

PHYSICS

BOOKS - PUNJAB BOARD PREVIOUS YEAR PAPERS

Magnetic Effects of Current

Excersice

1. A horizontalwire 0.1m longcarries a current

of 5 A. Findthe magnitude of magnetic field

which can support the weight of the wire. Mass of given wire is $3 imes 10^3 Kgm^{-1}$.

2. A 0.5m long solenoid has 500 turns and has a flux density of 2.52×10^{-3} T at its centre. Find the current in the solenoid. (Given $\mu = 4\pi \times 10^{-7} T A^{-1} m$).

3. A solenoid of length 50cm, having 100 turns

carries a current of 2.5A. Find the magnetic

field in the interior of the solenoid.

4. A solenoid of length 50cm, having 100 turns

carries a current of 2.5A. Find the magnetic

field at one end of the solenoid.

5. Define Ampere's swimming rule for magnetic

effect of current.

8. What is Ampere's swimming (SNOW) Rule ?

10. Define S.I. unit of magnetic field.

11. What is meant by magnetic flux? State its S.I. unit.

12. Name the physical quantity whose S.I. unit

is ampere/meter2.

16. The direction of magnetic field produced on passing electric current in a conductor is determined by

17. Define one tesla.,

18. Derive an expression for the magnetic field.at the centre of a current carrying coil.Watch Video Solution

19. Using Ampere.s circuital law derive an expression for magnetic field due to infinitely long current carrying wire at a point at distance Yfrom it.

20. Prove Ampere Circuital law.

Watch Video Solution

21. Using Ampere.s circuital law derive an expression for magnetic field due to infinitely long current carrying wire at a point at distance Yfrom it.

22. Find magnetic field intensity at a point well

inside the solenoid carrying current.

Watch Video Solution

23. Using Ampere.s circuital law derive an expression for magnetic field due to infinitely long current carrying wire at a point at distance Yfrom it.

25. Derive an expression for the magnetic

field.at the centre of a current carrying coil.

27. Derive an expression for the magnetic

field.at the centre of a current carrying coil.

28. State Biot-Savart law. Using Biot-Savart law find the magnitude and direction of magnetic field at a point on the axis of a circular coil of radius 'r', distant 'x' from the center having number of turns N carrying current 'l'.

Watch Video Solution

29. State Ampere's circuital law. By using it derive an expression for magnetic field

intensity at a point due to a straight current

carrying conductor.

30. Using Biot Savart's law derive an expression for the magnetic field due to a circular current carrying loop at any point on its axis.

Watch Video Solution

32. Using Ampere.s circuital law derive an expression for magnetic field due to infinitely long current carrying wire at a point at distance Yfrom it.

33. Derive an expression for the magnetic

field.at the centre of a current carrying coil.

34. Derive an expression for the magnetic

field.at the centre of a current carrying coil.

36. Using Biot Savart's law derive an expression

for the magnetic field due to a circular current

carrying loop at any point on its axis.

37. Find magnetic field intensity at a point well

inside the solenoid carrying current.

38. The direction of magnetic field produced on passing electric current in a conductor is determined by

Watch Video Solution

40. State Maxwell's cork screw rule.

46. Find magnetic field intensity at a point well

inside the solenoid carrying current.

47. Derive an expression for the magnetic

field.at the centre of a current carrying coil.

