+3\pi)$ and sketch at least one period of the graph.

Watch Video Solution

16. Given $\cos\theta = -\frac{2}{3}$ and $\frac{\pi}{2} < \theta < \pi$, find $\sin 2\theta$.

17. If $\cos 23^\circ = z$, find the value of $\cos 46^\circ$ in terms of z.

Watch Video Solution

18. If $\sin x = A$, find $\cos 2x$ in terms of A.

Watch Video Solution

19. Solve $2\sin x + \cos 2x + 2\sin^2 x - 1$ for

 $0 < x < 2\pi$.

20. Find values of x on the interval $[0,\pi]$ for which $\cos x \leq \sin 2x$.

Watch Video Solution

21. Evaluate the radian measure of $\tan^{-1} \frac{8}{9}$.

22. Evaluate the degree measure off $\sin^{-1} 0.8759$

23. Evaluate the degree measure of $\sec^{-1} 3.4735$.

24. Evaluate $\cos(\cos^{-1} 0.72)$

25. Evaluate
$$\sin^{-1}(\sin 265^\circ)$$
.

26. Evaluate $\sin\left(\cos^{-1}\frac{3}{5}\right)$.

Mcqs Exercise

1. Express $\cos 320^{\circ}$ as a function of an angle between 0° and 90°

I. $\cos 40^{\circ}$

II. $\sin 50^\circ$

III. $\cos 50^\circ$

A. I only

B. II only

C. III only

D. I and II

Answer: D

Watch Video Solution

2. If point $P(\,-\,5,\,12)$ lies on the terminal side of $\angle\theta$ in standard position, $\sin\theta$ =

A.
$$-\frac{12}{13}$$

B.
$$\frac{-5}{12}$$

Answer: D

c. $\frac{-5}{13}$

D. $\frac{12}{13}$

3. If
$$\sec \theta = -\frac{5}{4}$$
 and $\sin \theta > 0$, then $\tan \theta$ =

A.
$$\frac{4}{3}$$

B.
$$\frac{3}{4}$$

$$-\frac{5}{4}$$

$$\mathsf{D.}-\frac{4}{3}$$

Answer: C

Watch Video Solution

4. If x is an angle in quadrant III and tan

$$(x-30^\circ)=\cot x$$
, find x

A. 240°

B. 225°

C. 210°

D. 60°

Answer: A

Watch Video Solution

5. If $90^{\circ} < lpha < 180^{\circ} \,\,$ and $\,270^{\circ} < eta < 360^{\circ}$,

then which of the following cannot be true?

A. $\sin \alpha = \sin \beta$

B. $\tan \alpha = \sin \beta$

C. $\tan \alpha = \tan \beta$

$$\mathsf{D.}\sin\alpha=\cos\beta$$

Answer: A

Watch Video Solution

6. Expressed as a function of an acute angle,

$$\cos 310^{\circ}$$
 =

A.
$$-\sin 50^\circ$$

B.
$$-\sin 40^{\circ}$$

C.
$$-\cos 50^{\circ}$$

D. $\cos 50^\circ$

Answer: D

Watch Video Solution

7. An angle of 30 radians is equal to how many degrees?

A.
$$\frac{\pi}{30}$$

B.
$$\frac{\pi}{6}$$

C.
$$\frac{30}{\pi}$$

$$\text{D.}\ \frac{5,400}{\pi}$$

Answer: D

Watch Video Solution

8. If a sector of a circle has an arc length of 2π inches and an area of 6π square inches, what is the length of the radius of the circle?

A. 1

B. 2

C. 3

D. 6

Answer: D

Watch Video Solution

9. If a circle has a circumference of 16 inches, the area of a sector with a central angle of 4.7 radians is

A. 10

- B. 12
- C. 15
- D. 25

Answer: C

Watch Video Solution

10. A central angle of 40° in a circle of radius 1 inch intercepts an arc whose length is s. find s.

A. 0.7

- B. 1.4
- C. 2
- D. 3

Answer: A

Watch Video Solution

11. the pendulum on a clock swings through an angle 25° , and the tip sweeps out an arc of 12 inches. How long is the pendulum?

- A. 1.67 inches
- B. 13.8 inches
- C. 27.5 inches
- D. 43.2 inches

Answer: C

Watch Video Solution

12. In the figure below, part of the graph of $y=\sin 2x$ is shown. What are the coordinates

of point P?

A.
$$\left(\frac{\pi}{2},1\right)$$

B.
$$(\pi, 1)$$

$$\mathsf{C.}\left(\frac{\pi}{4},1\right)$$

D.
$$\left(\frac{\pi}{2},2\right)$$

Answer: C

13. The figure below could be a portion of the graph whose equation is

$$A. y - 1 = \sin x \cdot \cos x$$

$$\mathtt{B.}\,y\sec x=1$$

$$\mathsf{C.}\,2y+1=\sin2x$$

$$D. 1 - 2y = \cos 2x$$

Answer: D

14. As
$$\theta$$
 increases from $\frac{\pi}{4}$ to $\frac{5\pi}{4}$, the value of $4\cos\frac{1}{2}\theta$

- A. increases, and then decreases
- B. decreases, and then increases
- C. decreases throughout
- D. increases throughout

Answer: C

15. The function $f(x) = \sqrt{3}\cos x + \sin x$ has an amplitude of

A. 1.37

B. 1.73

C. 2

D. 2.73

Answer: C

16. For what value of P is the period off the

function $y=rac{1}{3}{\cos Px}$ equal to $rac{2\pi}{3}$?

A.
$$\frac{1}{3}$$

$$\mathsf{B.}\;\frac{2}{3}$$

Answer: D

17. If $0 \le x \le \frac{\pi}{2}$, what is the maximum value of the function $f(x) = \sin \frac{1}{3} x$?

A. 0

 $\mathsf{B.}\;\frac{1}{3}$

 $\mathsf{C.}\ \frac{1}{2}$

D. $\frac{\sqrt{3}}{2}$

Answer: C

18. If the graph in the figure below has an equation of the form $y=\sin(Mx+N)$, what is the value of N?

$$A. - \pi$$

$$B. - 1$$

$$\mathsf{C.} - \frac{1}{2}$$

D.
$$\frac{\pi}{2}$$

Answer: D

VIEW TEXT POLITICITY

19. If $\sin x = \frac{5}{13}$ and $\cos x = -\frac{12}{13}$, find the value of $\sin 2x$.

$$\mathsf{A.} - \frac{120}{169}$$

B.
$$-\frac{60}{169}$$

c.
$$\frac{60}{169}$$

D.
$$\frac{120}{169}$$

Answer: A

20. If tanA=cotB and angles A and B are acute, then

B.
$$A=90^{\circ}+B$$

$$\mathsf{C}.B = 90^\circ + A$$

D.
$$A+B=90^{\circ}$$

Answer: D

21. If
$$\cos x = \frac{\sqrt{3}}{2}$$
, find $\cos 2x$.

$$A. - 0.87$$

$$\mathsf{B.}-0.25$$

Answer: D

22. If $\sin 37^\circ = z$, express $\sin 74^\circ$ in terms of

Ζ.

A.
$$2z\sqrt{1-z^2}$$

B.
$$2z^2 + 1$$

 $\mathsf{C.}\,2z$

D.
$$2z^2 - 1$$

Answer: A

23. If $\sin x = -0.6427$, what is csc x?

 $\mathsf{A.}-1.64$

B. - 1.56

C. 0.64

D. 1.56

Answer: B

24. For what value(s) of $x, 0 < x < \frac{\pi}{2}$, is $\sin x < \cos x$?

A.
$$x < 0.79$$

$$\mathrm{B.}\,x<0.52$$

$$\mathsf{C.}\,0.52 < x < 0.79$$

D.
$$x > 0.52$$

Answer: A

25. What is the range of the function

$$f(x) = 5 - 6\sin(\pi x + 1)$$
?

- A. [-6,6]
- B. [-5,5]
- C. [-1,1]
- D. [-1,11]

Answer: D

26. Find the number of degrees is $\sin^{-1} \frac{\sqrt{2}}{2}$

- A.-45
- B. 22.5
- $\mathsf{C}.\,0$
- D. 45

Answer: D

27. Find the number of radians in $\cos^{-1}($ -0.5624)

$$A. - 0.97$$

 $\mathsf{B.}\,0.97$

C. 1.77

D. 2.17

Answer: D

28. Evaluate $an^{-1}(an 128^\circ)$

A. -128°

B. -52°

C. 52°

D. 128°

Answer: B

29. Which of the following is (are) true?

 $\text{I.}\sin^{-1}1 + \sin^{-1}(-1) = 0$

II. $\cos^{-1} 1 + \cos^{-1} (-1) = 0$

III. $\cos^{-1}x = \cos^{-1}(-x)$ for all x in the domain of \cos^{-1}

A. Only I

B. only II

C. only III

D. only I and II

Answer: A

30. Which of the following is a solution of $\cos 3x = \frac{1}{2}$?

A.
$$60^{\circ}$$

B.
$$\frac{5\pi}{3}$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{1}{6}\right)$$

D.
$$\frac{1}{3}$$
cos⁻¹ $\left(\frac{1}{2}\right)$

Answer: D

