©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT

MATHEMATICS(ENGLISH)

POLYNOMIALS

Exercise 22

1. Find the zeroes of the following quadratic
polynomials and verify the relationship
between the zeroes and the coefficients $t^{2}-15$

D Watch Video Solution

2. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
$4 u^{2}+8 u$
3. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $3 x^{2}-x-4$

- Watch Video Solution

4. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $x^{2}-2 x-8$
5. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $6 x^{2}-3-7 x$

D Watch Video Solution
6. Find the zeroes of the following quadratic polynomials and verify the relationship
between the zeroes and the coefficients
$4 s^{2}-4 s+1$

D Watch Video Solution

7. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. - (i)
$x^{2}-2 x-8$
(ii) $\quad 4 s^{2}-4 s+1$
$6 x^{2}-3-7 x \quad$ (iv) $4 u^{2}+8 u \quad$ (v) $t^{2}-15 \quad$ (vi)
$3 x^{2}-x-4$
8. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.(iv) 1,1 (v) $-\frac{1}{4}, \frac{1}{4}$ (vi) 4,1

D Watch Video Solution

9. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.(i) $\frac{1}{4},-1$ (ii) $\sqrt{2}, \frac{1}{3}$
$0, \sqrt{5}$ (iv) 1,1 (v) $-\frac{1}{4}, \frac{1}{4}$ (vi) 4,1

Solved Examples

1. Divide $3 x^{3}+x^{2}+2 x+5$ by $1+2 x+x^{2}$.

D Watch Video Solution

2. Verify that $3,1,-\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x)=3 x^{3}-5 x^{2}-11 x-3$, and then verify
the relationship between the zeroes and the coefficients.

D Watch Video Solution

3. Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2 , respectively.

D Watch Video Solution
4. Find the zeroes of the polynomial $x^{2}-3$ and verify the relationship between the zeroes and the coefficients.

- Watch Video Solution

5. Find the zeroes of the quadratic polynomial
$x^{2}+7 x+10$, and verify the relationship between the zeroes and the coefficients.
6. Look at the graphs in Figure given below.

Each is the graph of $y=p(x)$, where $\mathrm{p}(\mathrm{x})$ is a polynomial. For each of the graphs, find the number of zeroes of $p(x)$.

D Watch Video Solution

7. Find all the zeroes of
$2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if you know that
two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
8. Divide $3 x^{2}+x^{3}-3 x+5$ by $x-1-x^{2}$, and verify the division algorithm.

D Watch Video Solution

9. Divide $2 x^{2}+3 x+1$ by $x+2$

D Watch Video Solution

1. The graphs of $y=p(x)$ are given in Figure below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

D Watch Video Solution

Exercise 23

1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in
$p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$

D Watch Video Solution

2. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in

$$
\begin{aligned}
& \text { each of the following } \\
& p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x
\end{aligned}
$$

D Watch Video Solution

3. Apply the division algorithm to find the quotient and remainder on dividing
$f(x)=x^{3}-3 x^{2}+5 x-3$ by $g(x)=x^{2}-2$

- Watch Video Solution

4. On dividing $x^{3}-3 x^{2}+x+2 \mathrm{by}$ a polynomial the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $\mathrm{g}(\mathrm{x})$.
5. Give an example of polynomials
$f(x), \quad g(x), \quad q(x)$ and $\quad r(x) \quad$ satisfying
$f(x)=g(x) \dot{q}(x)+r(x) \quad, \quad$ where degree $r(x)=0$.

D Watch Video Solution

6. Obtain all the zeros of the polynomial $f(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two
of its zeros are $\sqrt{ }$ and $-\sqrt{\frac{5}{3}}$
7. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :
$t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

D Watch Video Solution

8. Check whether the first polynomial is a
factor of the second polynomial by dividing
the second polynomial by the first polynomial :
$x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$
9. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial : $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

- Watch Video Solution

Exercise 24

1. If the polynomial
$x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by
another polynomial $x^{2}-2 x+k$, the
remainder copies out to be $x+a$. Find k and
a.

- Watch Video Solution

2. If two zeroes of the polynomial
$x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $\quad 2 \pm \sqrt{3}$,
find other zeroes.
3. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.

D Watch Video Solution

4. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,7,14$ respectively.

- Watch Video Solution

5. Verify that the numbers given alongside of the cubic polynomials below are their zeroes.

Also verify the relationship between the zeroes and the coefficients in each case:(i)
$2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
$x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

- Watch Video Solution

