

CHEMISTRY

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

D AND F- BLOCK ELEMENTS AND CO-ORDINATION COMPOUNDS

Textual Examples

1. On what ground can you say that scandium (Z = 21) is a transition element but zinc (Z = 30) is not ?

Watch Video Solution

2. Why do the transition elements exhibit higher enthapies of atomisation ?

3. Name a transition element which does not exhibit variable oxidation states.

4. Why is Cr^{2+} reducing and Mn^{3+} oxidizing even though both have the same d^4 electronic configuration.

5. How would you account for the increasing oxidising power in the series $VO_2^+\,<\,Cr_2O_7^{2\,-}\,<\,MnO_4^-$?

6. For the first row transition metals the E^0 values are:

$$E^0$$
 V Cr Mn Fe Co Ni Cu (M^+/M) -1.18 -0.91 -1.18 -0.44 -0.28 -0.25 $+0.34$ Explain the irregularity in the above values.

7. Why is the $E^{\, \Theta}$ value for the $Mn^{3\, +}\,/Mn^{2\, +}$ couple much more position than that for $Cr^{3\, +}\,/Cr^{2\, +}\,$ or $Fe^{3\, +}\,/Fe^{2\, +}\,$? Explain.

8. Calculate the magnetic moment of a divalent ion in aqueous solution if its atomic number is 25

9. What is meant by 'disproportionation' of an oxidation state ? Give an example.

10. Name a member of the lanthanoid senes which is well known to exhibit +4 oxidation state.

11. On the basis of the following observations made with aqueous solutions, assign secondary valencies to metals in the following compounds.

	Formula	Moles of AgCl precipitated per mole of the compounds with excess AgNO ₃
(i)	PdCl ₂ . 4NH ₃	2
(ii)	NiCl ₂ . 6H ₂ O	2
(iii)	PtCl ₄ . 2HCl	0
(iv)	CoCl ₃ . 4NH ₃	1
(v)	PtCl ₂ . 2NH ₃	0

12. Write the formulas for the follow co-ordination compounds

Tetraammineaquachloro cobalt (III) chloride

13. Write the formulas for the follow co-ordination compounds

Potassium tetrahydroxozincate (II)

Watch Video Solution

14. Write the formulas for the follow co-ordination compounds

Potassium trioxalatoaluminate (III)

15. Write the formulas for the follow co-ordination compounds

Dichlorobis (ethane-1, 2-diamine) cobalt (III)

16. Write the formulas for the follow co-ordination compounds

Tetracarbonylnickel (0)

17. Write the IUPAC names of the follow coordination compounds.

 $\left[Pt(NH_3)_2Cl(NO_2)\right]$

18. Write the IUPAC names of the follow coordination compounds.

 $K_3ig[Cr(C_2O_4)_3ig]$

19. Write the IUPAC names of the follow coordination compounds.

 $\big[CoCl_2(en)_2\big]Cl$

20. Write the IUPAC names of the follow coordination compounds.

 $\big[Co(NH_3)_5(CO_3) \big] Cl$

21. Write the IUPAC names of the follow coordination compounds.

 $Hg\big[Co(SCN)_4\big]$

22. Why is geometrical isomerism not possible in tetrahedral complexes having two different types of unidentate ligands Coordinated with the central metal ion?

23. Draw structures of geometrical isomers of $\left[Fe(NH_3)_2(CN)_4\right]^-$

24. Out of the following two Co-ordination entities which is chiral (optically active)?

a) $\operatorname{cis-} \left(CrCl_2(\operatorname{ox})_2
ight]^{3-}$ b) $\operatorname{trans-} \left[CrCl_2(\operatorname{ox})_2
ight]^{3-}$

25. The spin only magnetic thoment of $[MnBr_4]^{2-}$ is 5.9 BM.

Predict the geometry of the complex ion?

Very Short Answer Questions

1. What are transition elements? Give examples.

2. Which elements of 3d, 4d, and 5d series are not regarded as transition elements and why?

3. Why are d-block elements called transition elements?		
Watch Video Solution		
4. Write the general electronic configuration of transition elements.		
Watch Video Solution		
5. In what way is the electronic configuration of transition elements different from non transition elements ?		
Watch Video Solution		
6. Write the electronic configuration of chromium (Cr) and copper (Cu).		

7. Why do transition elements exhibits characteristic properties ?

8. Scandium is a transition element. But Zinc is not. Why?

9. Even though silver has d^{10} configuration, it is regarded as

transition element Why?

11. Why are Mn^{2+} compounds more stable than Fe^{2+} towards oxidation to their +3 state?

12. Which metal in the first series of transition metals exhibits + 1 oxidation state most frequently and why?

13. Why do transition elements exhibit more than one oxidation state (variable oxidation states) ?

14. Though Sc is a transition element, it does not exhibit variable oxidation state. Why?

15. Why is it difficult to obtain $M^{3\,+}$ oxidation state in Ni, Cu and Zn ?

16. Why is Cr^{2+} reducing and Mn^{3+} oxidizing even though both have the same d^4 electronic configuration.

17. Although Cr, Mo and W belong to the same group (group 6) Cr (VI) is a strong oxidizing agent while Mo (VI) and W (VI) are not. Why?

18. What do you infer from the fact that $M^{3\,+}/M^{2\,+}$ standard electrode potential of Mn is comparatively higher and that of Fe is comparitively lower ?

19. Transition elements have high melting points. Why?

20. Among the first transition series (3d series) Chromium has highest melting point. Why?

21. Compared to s-block elements, the transition elements exhibit higher enthalpy of atomization. Why?

22. Among the first transition series (3d series) zinc has lowest enthalpy of atomization. Why?

23. How do rou expect the density of transition elements to vary in a given series and why?

24. How do the atomic and ionic sizes vary among transition metals in a given series ?

25. Why do Mn, Ni and Zn exhibit more negative $E^{\,\Theta}$ values than expected ?

26. Among the first transition series (3d series) only copper has positive $E^{\,\Theta}\,M^{2\,+}\,/M$ value. Why?

27. Cu^{+2} forms halides like $CuF_2, CuCl_2$ and $CuBr_2$ but not CuI_2 . Why?

28. The highest Mn fluoride is MnF_4 where as the highest oxide is

 Mn_2O_7 Why?

29. In its fluoride or Oxide, in which a transition metal exhibits highest oxidation state and why?

30. Why Zn^{2+} is diamagnetic whereas Mn^{2+} is paramagnetic ?

31. Write 'spin only' formula to calculate the magnetic moment of transition metal ions.

32. Calculate the 'spin only' magnetic moment of $Fe_{aq}^{2\,+}$ ion.

watch video Solution

33. What is meant by 'disproportionation'? Give an example of disproportionation reaction in aqueous solution.

34. Aqueous Cu^{2+} ions are blue in colour, where as Aqueous

 $Zn^{2\,+}$ ions are colourless. Why ?

35. What are complex compounds? Give examples.

36. Why do the transition metals forin a large number of complex compounds ?

Watch Video Solution

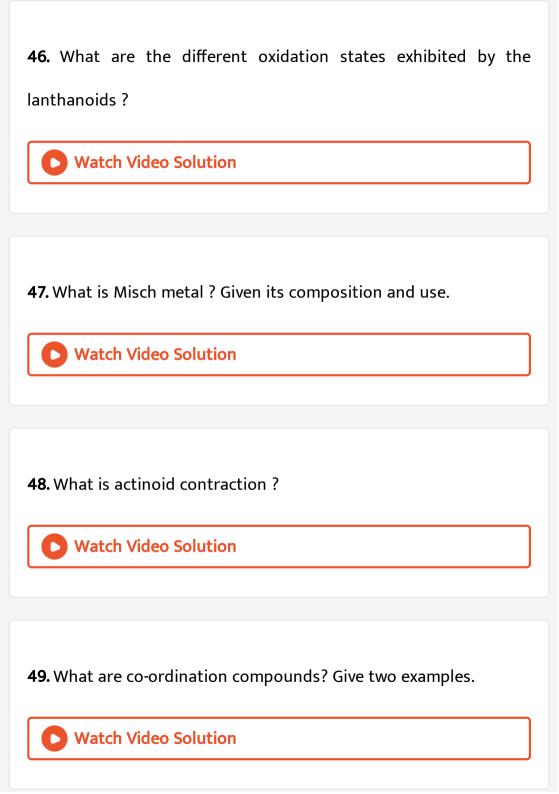
37. How do transition metals exhibit catalytic activity?

38. Give two reactions in which transition metals or their compounds acts as catalysts.

39. What is an alloy? Give example.

watch video Solution
40. Why do the transition metals readily form alloys ?
Watch Video Solution
41. How do the ionic character and acidic nature vary among the
oxides of first transition series?
Watch Video Solution
42. What is the effect of increasing pH on a solution of potassium dichromate?
Watch Video Solution

43. Name the oxometal anions of the first series of transition metals in which the metal exhibits the oxidation state equal to its group number.



44. Permanganate titrations are carried out in the presence of sulphuric acid but not in presence of hydrochloric acid. Why?

45. What is Lanthanoid contraction?

50. What is a coordination polyhedron ?
Watch Video Solution
51. What is a double salt? Give example.
Watch Video Solution
52. What is difference between a double salt and complex compound?
Watch Video Solution
53. What is a ligand ?
Watch Video Solution

54. Give one example each for ionic and neutral ligands. **Watch Video Solution 55.** How many moles of AgCl is precipitated when I mole of $CoCl_3$ is treated with $AgNO_3$ solution? **Watch Video Solution 56.** What is a chelate ligand? Give example. **Watch Video Solution**

57. What is an ambidentatc ligand ? Give example.

Watch Video Solution

58. $CuSO_4.5H_2O$ is blue in colour where as anhydrous $CuSO_4$ is colourless. Why?

59. $FeSO_4$ solution mixed with $(NH_4)_2SO_4$ solution in 1:1 molar ratio gives the test for Fe^{2+} ion but $CuSO_4$ mixed with aqueous ammonia in 1:4 molar ratio does not give the test of Cu^{2+} ion. why?

60. How many geometrical isomers are possible in the following coordination entities ?

$$\left[Cr(C_2O_4)_3\right]^{3-}$$

61. How many geometrical isomers are possible in the following coordination entities ?

 $\left[Co(NH_3)_3 Cl_3 \right]$

62. What is the coordination entity formed when excess of aqueous KCN is added to an aqueous solution copper sulphate? Why?

63. $\left[Cr(NH_3)_6\right]^{3+}$ is paramagnetic while $\left[Ni(CN)_4\right)\right]^{2-}$ is diamagnetic Why ?

64. A solution of $\left[Ni(H_2O)_6\right]^{2+}$ is green but a solution of $\left[Ni(CN)_4\right]^{2-}$ is colourless. Why?

65. $\left[Fe(CN)_4\right]^{2-}$ and $\left[Fe(H_2O)_6\right]^{2+}$ are of different colours in dilute solutions. Why ?

66. What is the oxidation state of cobalt in $K[Co(CO)_4]$

Watch Video Solution	
68. Give the formula the follow complexes. Potassium hexacyano ferrate (III)	
Watch Video Solution	
69. Write the formulas for the follow co-ordination compounds Tetracarbonylnickel (0) Watch Video Solution	
Water video Soldtion	
70. What are interstitial compounds ?	
Watch Video Solution	

 CuI_2 . Why ?

71. Cu^{+2} forms halides like CuF_2 , $CuCl_2$ and $CuBr_2$ but not

Short Answer Questions

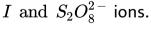
Explain.

1. Compared to 3d series the corresponding transition metals of 4d and 5d transition series show high enthalpy of atomization.

Watch Video Solution

- **2.** Compared to the changes in atomic and ionic sizes of elements of 3d and 4d series, the : change in radii of elements of 4d and 5d series is virtually the same Comment.
 - Watch Widon Calintian

watch video Solution


3. Account for the zero oxidation staie of Ni and Fe in $\left[Ni(CO)_4\right]$ and $\left[Fe(CO)_5\right]$ respectively.

4. Why do the transition metal ions exhibit characteristic colours in aqueous solution. Explain giving examples.

5. Explain the catalytic action of Iron(III) in the reaction between $\mathbf{r} = \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$

8. Wtite the characteristic properties of transition elements.

7. Write the characteristics of interstitial compounds.

9. Write down the electronic configuration of

 Cr^{3+}

Watch Video Solution

10. Write down the electronic configuration of Cu^+

11. Write down the electronic configuration of

 Co^{2+}

12. Write down the electronic configuration of

 Mn^{2+}

13. What may be the stable oxidation state of the transition element with the following d electron configurations in the ground state of their atoms : $3d^33d^53d^8$ and $3d^4$?

14. What is lanthanoid contraction? What are the consequences of lanthanoid contraction?

15. How is the variability in oxidation states of transition metals different from that of the non transition metals ? Illustrate with examples.

16. Describe the preparation of potassium dichromate from iron chromite ore.

17. Describe the oxidising action of potassium dichromate and write the ionic equations for its.

With (i) iodide (ii) iron (II) solution (iii) H_2S and (iv) Sn(II)

18. Describe the preparation of potassium permanganate.

19. How does the acidified permanganate solution react with iron (II) ions

Write the ionic equations for the reactions.

20. How does the acidified permanganate solution react with SO_2

Write the ionic equations for the reactions.

21. How does the acidified permanganate solution react with oxalic acid.

Write the ionic equations for the reactions.

22. Predict which of he ions $Cu^+, Sc^{3+}, Mn^{2+}, Fe^{2+}$ are coloured in aqueous solution ? Give reasons.

23. Compare the stability of + 2 oxidation state of the elements of the first transition series.

24. Use Hund's rule to derive the electronic configuration of Ce^{3+} ion and calculate its magnetic moment on the basis of 'spin-only' formula.

25. Write down the number of 3d electrons in each of the following ions : Ti^{2+} , $V^{2+}Cr^{3+}$ and Mn^{2+} . Indicate how would yoq expect the five 3d orbitals to be occupied for these hydrated ions (octahedral).

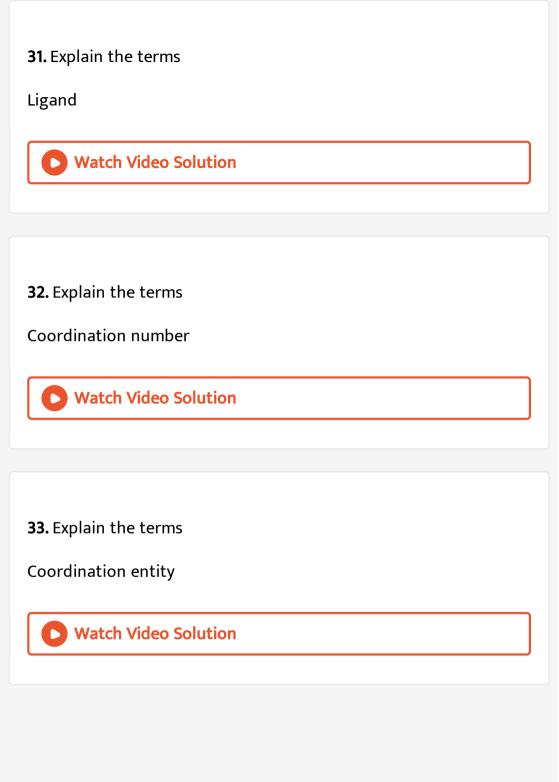
26. Explain Werner's theory of coordination compounds with suitable examples.

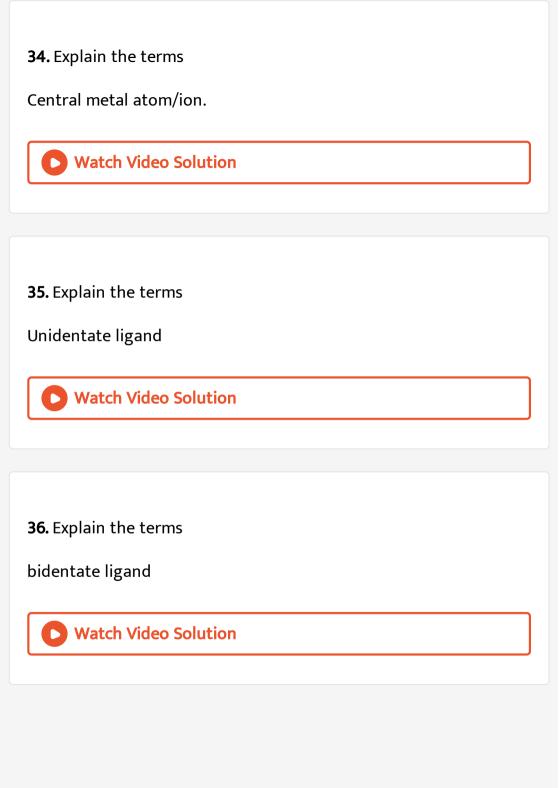
27. Give the geometrical shapes of the following complex entities

$$igl[{\it Co(NH_3)}_6 igr]^{3\,+}$$

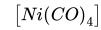
28. Give the geometrical shapes of the following complex entities $\left\lceil Ni(CO)_4
ight
ceil$

29. Give the geometrical shapes of the following complex entities


$$[PtCl_4]^{2-}$$



30. Give the geometrical shapes of the following complex entities


$$igl[Fe(CN)_8 igr]^{4-}$$

37. Explain the terms polydentate ligand **Watch Video Solution** 38. Explain the terms ambidentate ligand giving one example for each. **Watch Video Solution 39.** What is meant by chelate effect? Give example. **Watch Video Solution** 40. Give the oxidation numbers of the central metal atoms in the following comlex entities

41. Give the oxidation numbers of the central metal atoms in the following comlex entities

$$\left[Co(NH_3)_6 \right]^{3\,+}$$

42. Give the oxidation numbers of the central metal atoms in the following comlex entities

$$igl[Fe(CN)_6 igr]^{4-}$$

43. Give the oxidation numbers of the central metal atoms in the following comlex entities

 $\left[Fe(C_2O_4)_3\right]^{3-}$

44. Using IUPAC norms write the formulas for the Tetrahydroxozincate (II)

45. Using IUPAC norms write the formulas for the Hexaamminecobalt (III) sulphate

46. Using IUPAC norms write the formulas for the Potassium tetrachloropalladate (II)

47. Using IUPAC norms write the formulas for the Potassium tri(oxalato) chromate (III)

48. Using IUPAC norms write the systematic names of the $\left[Co(NH_3)_6\right]Cl_3$

49. Using IUPAC norms write the systematic names of the $\Big[Pt(NH_3)_2Cl(NH_2CH_3)\Big]Cl$

50. Using IUPAC norms write the systematic names of the $\left[Ti(H_2O)_6
ight]^{3+}$

51. Using IUPAC norms, write the systematic names of the $\left[NiCl_4
ight]^{-2}$

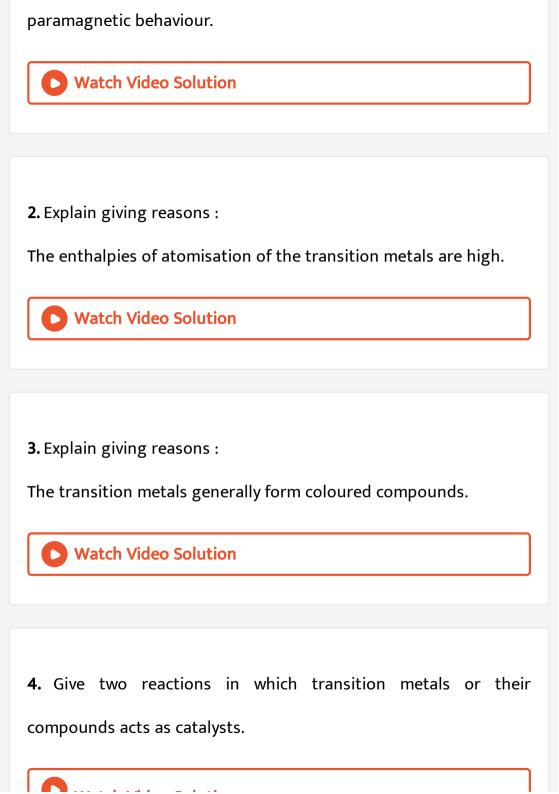
52. Explain geometrical isomerism in Co-ordination compounds giving suitable examples.

53. What are homoleptic and heteroleptic complexes ? Give one example for each.

54. Write the characteristic properties of transition elements.

55. What is lanthanoid contraction? What are the consequences of lanthanoid contraction?

56. What are homoleptic and heteroleptic complexes ? Give one example for each.


57. Explain the colour and para magnetic property of transition elements.

Long Answer Questions

1. Explain giving reasons:

Transition metals and many of their compounds show

5. Describe the preparation of potassium permanganate. How does the acidified permanganate solution react with (i) iron (II) ions (ii) SO_2 and (iii) oxalic acid? Write the ionic equations.

- **6.** Compare the chemistry of the actinoids with that of lanthanoids with reference to:
- (i) electronic configuration (ii) oxidation states and (iii) chemical reactivity

7. How would you account for the of the d_4 species, Cr^{2+} is strongly reducing while manganese (III) is strongly oxidising.

8. How would you account for the Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents is easily oxidised.

9. How would you account for the The d_1 configuration is very unstable in ions.

10. Give examples and suggest reasons for the following features of the transition metals.

The lowest oxide of transition metal is basic, the highest is amphoteric/acidic.

Watch Video Solution

11. Give examples and suggest reasons for the following features of the transition metals.

A transition metal exhibits highest oxidation state in oxides and fluorides

Watch Video Solution

12. Give examples and suggest reasons for the following features of the transition metals.

The highest oxidation state is exhibited in oxoanions of a metal. **Watch Video Solution** 13. Compare the chemistry of the actinoids with that of lanthanoids with reference to: (i) electronic configuration (ii) oxidation states and (iii) chemical reactivity **Watch Video Solution** 14. Explain IUPAC nomenclature of Co-ordination compounds with suitable examples. **Watch Video Solution**

15. Explain different types of isomerism exhibited by Co-ordination compounds, giving suitable examples.

16. Discuss the nature of bonding and magnetic behaviour in the $\left[Fe(CN)_6\right]^{4-}$ Co-ordination entities on the basis of valence bond theory.

17. Discuss the nature of bonding and magnetic behaviour in the $\left[FeF_6\right]^{3-}$ Co-ordination entities on the basis of valence bond theory.

18. Discuss the nature of bonding and magnetic behaviour in the $\left[Co(C_2O_4)_3\right]^{3-}$ Co-ordination entities on the basis of valence bond theory.

19. Discuss the nature of bonding and magnetic behaviour in the $\left[CoF_6\right]^{3-}$ Co-ordination entities on the basis of valence bond theory.

20. Sketch the splitting of d orbitals in an octahedral crystal field,

21. What is spectrochemical series? Explain the difference between a weak field ligand and a strong field ligand.

22. Discuss the nature of bonding in metal carbonyls.

23. Explain the applications of Co-ordination compounds in different fields.

Intext Questions

1. Silver atom has completely filled d-orbitals $\left(4d^{10}\right)$ in its ground state. How can you say that it is a transition element ?

2. In the series Sc(Z = 21) to Zn (Z = 30), the enthalpy of atomisation of zinc is the lowest, i.e., $126kJmol^{-1}$, why ?

3. Which of the 3d series of the transition metals exhibits the largest number of oxidation , states and why ?

4. The $E^{\,\Theta}\left(M^{2\,+}\,/M\right)$ value for copper is positive $(\,+\,0.34V).$ What is possibly the reason for this? (Hint: consider its high $\Delta_a H^{\,\Theta}$ and low $\Delta_{
m hvd} H^{\,\Theta}$)

5. How would you account for the irregular variation of ionisation enthalpies (first and second) in the first series of the transition elements?

6. Why is the highest oxidation state of a metal exhibited in its oxide or fluoride only?

7. Which is a stronger reducing agent Cr^{2+} or Fe^{2+} and why?

- **8.** Calculate the 'spin only' magnetic moment of M^{2+} (aq) ion (Z = 27).
 - Watch Video Solution

- **9.** Explain why cu^+ ion is not stable in aqueous solutions?
 - Watch Video Solution

10. Actinoid contraction is greater from element to element than lanthanoid contraction ?

watch video Solution

11. Write the formulas for the follow co-ordination compounds

Tetraammineaquachloro cobalt (III) chloride

12. Write the formulae for the follow Co-ordination compounds

Potassium tetracyanonickelate (II)

13. Write the formulae for the follow Co-ordination compounds

Tris (ethane-1, 2-diamine) chromium (III) chloride

14. Write the formulae for the follow Co-ordination compounds

Amminebromidochloridonitrito-N-platinate (II)

15. Write the formulae for the follow Co-ordination compounds

Dichlorido bis-(ethane-1,2-diamine) platinum (IV) nitrate

16. Write the IUPAC names of the follow Co-ordination compounds.

 $[Co(NH_3)_6]Cl_3$

17. Write the IUPAC names of the follow Co-ordination compounds.

 $\big[Co(NH_3)_5Cl\big]Cl_2$

18. Write the IUPAC names of the follow Co-ordination compounds.

 $K_3ig[Fe(CN)_6ig]$

19. Write the IUPAC names of the follow Co-ordination compounds.

 $K_3ig[Fe(C_2O_4)_3ig]$

20. Write the IUPAC names of the follow Co-ordination compounds.

 $K_2[PdCl_4]$

21. Write the IUPAC names of the follow Co-ordination compounds.

 $[Pt(NH_3)_2Cl(NH_2CH_3)Cl.$

22. Indicate the types of isomerism exhibited by the follow complexes and draw the structures for these isomers :

 $Kigl[Cr(H_2O)_2(C_2O_4)_2igr]$

23. Indicate the types of isomerism exhibited by the follow complexes and draw the structures for these isomers :

 $\big[Co(en)_3\big]Cl_3$

24. Indicate the types of isomerism exhibited by the follow complexes and draw the structures for these isomers :

 $\big[Co(NH_3)_5(NO_2)\big](NO_3)_2$

25. Indicate the types of isomerism exhibited by the follow complexes and draw the structures for these isomers :

 $[Pt(NH_3)(H_2O)Cl_2] \\$

26. Give evidence that $\big[Co(NH_3)_5 Cl \big] SO_4 \ \ {\rm and} \ \ \big[Co(NH_3)_5 SO_4 \big] Cl \ \ \ \ {\rm are} \ \ \ \ {\rm ionization}$ isomers.

27. Explain on the basis of valence bond theory that $\left[Ni(CN)_4\right]^{2-}$ ion with square planar structure is diamagnetic and the $\left[NiCl_4\right]^{2-}$ ion with tetrahedral geometry is paramagnetic.

28. $[NiCl_4]^{2-}$ is paramagnetic while $\left[Ni(CO)_4
ight]$ is diamgnetic though both are tetrahedral. Why ?

29. $\left[Fe(H_2O)_6\right]^{3+}$ is strongly paramagnetic whereas $\left[Fe(CN)_6\right]^{3-}$ is weakly paramagnetic Explain.

30. Why $\left[Co(NH_3)_6\right]^{3+}$ is an inner orbital complex where is $\left[Ni(NH_3)_6\right]^{2+}$ is an outer orbital complex ?

31. Predict the number of unpaired electrons in the square planar $\left[Pt(CN)_4\right]^{2-}$ ion.

32. The hexaquo manganese (II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using crystal field theory.

33. Calculate the overall complex dissociation equilibrium constant for the $Cu(NH_3)_4^{2\,+}$ ion, given that $\beta 4$ for this complex is 2.1×1013 .

