

PHYSICS

BOOKS - PUNJAB BOARD PREVIOUS YEAR PAPERS

Gauss. Theorem

1. What is the unit of solid angle ?

2. Define Gauss's theorem in electrostatics.

Watch Video Solution

3. Write down a relation between electric flux

and electric field intensity.

4. State Gauss's theorem. How Coulomb's law

can be derived from it ?

Watch Video Solution

5. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

6. What is electriG flux ? Explain how the electric flux through a surface is related to electric field intensity, when the surface is heldinside the electric field.

Watch Video Solution

7. What is the use of Gaussian surface in

electrostatics ?

8. What is the importance of Gauss'theorem in

electrostatics ?

9. What do you mean by electric flux ? Write its

Sl-unit.

11. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point outside

Watch Video Solution

13. State Gauss's theorem with the help of diagram, derive an expression for the electric

field intensity due to uniformly charged thin

spherical shell at a point outside

14. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

16. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point outside

17. Define electric field intensity and find an expression for it at a point due to a thin infinite long sheet of charge.

Watch Video Solution

18. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

19. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

Watch Video Solution

20. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

21. State Gauss.,s theorem. Derive an expression for eletric field intensity at a point to an infinite plane sheet of charges.

Watch Video Solution

22. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point inside

24. State Gauss's theorem with the help of

diagram, derive an expression for the electric

field intensity due to uniformly charged thin

spherical shell at a point outside

25. Define electric field intensity and find an expression for it at a point due to a thin infinite long sheet of charge.

Watch Video Solution

27. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point outside

28. State Gauss.,s theorem. Derive an expression for eletric field intensity at a point to an infinite plane sheet of charges.

Watch Video Solution

29. State Gauss.,s theorem. Derive an expression for eletric field intensity at a point to an infinite plane sheet of charges.

30. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

Watch Video Solution

31. Define electric field intensity and find an expression for it at a point due to a thin infinite long sheet of charge.

32. State Gauss.,s theorem. Derive an expression for eletric field intensity at a point to an infinite plane sheet of charges.

Watch Video Solution

33. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point inside

35. Define electric field intensity and find an expression for it at a point due to a thin infinite long sheet of charge.

Watch Video Solution

37. State Gauss's theorem with the help of diagram, derive an expression for the electric

field intensity due to uniformly charged thin

spherical shell at a point outside

38. State Gauss.s theorem in electrostatics. Using it, derive an experssion for electric field intensity at a point due to infinite sheet of charge. How does the electric field change for a thick sheet of charge?

39. An electric dipole Consisting of charge $5\mu c1$ and $-5\mu C$ and length 10 cm. What is the total electric flux through the box?

40. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point inside

42. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point outside

44. State Gauss.,s theorem. Derive an expression for eletric field intensity at a point

to an infinite plane sheet of charges.

45. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

Watch Video Solution

46. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point outside

Watch Video Solution

48. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point outside

