

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(ENGLISH)

INTRODUCTION TO TRIGONOMETRY

Exercise 8 2

1. Evaluate the following

(i)
$$\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$$

(ii)
$$2 an^245^\circ+\cos^230^\circ-\sin^260^\circ$$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + cosec30^{\circ}}$$
 $\sin 30^{\circ} + \tan 45^{\circ} - cos$

(iv)
$$\dfrac{\sin 30^{\circ} + \tan 45^{\circ} - cosec60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}} \\ 5\cos^2 60^{\circ} + 4\sec^2 30^{\circ} - \tan^2 45^{\circ}$$

$$\sin^2 30^\circ + \cos^2 30^\circ$$

2. Choose the correct option and justify your choice:

(i)
$$\frac{2 \mathrm{tan}\, 30^{\circ}}{1+\mathrm{tan}^2\, 30^{\circ}}$$

$$(a) \sin 60^{\circ} \ (b) \cos 60^{\circ} \ (c) \ tan 60^{\circ} (d) \sin 30^{\circ}$$

3. If
$$\tan(A+B)=\sqrt{3}$$
 and $\tan(A-B)=\frac{1}{\sqrt{3}};$

$$0^{\circ} \leq A + B \leq 90^{\circ}$$
 and $A \leq B$, find A and B.

4. State whether the following are true or false. Justify your answer.

(i)
$$\sin(A+B) = \sin A + \sin B$$
.

- (ii) The value of $\sin\theta$ increases as θ increases.
- (iii) The value of $\cos\theta$ increases as θ increases.
- (iv) $\sin heta = \cos heta$ for all values of heta
- (v) $\cot A$ is not defined for $A=0^\circ$

Exercise 8 4

1. Prove the following identity, where the angles involved are

acute angles for which the expressions are defined.

(v) $rac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \cos ecA + \cot A$

2. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

(iv)
$$rac{1+\sec A}{\sec A}=rac{\sin^2 A}{1-\cos A}$$

Watch Video Solution

3. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

(ix)
$$(cosec A \sin A)(\sec A - \cos A) = \frac{1}{\tan A + \cot A}$$

[Hint: Simplify LHS and RHS separately]

4. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

(viii)
$$\left(\sin A + \cos e c A\right)^2 + \left(\cos A + \sec A\right)^2 = 7 + an^2 A + \cot^2 A$$

5. Prove the following identity, where the angles involved

are acute angles for which the expressions are defined. $(1+\tan^2 A) \qquad (1-\tan A)^2 \qquad \qquad 2A$

$$\text{(x)}\left(\frac{1+\tan^2A}{1+\cot^2A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^2=\tan^2A$$

Watch Video Solution

6. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

(iii)
$$\frac{ an heta}{1-\cot heta}+\frac{\cot heta}{1- an heta}=1+\sec heta\cos ec heta$$

Watch Video Solution

7. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

$$rac{\cos A}{1+\sin A}+rac{1+\sin A}{\cos A}=2\sec A$$

Watch Video Solution

8. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

(vii)
$$rac{\sin heta - 2 \sin^3 heta}{2 \cos^3 heta - \cos heta} = an heta$$

9. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

(i)
$$\left(\cos ec heta - \cot heta
ight)^2 = rac{1-\cos heta}{1+\cos heta}$$

Watch Video Solution

10. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.

$$\sqrt{rac{1+\sin A}{1-\sin A}}=\sec A+ an A$$

Watch Video Solution

11. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

12. Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Watch Video Solution

13. Evaluate:

(i)
$$\frac{\sin^2 63^\circ + \sin^2 27^\circ}{\cos^2 17^\circ + \cos^2 73^\circ}$$

(ii) $\sin 25^{\circ} \cos 65^{\circ} + \cos 25^{\circ} \sin 65^{\circ}$

14. Choose the correct option. Justify your choice.

- (i) $9 \sec^2 A 9 \tan^2 A =$
- (a) 1 (b) 9 (c) 8 (d) 0

Watch Video Solution

Solved Examples

1. Prove that $secA(1-\sin A)(secA+tanA)=1$

Watch Video Solution

2. Express the ratios cosA, tanA and sec A in terms of sin A.

3. Express $\cot 85^o + \cos 75^o$ in terms of trigonometric ratios of angles between 0^o and 45^o

Watch Video Solution

4. If $\sin 3A = \cos (A - 26^{\circ})$, where 3A is an acute angle, find the value of A.

Watch Video Solution

5. Prove that $\frac{\sin\theta-\cos\theta+1}{\sin\theta+\cos\theta-1}=\frac{1}{\sec\theta-\tan\theta}$, using the identity $\sec^2\theta=1+\tan^2\theta$

- **6.** Prove that $\dfrac{\cot A \cos A}{\cot A + \cos A} = \dfrac{cosecA 1}{cosecA + 1}.$
 - 0

Watch Video Solution

- 7. If $\sin(A-B) = \frac{1}{2}, \cos(A+B) = \frac{1}{2},$
- $0^{\circ} < (A+B) \leq 90^{\circ}$, A>B , find A and B.
 - 0

Watch Video Solution

8. Evaluate $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

9. Given $\tan A = \frac{4}{3}$, find the other trigonometric ratios of the angle A.

Watch Video Solution

10. If $\angle B$ and $\angle Q$ are acute angles such that $\sin B = \sin Q$. Then prove that $\angle B = \angle Q$.

11. Consider ΔACB , right-angled at C, in which AB=29 units, BC=21 units and $\angle ABC=\theta$. Determine the values of (i) $\cos 2\theta + \sin 2\theta$ (ii) $\cos 2\theta \sin 2\theta$

Watch Video Solution

12. In a right triangle ABC right-angled at B. if tanA=1, then verify that $2\sin A\cos A=1$.

A. 0

B. 1

 $\mathsf{C.}\,2$

D. 3

Answer: B

Watch Video Solution

13. In ΔOPQ , right-angled at P, $OP=7\,cm$ and $OQ-PQ=1\,cm$ Determine the values of $\sin Q \ and \cos Q$.

14. In ΔABC , right-angled at B, $AB=5\,cm$ and $\angle ACB=30^{\circ}$. Determine the lengths of the sides BC and AC.

15. In PQR , right-angled at $Q,\ PQ=3cm$ and

Watch Video Solution

PR=6cm . Determine $\angle P$ and $\angle R$.

Exercise 8 1

1. If $\cot \theta = \frac{7}{8}$, evaluate:

(i)
$$\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$$

(ii) $\cot^2 \theta$

2. If $\angle A$ and $\angle B$ are acute angles such that $\cos A = \cos B$.

Watch Video Solution

then show that $\angle A = \angle B$.

3. Given $\sec\theta=\frac{13}{12}$, calculate all other trigonometric ratios.

Watch Video Solution

4. Given $15 \cot A = 8$, find sin A and sec A.

A.
$$\sin A = \frac{15}{17}, \sec A = \frac{17}{8}$$

B.
$$\sin A = \frac{13}{17}, \sec A = \frac{11}{8}$$

C.
$$\sin A=rac{15}{17},\sec A=rac{19}{8}$$
D. $\sin A=rac{13}{17},\sec A=rac{17}{8}$

Answer: A

Watch Video Solution

5. If $\sin A = \frac{3}{4}$, calculate cos A and tan A.

6. Find $\tan P - \cot R$.

- **A.** 1
- B.2
- **C**. 3
- **D**. 0

7. In ΔABC , right-angled at B,

 $AB = 24 \, cm, \ BC = 7 \, cm.$ Determine:

- (i) sin A, cos A
- (ii) sin C, cos C

- **8.** In triangle ABC, right-angled at B. if $\tan A = \frac{1}{\sqrt{3}}$ find the value of:
- (i) $\sin A \cos C + \cos A \sin C$
- (ii) $\cos A \cos C \sin A \sin C$

If
$$3\cot A=4$$
, check whether

$$rac{1- an^2A}{1+ an^2A}=\cos^2A-\sin^2A$$
 or not.

9.

10. In ΔPQR , right angled at Q, PR+QR=25cm and PQ=5cm. Determine the values of $\sin P, \cos P$ and $\tan P$

11. State whether the following are true or false. Justify your answer. (i) The value of tan A always less than 1. (ii) $\sec A = \frac{12}{5}$ for some value of angle A (iii) \cos A is the

abbreviation used for the cosecant of angle A. (iv) cot A is the produ

Exercise 8 3

1. If $sec4A = \cos ec(A20o)$, where 4A is an acute angle, find the value of A.

2. If $tanA=\cot B$, prove that $A+B=90^\circ$

- **3.** Express $\sin 67^\circ + \cos 75^\circ$ in terms of trigonometric ratios of angles between 0° and 45° .
 - 0

Watch Video Solution

- **4.** If A, B and C are interior angles of a triangle ABC, then show that $\sin\!\left(\frac{B+C}{2}\right)=\cos\!\left(\frac{A}{2}\right)$.
 - 0

- **5.** Evaluate:
- (i) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
- (ii) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$

(iii) $\cos 48^\circ - \sin 42^\circ$

(iv) $cosec31^{\circ}\sec59^{\circ}$

Watch Video Solution

6. If $\tan 2A = \cot \left(A - 18^0\right)$, where 2A is an acute angle, find the value of A.

Watch Video Solution

7. Show that:

- (i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$
- (ii) $\cos 38^\circ \, \cos 52^\circ \, \sin 38^\circ \sin 52^\circ \, = \, 0$

