



#### MATHS

### **BOOKS - UNIQUE MATHS (HINGLISH)**

#### SIMILARITY



**1.** Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

A. 
$$\frac{1}{2}$$
  
B.  $\frac{3}{4}$   
C.  $\frac{5}{4}$   
D.  $\frac{1}{4}$ 

#### Answer: B



 $\Delta PQR, PM = 15, PQ = 25, PR = 20, NR = 8.$ 

State whether line NM is parallel to side RQ or not.

#### Given Reason.



A. No, because NM is not dividing PR and PQ in

equal proportion

B. yes

C. No, NM is dividing PR and PQ in equal proportion

#### D. none

#### Answer: A

Watch Video Solution

## 3. In $\Delta MNP, NQ$ is a bisector of $\angle N$ . If MN = 5, PN = 7, MQ = 2.5, the find QP.



4. Measures of some angles in the figures are given. Prove that  $\frac{AP}{PB} = \frac{AQ}{QC}$ 



5. In trapezium ABCD side  $AB \mid \mid$  side  $PQ \mid \mid$  side DC, AP = 15, PD = 12, QC = 14, find BQ.



A. 14.5

 $B.\,16.5$ 

C. 17.5

 $D.\,18.5$ 

Answer: C



6. In  $\triangle ABC$ , seg BD bisects  $\angle ABC$ . If AB = x, BC = x + 5, AD = x - 2, DC = x + 2. Find the

value of x.



7. In  $\triangle ABC$ ,ray BD bisects  $\angle ABC$  and ray CE bisects  $\angle ACB$ . If seg AB  $\cong$  seg AC, then prove



**9.** Kamala have drawn a trapezium PQRS of which  $PQ \mid SR$ . If the diagonals PR and QS intersect each other at O, then prove that OP:OR = OQ:OS, If SR = 2PQ, then prove that O is a point of trisection of both the diagonals.

**Watch Video Solution** 

**10.** The ratio of corresponding sides of similar triangles is 3:5, then what is the ratio of their areas.

A. 
$$\frac{3}{25}$$
  
B.  $\frac{9}{5}$   
C.  $\frac{3}{5}$   
D.  $\frac{9}{25}$ 

#### Answer: D



#### 11. If $\Delta ABC$ - $\Delta PQR$ and AB : PQ = 2 : 3, then fill

in the blanks:



#### Watch Video Solution

 $\Delta ABC \sim \Delta PQR, A(\Delta ABC) = 80, A(\Delta PQR) = 125$ 

, then fill in the blanks:

$$egin{aligned} A(\Delta ABC) \ \hline A(\Delta \ldots \ldots \ldots) &= rac{80}{125} \therefore rac{AB}{PQ} = rac{\Box}{\Box} \end{aligned}$$

13.

 $\Delta LMN \sim \Delta PQR$ ,

 $9 imes A(\Delta PQR) = 16 imes A(\Delta LMN).$  If QR=20, then find MN.

Watch Video Solution

**14.** Areas of two similar triangles are 225sqcm and 81sqcm. If a side of the smaller triangle is 12cm, then find the corresponding side of the bigger triangle.

A. 20*cm* 

 $\mathsf{B.}\,21cm$ 

 $\mathsf{C.}\,22cm$ 

 $\mathsf{D.}\ 23cm$ 

#### **Answer: A**



# 15. $\triangle ABC$ and $\triangle DEF$ are equilateral triangles. If $A(\triangle ABC): A(\triangle DEF) = 1:2$ and AB = 4, find DE.

**16.** Ratio of areas of two triangles with equal height is 2:3. If base of the smaller triangle is 6 cm, the what is the corresponding base of the bigger triangle?



Watch Video Solution

#### 17. $\Delta MNT$ - $\Delta QRS$ . Length of altitude drawn from

point T is 5 and length of altitude drawn from point S is 9. Find the ratio  $\frac{A(\Delta MNT)}{A(\Delta QRS)}$ .



In  $\Delta PQR$  seg PM is a median. Angle bisectors of  $\angle PMQ$  and  $\angle PMR$  interesect side PQ and side PR in points X and Y respectively. Prove that  $XY \mid \mid QR$ .

Complete the proof byfilling in the boxes:

**19.** In  $\Box ABCD$ , seg  $AD \mid \mid$  seg BC. Diagonal AC

and digonal BD intersect each other in point P.



20. In  $\Delta ABC$ , seg  $DE \mid \mid$  side BC. If  $2Ar(\Delta ADE) = Ar(\Box DBCE)$ , find AB:AD

and show  $BC = \sqrt{3} \times DE$ .

Watch Video Solution

21. Lex X by any point on the side BC of a triangle ABC. If XM, XN are drawn parallel to BA and CA meeting CA, BA in M, N respectively; MN meets BC produced in T, prove that  $TX^2 = TB \times TC$ 

Watch Video Solution

**22.** Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of

intersection of the lines joining the top of each pole to the foot of the opposite pole is given by  $\frac{ab}{a+b}$  metres. Watch Video Solution

**Unique Practise Session Mcqs** 

1. Sides of two similar triangles are in the ratio  $4\!:\!9$ 

. Areas of these triangles are in the ratio. 2:3 (b)

4:9 (c) 81:16 (d) 16:81

B.4:9

C. 81:16

D. 16:81

Answer:

Watch Video Solution

**2.** The areas of two similar triangles are in respectively  $9 \ cm^2$  and  $16 \ cm^2$ . Then find the ratio of their corresponding sides.

A. 3:4

B. 4:3

C.2:3

D. 4:5

Answer: A

Watch Video Solution

**3.** A vertical stick 20 m long casts a shadow 10m long on the ground. At the same time, a tower casts a shadow 50m long on the ground. The height of the tower is (a) 100m (b) 120m (c) 25m (d) 200m

A. 100m

 $\mathsf{B.}\,120m$ 

C.25m

 $\mathsf{D.}\ 200m$ 

#### Answer:



**4.** Two isosceles triangles have equal angles and their areas are in the ratio 16:25. The ratio of their corresponding heights is 4:5 (b) 5:4 (c) 3:2(d) 5:7 A. 4:5

B. 5:4

C. 3:2

D. 5:7

#### **Answer:**

Watch Video Solution

5. If ABC and DEF are similar triangles such that  $AB=3cm, \qquad BC=2cm, \qquad CA=2.5cm$ and EF=4cm. Write the perimeter of  $\bigtriangleup DEF.$ 

A. 7.5cm

 $\mathsf{B.}\,15cm$ 

C.22.5cm

 $\mathsf{D.}\ 30 cm$ 

**Answer: B** 

Watch Video Solution

**Unique Practise Session 1 Marks Question** 

1. SAS Similarity Criterion : If in two triangle; one

pair of corresponding sides are proportional and

the included angles are equal then two triangles

are similar.



**2.** The ratio of corresponding sides of similar triangles is 5:7, then what is the ratio of their areas?

Watch Video Solution

**3.** Two sides and the perimeter of one triangle are respectively three times the corresponding sides

and the perimeter of the other triangle. Are the

two triangles similar? Why?



**Unique Practise Session 2 Marks Question** 

**1.** In  $\Delta ABC$ , point D is on side BC such that DC = 6,

BC = 15. find

(i) $A(\Delta ABD)$  :  $A(\Delta ABC)$  and





Watch Video Solution

2.  $\Delta ABC \sim \Delta PQR$ . If  $A(\Delta ABC) = 25$ ,  $A(\Delta PQR) = 16$  find AB : PQ.

Watch Video Solution

**Unique Practise Session 3 Marks Question** 

**1.** If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.



BC=4.~5cm , find DE . (FIGURE)

Watch Video Solution



Unique Practise Session 4 Marks Question

**1.** ABCD is a trapezium such that AB||CD. Its diagonals AC and BC intersect each other at O. Prove that  $\frac{AO}{OC} = \frac{BO}{OD}$ Watch Video Solution

**2.** If one diagonal of a trapezium divides the other diagonal in the ratio 1:2, prove that one of the parallel lines is double the other.





**1.**  $\Delta ABC$  and  $\Delta DEF$  are equilateral triangles,  $A(\Delta ABC): A(\Delta DEF) = 1:2$ 

If AB = 4 then what is length of DE?



A.  $2\sqrt{2}$ 

 $\mathsf{B.4}$ 

**C**. 8

#### **Answer:**



2. If ABC and DEF are similar such that 2 AB = DE and BC = 8cm, then EF = (a) 16cm (b) 12cm (c) 8cm (d) 4cm.

A. 16cm

B. 12cm

C. 8*cm* 

D. 4*cm* 

#### Answer:



**3.** Areas of two similar triangles are 225 sq cm and 81 sq cm. If a side of the smaller triangle is 12 cm, then find the corresponding side of the bigger triangle.



4. In  $\triangle ABC$ ,ray BD bisects  $\angle ABC$  and ray CE bisects  $\angle ACB$ . If seg AB  $\cong$  seg AC, then prove





**5.** Prove that , "If a line parallel to a side of a triangle intersects the remaining sides in two distinct points then the line divides the sides in the same proportion".

