© 「'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

ELECTROCHEMISTRY \& CHEMICAL KINETICS

Textual Examples

1. Represent the cell in which the following reaction takes place
$M g(s)+2 A g^{+}(0.0001 M) \rightarrow M g^{2+}(0.130 M)+2 A g(s)$
Calculates its $E_{\text {cell }}$ if $E_{\text {cell }}^{\Theta}=3.17 \mathrm{~V}$

- Watch Video Solution

2. Calculate the equilibrium constant of the reaction:
$C u_{(s)}+2 A g_{(a q)}^{+} \rightarrow C u_{(a q)}^{2+}+2 A g_{(a)}$
$E_{(\text {cell })}^{\Theta}=0.46 \mathrm{~V}$

- Watch Video Solution

3. The standard emf of Deniell cell is 1.1 V . Calculate the standard Gibbs energy for the cell reactions:

$$
Z n_{(s)}+C u_{(a q)}^{2+} \rightarrow Z n_{(a q)}^{2+}+C u_{(s)}
$$

- Watch Video Solution

4. Resistance of a conductivity cell filled with $0.1 \mathrm{~mol}^{-1} \mathrm{KCl}$ solution is 100Ω. If the resistance of the same cell when filled with $0.02 \mathrm{~mol}^{-1} \mathrm{KCl}$ solution is 520Ω, calculate the conductivity and molar conductivity of $0.02 \mathrm{molL}^{-1} \mathrm{KCl}$ solution. The conductivity of $0.1 \mathrm{molL}^{-1} \mathrm{KCl}$ solutin is $1.29 \mathrm{~s} / \mathrm{m}$.
5. The electrical resistance of a column $0.05 \mathrm{molL}^{-1} \mathrm{NaOH}$ solution of diameter 1 cm and length 50 cm is 5.55×10^{3} ohm. Calculate its resistivity, conductivity and molar conductivity.

- Watch Video Solution

6. Calculate \wedge_{m}^{0} for CaCl_{2} and MgSO_{4} from the data given in Table 3.4.

- Watch Video Solution

7. \wedge_{m}^{0} for $\mathrm{NaCl}, \mathrm{HCl}$ and NaAc are $126.4,425.0$ and $91.0 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate $\wedge(0)$ for Hac.

- Watch Video Solution

8. The conductivity of $0.001028 \mathrm{molL}^{-1}$ acetic acid is $4.95 \times 10^{-5} \mathrm{Scm}^{-1}$. Calculate its dissociation constant if $\wedge(m)^{0}$ for acetic acid id $390.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.

- Watch Video Solution

9. A solution of CuSO_{4} is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode?

- Watch Video Solution

10. From the concentration of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ (butyl chloride) at different times given below, calculate the average rate of the reaction:

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HCl}
$$

\mathbf{t} / \mathbf{s}	0	50	100	150	200	300	400	500	700	800
$\left\|\mathbf{C}_{4} \mathbf{H}_{9} \mathbf{C l}\right\| / \mathrm{mol} \mathrm{L}^{-1}$	0.100	0.0905	0.0820	0.0741	0.0671	0.0549	0.0439	0.0335	0.0210	0.017

- Watch Video Solution

11. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} at 318 K has been studies by monitoring the concentration of $N_{2} O_{5}$ in the solution. Initially the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $2.33 \mathrm{molL}^{-1}$ and after 184 minutes, it is reduced to $2.08 \mathrm{~mol}^{-1}$. The reaction takes placed according to the equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Calculate the average rate of this reaction in terms of hours, minutres and seconds. What is the rate of proudction of NO_{2} during this period ?

- Watch Video Solution

12. Calculate the overall order of a reaction which has the rate expression
a) Rate $=k[A]^{1 / 2}[B]^{3 / 2}$
d) Rate $=k[A]^{3 / 2}[B]^{-1}$

- Watch Video Solution

13. Identify the reaction order from each of the following rate constants.
i) $k=2.3 \times 10^{5} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
ii) $\mathrm{K}=3 \mathrm{xx10}^{\wedge}(-4) \mathrm{s}^{\wedge}(-1)^{\wedge}$

- Watch Video Solution

14. The initial concentratin of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the following first order reaction $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2 \mathrm{O}_{2}}(\mathrm{~g}) \mathrm{was} 1.24 \times 10^{-2} \mathrm{molL}^{-1}$ at 318 K . The concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 60 minutes was $0.20 \times 10^{-2} \mathrm{molL}^{-1}$.

Calculate the rate constant of the reaction at 138 K .

- Watch Video Solution

15. The following data were obtained during the first order thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ at constant volume :
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

S.No.	Time/s	Total Pressure/(atm)
1	0	0.5
2	100	0.512

Calculate the rate constnat.

- Watch Video Solution

16. A first order reaction is found to have a rate constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half- life of the reaction.

- Watch Video Solution

17. Show that in a first order reaction, time pequired for fompletion of 99.9% is 10 times of half-life $\left(t_{1 / 2}\right)$ of the reaction.

- Watch Video Solution

18. Hydrolysis of methyl acetate in aqueous solution has been studied by titrating the liberated acetic acid against sodium hydroxide. The concentration of the ester at different times is given below.

\dot{t} / min	0	30	60	90
$\mathbf{C} / \mathrm{mol} \mathrm{L}^{-1}$	0.8500	0.8004	0.7538	0.7096

Show that it follows a pseudo first order reaction, as the concentration of water remains nearly constant $\left(55 \mathrm{molL}^{-1}\right)$, during the course of the reaction. What is the value of k in this equation?

Rate $=k^{\prime}\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$

- Watch Video Solution

19. The rate constants of a reaction at 500 K and 700 K are $0.02 s^{-1}$ and $0.04 s^{-1}$ respectively. Calculate the values of E_{a} and A.

- Watch Video Solution

20. The first order rate constant for the decomposition of ethyl iodide by the reaction. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$ at $600 \mathrm{Kis} 1.60 \times 10^{-5} \mathrm{~s}^{-1}$. It is energy of activation is $209 \mathrm{~kJ} / \mathrm{mol}$. Calculate the rate constant of the reaction at 700 K.

- Watch Video Solution

Problems

1. The standard potentials of some electrodes are as follows. Arrange the metals in an increasing order of their reductiong power.
1) $K^{+} / K=-2.93 \mathrm{~V}$
2) $\mathrm{Ag}^{+} / \mathrm{Ag}=0.80 \mathrm{~V}$
3) $\mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V}$
4) $M g^{2+} / M g=-2.37 V$
5) $\mathrm{Cr}^{3+} / \mathrm{Cr}=-0.74 \mathrm{C}$
6) $F e^{+} / F e=-$

- Watch Video Solution

2. Calculate the emf of the cell at $25^{\circ} \mathrm{C}$
$C r\left|C r^{3+}(0.1 M)\right|\left|F e^{2+}(0.01 M)\right| F e, \quad$ given that $E_{C r^{3}+C r}^{0}=-0.74 V$ and $E_{F e^{2+} / F e}^{0}=-0.44 V$

- Watch Video Solution

3. Calculate the potential of a $Z n-A n^{2+}$ electrode in which the molarity of $Z n^{2+}$ is $0.001 M$. Given that $E_{Z n^{2+} / Z n}^{0}=-0.76 \mathrm{~V}$ $R=0.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, F=96500 \mathrm{Cmol}^{-1}$.

- Watch Video Solution

4. Determine ΔG^{0} for the button cell used in the watches. The cell reactions is

$$
\begin{aligned}
& Z n_{(s)}+\mathrm{Ag}_{2} \mathrm{O}_{(s)} \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow Z n_{(a q)}^{2+}+2 \mathrm{Ag}_{(s)}+2 \mathrm{OH}_{(a q)}^{-} \\
& E_{A g+/ A g}^{0}=+0.80 \mathrm{~V}, E_{Z n^{2+} / Z n}^{0}=-0.76 \mathrm{~V} .
\end{aligned}
$$

5. Calculate the emf of the cell consisting the following half cells
$A l / A l^{3+}(0.001 M), N i / N i^{2}(0.50 M)$. Given that $E_{N i^{2+} / N i}^{0}=-0.25 V$ $E_{A l l^{++} / A l}=-1.66 V\left(\log 8 \times 10^{-6}=-5.0969\right)$.

- Watch Video Solution

6. Determine the values of K_{c} for the following reacton
$N i_{(s)}+2 A g_{(a q)}^{+} \rightarrow N i_{(a q)}^{2+}+2 A g_{(s)}$
$\mathrm{E}^{\wedge}(0)=1.05 \mathrm{~V}$.

- Watch Video Solution

7. Calculate the potential of the half-cell containing 0.1 M
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}, 0.2 \mathrm{MCr}_{(a q)}^{3+}$ and $1.0 \times 10^{-4} \mathrm{MH}_{(a q)}^{+}$. The half-reaction
$\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}_{(a q)}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$
$\left(E^{0} o f \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}=1.33 \mathrm{~V}\right)$
8. Calculate K_{c} for the reaction at 298 K
$Z n_{(s)}+C u_{(a q)}^{+2} \Leftrightarrow Z n_{(a q)}^{2+}+C u_{(s)}$
$E_{Z n^{2+} / Z n}^{0}=-0.76 V, E_{C u^{2+} / C u}^{0}=+0.34 V$.

- Watch Video Solution

9. Calculate the emf of the cell at 298 K
$S n_{(s)}\left|S n^{2+}(0.05 M)\right|\left|H_{(a q)}^{+}(0.02 M)\right| H_{2} 1$ atm. Pt
Given that $E_{s n^{2+} / S n}^{0}=-0.144 V$

- Watch Video Solution

10. Calculate the concentration of silver ions in the cell constructed by using 0.1 M concentration of Cu^{2+} and Ag^{+}ions. Cu and Ag metals are used as electrodes. The cell potential is 0.422 V .

$$
\left[E_{A g^{2+} / A g}=0.80 \mathrm{~V}, E_{C u^{2+} / \mathrm{Cu}}=+0.34 \mathrm{~V}\right]
$$

11. Calculate the emf of the cell with the cell reaction

$$
\begin{aligned}
& N i_{(s)}+2 A g^{+}(0.002 M) \rightarrow N i^{2+}(0.160 M)+2 A g_{(s)} \\
& E_{\text {cell }}^{0}=1.05 \mathrm{~V} .
\end{aligned}
$$

- Watch Video Solution

12. $C u^{2+}+2 e^{-} \Leftrightarrow C u, E^{0}=+0.34 V$
$A g^{+}+e^{-} \Leftrightarrow A g, E^{0}=+0.80 \mathrm{~V}$
For what concentration of Ag^{+}ions will the emf of the cell be zero at $25^{\circ} \mathrm{C}$. The concentration of Cu^{2+} is 0.1 M . $(\log 3.919=0.539)$.

- Watch Video Solution

13. The conductivity of 0.20 M solution of KCl at 298 K is $0.0248 \mathrm{Scm}^{-1}$.

Calculate molar conductance.

- Watch Video Solution

14. Calculate the degree of dissociation $(\alpha) o f \mathrm{CH}_{3} \mathrm{COOHat} 298 \mathrm{~K}$. Itbr Given that $\wedge_{C H_{3} \mathrm{COOH}}^{\infty}=11.75 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\wedge_{C M_{3} \mathrm{COO}^{-}}^{\infty}=40.65 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\wedge_{H^{+}}^{0}=349.15 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

- Watch Video Solution

15. A reaction is 50% completed in 2 hours and 75% conmpleted in 4 hours. What is the order of the reaction.

- Watch Video Solution

16. A reaction has a half-life of 10 minutes. Calculate the rate constant for the first order reaction.

- Watch Video Solution

17. In a first order ractin, the concentration of the reaction is reduced from $0.6 \mathrm{~mol} / \mathrm{L}$ to $0.2 \mathrm{~mol} / \mathrm{L}$ in 5 min . Calculate the rate fconstnat (k).

Watch Video Solution

18. The rate constant for a zero order reaction in A is $0.0030 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. How long it will take for the initial concentration of A to fall from 0.10 M to $0.075 M$.

- Watch Video Solution

19. A first order decomposition reaction takes 40min. For 30% decomposition. Calculate it's $t_{1 / 2}$ value.

- Watch Video Solution

20. Calculate the half-life of first order reaction whose rate constant is $200 s^{-1}$.

Watch Video Solution

21. The thermal decomposition of HCOOH is a first order reaction. The rate constant is $2.4 \times 10^{-3} s^{-1}$ at a certain temperature. Calculate how long will it take for $3 / 4$ of initial quantity of HCOOH to decompose

- Watch Video Solution

22. The decomposition of a compound is found to follow first order rate law. If it takes 15 minutes for 20% of original meterial to react, calculate the rate constant.

- Watch Video Solution

23. In a pesudo first order hydrolysis of ester in water, the following results are obtained

t (sec)	0	30	60	90
[ester] M	0.55	0.31	0.17	0.085

Calculate the averagte rate of reaction between the time inverval 30 to 60
S.

- Watch Video Solution

24. The half-life for a first order reaction is $5 \times 10^{6} \mathrm{~s}$. What percentage of the initial reactant will react in 2 hours ?

- Watch Video Solution

25. $\mathrm{H}_{2} \mathrm{O}_{2(a q)}$ decomposes to $\mathrm{H}_{2} \mathrm{O}_{(l)}$ and $\mathrm{O}_{2(g)}$ in a first reaction w.r.t.
$\mathrm{H}_{2} \mathrm{O}_{2}$. The rate constant is $k=1.06 \times 10^{-3} \mathrm{~min}^{-1}$. How long it will take 15% of the sample of defcompose?
26. Show that in the case of first order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion $(\log 2=0.3010)$

- Watch Video Solution

27. The rate constant of a reaction is doubled when the temperature is raised from 298 K to 308 K . Calculate the activation energy.

- Watch Video Solution

28. The first order rate constant for the decomposition of ethyl iodide by the reaction.
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$ at 600 Kis $1.60 \times 10^{-5} \mathrm{~s}^{-1}$. It's energy of activation is $209 \mathrm{~kJ} / \mathrm{mol}$. Calculate the rate constant of the reaction at 700 K.
29. The activation energy for the reactio $2 H I_{(g)} \rightarrow H_{2(g)}+I_{2(g)}$ at581 K is $209.5 \mathrm{~kJ} / \mathrm{mol}$. Calculte the fraction of molecules having energy equal to or grater than activation energy. $\left[R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

- Watch Video Solution

30. For a reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of the reaction using the units of seconds.

- Watch Video Solution

31. In a reaction $2 A \rightarrow$ Products, the concentration of A decreases from $0.5 \mathrm{molI}^{-1}$ to $0.4 \mathrm{molL}^{-1}$ in 10 minutes. Calculate the rate during this interval.
32. For a reaction, $A+B \rightarrow$ Product : the rate law is given by $r=k[A]^{1 / 2}[B]^{2}$ What is the order of the reaction ?
A. 3
B. 2
C. 5/2
D. 5/4

Answer: C

- Watch Video Solution

33. The convertion of molecules X to Y follows second order kinetics. If concentration of X is increased by three times, how will it affect the rate of formation of Y .
34. A first order reaction has a rate constatn $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?

Watch Video Solution

35. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

- Watch Video Solution

36. From the rate expression for the following reactions, determine their order of reaction and the admensions of the rate constants.
i) $3 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g}) \quad$ Rate $=k[N O]^{2}$
ii)
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+I_{3} \quad$ Rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right][I$
iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \quad$ Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$

$$
\left.\mathrm{C}_{2} \mathrm{H} 5\right) \mathrm{Cl}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \quad \text { Rate }=k\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]
$$

- Watch Video Solution

37. For the reaction $2 A+B \rightarrow A, B$, the rate $=K[A][B]^{2}$ with $k=2.0 x 10^{-6} \mathrm{vmol}^{-2} L^{2} s^{-1}$. Calculate the initial rate of the reaction when $[A]=0.1 \mathrm{molL}^{-1},[B]=0.2 \mathrm{molL}^{-1}$, Calculate the rate of reaction after [A] is reduced to $0.06 \mathrm{molL}^{-1}$.

- Watch Video Solution

38. The decomposition of NH_{3} on platjinum surface is zero order reaction. Want are the rates of production of N_{2} and H_{2} if $k=2.5 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1}$.
39. The rate expression for the decomposition of dimethyl ether in terms of partial pressures is given as Rate $=k\left(p \mathrm{CH}_{3} \mathrm{OCH}_{3}\right)^{3 / 2}$. If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constant ?

- Watch Video Solution

40. A reaction is second order with respect to a reactant. How is the rate of reaction is affected if the concentration of the reactant is i) doubled ii) reduced to half

- Watch Video Solution

41. A reaction is first order in A and second order in B.
i) Write the differential rate equation
ii) How is the rate affected on increasing the concentrations of B there times ?
iii) How is the rate effected when the concentrations of both A and B are doubled ?

- Watch Video Solution

42. In a reactio between A and B , the initial rate of reaction $\left(r_{0}\right)$ was measured for different initial concentrations of A and B as given below :

$A / \mathrm{mol} \mathrm{L}^{-1}$	0.20	0.20	0.40
$\mathbf{B} / \mathrm{mol} \mathrm{L}^{-1}$	0.30	0.10	0.05
$\mathrm{r}_{\boldsymbol{0}} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	5.07×10^{-5}	5.07×10^{-5}	1.43×10^{-5}

What is the order of the reaction with respect to A and B ?

- Watch Video Solution

43. The following results have been obtained during the kinetic studies of the reaction :
$2 A+B \rightarrow C+D$

Experiment	$[\mathrm{A}] \mathrm{mol} \mathrm{L}^{-1}$	$[\mathrm{~B}] \mathrm{mol} \mathrm{L}^{-1}$	Initial rate of formation of $\mathrm{D} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$
1.	0.1	0.1	6.0×10^{-3}
2.	0.3	0.2	7.2×10^{-2}
3.	0.3	0.4	2.88×10^{-1}
4.	0.4	0.1	2.40×10^{-2}

Determine the rate law and rate constant for the reaction.

- Watch Video Solution

44. The rate constant for a first order reaction is $60 s^{-1}$. How much time will it take to reduce the initial concentration of the reactant to its $1 / 6^{\text {th }}$ value?

- Watch Video Solution

45. For a first order reaction,k show that the time required for 99% completion is twice the time required for completion of 99% reaction.
46. For the decomposition of azosiopropane to hexane and nitrogen at 543 k , the following data obtained.

$\mathbf{t}(\mathrm{sec})$	$\mathbf{P}(\mathrm{mm}$ of $\mathbf{H g})$
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

- Watch Video Solution

47. The following data were obtained during the first order thermal decomposition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at a constant volume.
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$

Experiment	Time $/ \mathrm{s}^{-1}$	Total pressure $/ \mathrm{atm}$
1	0	0.5
2	100	0.6

Calculate the rate of reaction when total pressure is 0.65 atm .
48. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} \mathrm{~s}^{-1}$ at 546 K . If the energy of activatin is $179.9 \mathrm{~kJ} / \mathrm{mol}$. What will be the value of per-exponential factor ?

- Watch Video Solution

49. Consider a certain reaction $A \rightarrow$ Products with $k=2.0 \times 10^{-2} s^{-1}$.

Calculate the concentration of A remaining after 100 s if the initial concentration of A is $1.0 \mathrm{molL}^{-1}$.

- Watch Video Solution

50. Sucrose decompose in acid solution into glucose and fructose according to the first order rate law, with $t_{\frac{1}{2}}=3.00$ hours. What fraction of sample of sucrose remains after 8 hours ?
51. The decomposition of hydrocarbon follows the equation
$K=\left(4.5 \times 10^{11} s^{-1}\right) e^{-18000 K / T}$. Calculate E_{a}.

- Watch Video Solution

52. The rate constant for the first order decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is given by the following equation : $\log k=14.34-1.25 K / T$. Calculate E_{a} for this reactin and at what temperature will its half-life period be 256 minutes?

- Watch Video Solution

53. The decomposition of A into product has value of k as $4.5 \times 10^{3} \mathrm{~s}^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation $60 \mathrm{kJmol}^{-1}$. At what temperature would k be $1.5 \times 10^{4} \mathrm{~s}^{-1}$?

- Watch Video Solution

54. The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completiion at $308 K$. If the value of A is $4 \times 10^{10} s^{-1}$. calculate k at 318 K and E_{a},

- Watch Video Solution

55. The rate of a reaction quadruples when temperature charges from 293 K to 312 K , Calculate the energy of activation of the reaction assuming that it does not charge with temperature.

- Watch Video Solution

Very Short Answer Questions

1. What is a galvanic cell or a valtaic cell ? Give one example.

- Watch Video Solution

2. Write the chemical reaction used in the construction of the Daniell cll together with the half-cell reactions.

- Watch Video Solution

3. Name the two half-cell reactions that are taking place in the Daniell cell.

- Watch Video Solution

4. Hos is a galvanic cell rpresented on paper as per IUPAC convention ? Give one example.

- Watch Video Solution

5. Write the cell reaction taking plce in the cell
$C U_{(s)}\left|C u_{(a q)}^{+2}\right|\left|A g_{(a q)}^{+}\right| A g_{(s)}$
6. What is standard hydrogen electrode ?

- Watch Video Solution

7. Give a neat sketch of standard hydrogen electrode.

- Watch Video Solution

8. What is Nernst equation ? Write the equation for an electrode with electrode reaction $M^{n+}(a q)+\not \neq-^{-} \Leftrightarrow M(s)$.

- Watch Video Solution

9. A negative E^{0} indicates that the rodox couple is \qquad reducing couple than H^{+} / H_{2}, couple. (powerful or weak)
10. A positive E^{0} indicates that the redox couple is a weaker \qquad couple than H^{+} / H_{2} couple. (oxidising or reducing)

- Watch Video Solution

11. Write the Nernst equation for the EMF of the cell
$N i_{(s)}|N i+\underset{(a q)}{2+}|\left|A g_{(a q)}^{+}\right| A g$

- Watch Video Solution

12. Write the cell reaction for which $E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{R T}{2 F} \ln \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$

- Watch Video Solution

13. How is E^{0} cell related mathematically to the equilibrium constant K_{c} of the cell reaction?
14. How is Gibbs energy (G) related to the cell emf (E) mathematically ?

- Watch Video Solution

15. Diffine conductivity of a material. Give its SI units.

- Watch Video Solution

16. What is cell constant of a conductivity cell ?

- Watch Video Solution

17. Define molar conducticity \wedge_{m} and how is it related to conductivity (K)
18. Give the mathematical equation which gives the variation of molar conductivity with \wedge_{m} the molarity (c) of the solution ?

- Watch Video Solution

19. State Kohlrausch's law of independent magration of ions.

- Watch Video Solution

20. State Faraday's first law of electrolysis.

- Watch Video Solution

21. State Faraday's seconed law of electroystis.

- Watch Video Solution

22. What are the products obtainded at the platinum anode and the platinum cathode respectively in the electrolystis of fused or molten NaCl

- Watch Video Solution

23. Give the products obtained at the platinum electrodes (cathode and anode) when aqueous solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is electrolysed.

- Watch Video Solution

24. Give the chemical equation that represents the reduction of liquid water $\mathrm{H}_{2} \mathrm{O}_{(l)}$ at the platinum cathode.

- Watch Video Solution

25. Give the chemical equation that represents the reduction of liquid water $\mathrm{H}_{2} \mathrm{O}_{(l)}$ at the platinum cathode.
26. What is a primary battery ? Give one example.

- Watch Video Solution

27. Give one example for a secondary battery. Give the cell reaction.

- Watch Video Solution

28. Give the cell reaction of nickel-cadimuim secondary battery.

- Watch Video Solution

29. What are the fuel cells ? How are they different from galvanic cells ?

Give the construction of $\mathrm{H}_{2}, \mathrm{O}_{2}$ fuel cell ?
30. Give the electrode reactions occuring at the anode and at the cathode in H_{2}, O_{2}, fuel cell.

- Watch Video Solution

31. What is metallie corrosion ? Give one example.

- Watch Video Solution

32. Give the electro-chemical reaction that represents the corrosion or rusting of iron.

- Watch Video Solution

33. Define the speed or rate of a raction.
34. Assuming that the volume of the system is constant, derive the average rate of the system $R \rightarrow p$ in terms of R and P . [time $=\mathrm{t} \mathrm{t}$ 'sec] [R $=$ reactant, $\mathrm{P}=$ product $]$.

- Watch Video Solution

35. What are the units of rate of reaction ?

- Watch Video Solution

36. Drawn the graphs that relate the concentrations (C) of the reactants and the reaction times (t) and the concentrations of the products (C) and the reaction times (t) in chemical reactions.

- Watch Video Solution

37. Write the equation for rthe rate of the reaction
$5 \mathrm{Br}_{(a q)}^{-}+\mathrm{BrO}_{3(a q)}^{-}+6 H_{(a q)}^{+} \rightarrow 3 \mathrm{Br}_{(a q)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$

- Watch Video Solution

38. What is rate law ? Illustrate with an example.

- Watch Video Solution

39. Mention a reaction for which the exponnts of concentration terms are not the same as their stoichiometric coefficients in the rate equation.

- Watch Video Solution

40. Define order of a reaction. Illustrate your answer with an example.

- Watch Video Solution

41. What are elementary reactions ?

- Watch Video Solution

42. What are compelex reactions? Name one complex reaction.

- Watch Video Solution

43. Give the units of rate constants for Zero, first order and second order reactions.

- Watch Video Solution

44. Define molecularity of a reaction, Illustrate with an example.
45. What is rate determining step in a complex reaction ?

(Watch Video Solution

46. Give the mechanism for the decomposition reacton of $\mathrm{H}_{2} \mathrm{O}_{2}$ in alkaline medium catalysed by I^{-}ions.

- Watch Video Solution

47. Write the equation relating $[R],[R]_{0}$ and reaction time ' t ' for a zero order reaction. $[R]=$ concentration of reactant at time 't' and $[R]_{0}=$ initial concentration of reactiant.

- Watch Video Solution

48. Drawn the graph that the concentration ' R ', of the reactant and ' t ' the reaction time for a zero Order reaction.
49. Give two examples for zero order reaction.

- Watch Video Solution

50. Write the intergrated equation for a fiest order reaction in terms of $[R],[R]_{0}$ and 't'.

- Watch Video Solution

51. Give two examples for gaseous first order reactions.

- Watch Video Solution

52. For the reaction $A(g) \rightarrow B(g)+C(g)$, write the intergrated rate equation in terms of total pressure ' P ' and the partial pressures

$P_{A} P_{B} P_{C}$.

- Watch Video Solution

53. What is half-life of a reaction? Illustrate your answer with an example.

- Watch Video Solution

54. Write the equation relating the half-life $\left(t_{1 / 2}\right)$ of a reaction and the rate constant ' k ' for first order reaction.

- Watch Video Solution

55. Write the equation useful to calculate half-life $\left(t_{1 / 2}\right)$ values for zero and first order reactions.

- Watch Video Solution

56. What are pseudo first order reactions ? Give one example.

- Watch Video Solution

57. Write the Arrhenius equation for the rate constant (k) of a reaction.

- Watch Video Solution

58. By how many times the rate constant inhcreases for a rise of reaction temperature by $10^{\circ} \mathrm{C}$?

- Watch Video Solution

59. Explain the term 'activation energy' of a reaction with a suitable diagram.

- Watch Video Solution

60. Write the equation which ralates th rate constants k_{1} and k_{2} at temperatures T_{1} and T_{2} of a reaction.

- Watch Video Solution

61. What is collision frequency (Z) of a reaction ? How is rate related to it for the reaction $A+B \rightarrow$ Products.

- Watch Video Solution

62. Draw the graphs between potential energy - reaction coordinates for catalysed and uncatalysed reactions.

- Watch Video Solution

63. What is the effect of temperature on the rate constant ?

Short Answer Questions

1. What are galvanic cells ? Explain the woriking of a galvanic cell with a neat sketch taking Denicell cell as example.

- Watch Video Solution

2. Give the construction and working of a standard hydrogen electode with a neat diagram.

- Watch Video Solution

3. State and explain Nernst equation with the help of a metallic electrode and a non-metallic electrode.

- Watch Video Solution

4. Explain with a suitable example the relation between the gibbs energy of chemical reaction (G) and the functioning of the electrochemical cell.

- Watch Video Solution

5. On what factors the electrical conductance of an aqueous solution of electrolyte depends?

- Watch Video Solution

6. How is molar conductivity of an aqueous electrolyte solution measured experimentally

- Watch Video Solution

7. Explain the varition of molar conductivity with the charge in the concentration of the electrolyte. Give resons.
8. State and explain Kohlrausch's law of indendent migration of ions.

- Watch Video Solution

9. What is electrolysis ? Give Faraday's first law of electrolysis.

- Watch Video Solution

10. What are the products obtained at the cathode and anode during the electrolysis of the following when platinum electrodes are used in the electrolysis
a) Molten b) Aq . $\mathrm{CuSO} \mathrm{O}_{4}$ solution c) $\mathrm{Aq} . \mathrm{K}_{2} \mathrm{SO}_{4}$ solution

- Watch Video Solution

11. What are primary and secondary batteries? Give one example for each.
12. What are the fuel cells ? How are they different from galvanic cells ? Give the construction of $\mathrm{H}_{2}, \mathrm{O}_{2}$ fuel cell ?

- Watch Video Solution

13. What is metallic corrosion ? Explain it with respect to iron corrosion.

- Watch Video Solution

14. Define average rate of a reaction. How is the rate of reaction expressed in term of charge in the concentration of reactansts and products for the following reactions.
1) $2 \mathrm{HI}_{(g)} \rightarrow \mathrm{H}_{2(g)}+I_{2(g)}$
2) $\mathrm{Hg}_{(l)}+\mathrm{CL}_{2(g)} \rightarrow \mathrm{HgCl}_{2(g)}$
3) $5 \mathrm{Br}_{(a q)}+\mathrm{BrO}_{(a q)}^{-}+6 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{Br}_{2(a q)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$
15. What is rate equation ? How is it obtained ? Write the rate equations for
1) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
2) $\mathrm{CHCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{HCl}$
3) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{CH}_{3} \mathrm{H}_{5} \mathrm{OH}(a q)$

- Watch Video Solution

16. Define and explain the order of a reaction. How is it obtained exprimentally?

- Watch Video Solution

17. What is "molecularity" of a reaction ? How is it different from the 'order' of a reaction? Name one bimolecular and one trimolecular gaseous reactions.
18. Derive the intergrate rate equation for a zero order rection.

- Watch Video Solution

19. Derive an integrated rate equatin for a first order reaction.

- Watch Video Solution

20. Derive an integrated rate equation in terms of total pressure (P) and the partial pressures P_{A}, P_{B}, P_{C} for the gaseous reaction $A(g) \rightarrow B(g)+C(g)$.

- Watch Video Solution

21. What is half-life $\left(t_{1 / 2}\right)$ of a reaction ? Derive the equations for the 'half-life' value of zero and first order reactions.
22. What is Arrhenius equation ? Derive an equation which describes the effect of rise of temperature (T) on the rate constant (k) of a reaction.

- Watch Video Solution

23. Discuss the effect of catalyst on the kinetics of a chemical reaction with a suitable diagram.

- Watch Video Solution

24. Give a detailed account of the Collision theory of reaction rates of biomolecular reaction.

- Watch Video Solution

25. Explain the terms
a) Activation energy $\left(E_{a}\right)$
b) Collision frequency (Z)
c) Probability factor (P) with respect to Arrhenius equation.

(Watch Video Solution

Long Answer Questions

1. What are electro chemical cells ? How are they constructed ? Explain the working of the different types of galvanic cells?

- Watch Video Solution

2. What is electrical conductance of a solution ? How is it measured experimentally?
3. Give the applications of Kohlracsch's law of independent migration of ions.

- Watch Video Solution

4. Given the different types of batteries and explain the construction and working of each type of battery.

- View Text Solution

5. Explain the terms with suitable exapmples.

Average rate of a reaction

- Watch Video Solution

6. Explain the terms with suitable exapmples.

Slow and fast reactions
7. Explain the terms with suitable exapmples.

Order of a reaction

- Watch Video Solution

8. Explain the terms with suitable exapmples.

Molecularity of a reaction

- Watch Video Solution

9. Explain the terms with suitable exapmples.

Activation energy of reaction.
10. Give two examples for each of zero order and first order reactions.

Write the equations for the rate of reaction in terms of concentration changes of reactants and products for the following ractions.

1) $A(g)+B(g) \rightarrow C(g)+D(g)$
2) $A(g) \rightarrow B(g)+C(g)$
3) $A(g)+B(g) \rightarrow C(g)$

- Watch Video Solution

11. Discuss the effect of temperature on the rate of a reaction. Derive necessary equations in this contaxt.

- Watch Video Solution

12. Give a detailed account of the collision theory of reaction rates of biomolecular geseous reactions.
13. How would you determine the standard electrode potential of the system $M g^{2+} / M g$?

- Watch Video Solution

2. Can you store copper sulphate soolutions in a zinc pot ?

- Watch Video Solution

3. Consult the table on standard electrode potentials and suggest three substance that can oxidise ferrous ions under suitable conditions.

- Watch Video Solution

4. Calculate the potential of hydrogten electrode placed in a solution of pH 10.

- Watch Video Solution

5. Calculate the emf of the cell with the cell reaction

$$
\begin{aligned}
& N i_{(s)}+2 A g^{+}(0.002 M) \rightarrow N i^{2+}(0.160 M)+2 A g_{(s)} \\
& E_{\text {cell }}^{0}=1.05 V
\end{aligned}
$$

- Watch Video Solution

6. The cell in which the following cell reaction occurs,
$2 \mathrm{Fe}_{(a q)}^{3+}+2 I_{(a q)}^{-} \rightarrow 2 \mathrm{Fe}_{(a q)}^{2+}+I_{2(s)}$
has $E_{\text {cell }}^{0}=0.236 \mathrm{~V}$ at 298 K . Calculate the standard Gibbs energy and the equilibrium costant of the cell reaction.

- Watch Video Solution

7. Why does the conductivity of a solution decrease with dilution ?
8. Suggest a way to determine the Λ_{m}^{0} value of water .

- Watch Video Solution

9. The molar conductivity of $0.025 \mathrm{molL}^{-1}$ methanoic acid is $46.1 \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$. Calculate its degree of dissociation and dissociation constant.

Given, $\lambda^{0}\left(H^{+}\right)=349.6 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $\lambda^{0}\left(\mathrm{HCOO}^{-}\right)=54.6 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

- Watch Video Solution

10. If a current of 0.5 ampere flows through a metallic wire for 2 h , then how many electrons would flow through the wire ?

- Watch Video Solution

11. Suggest a list to metals that are extracted electrolytically.

- Watch Video Solution

12. Consider the reaction,
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Ce}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
What is the quantity of electricity in coulombs needed to reduce 1 mole $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$?

- Watch Video Solution

13. Write the chemistry of recharging the lead stronge battery, highlighting all the materials that are involved during recharging.

- Watch Video Solution

14. Suggest two materials other than hydrogen that can be used as fuels in fule cells.

- Watch Video Solution

15. Explain how rusting of iron is envisaged as electrochemical cell.

- View Text Solution

16. For the reaction, $R \rightarrow P$, the concentration of a reactant changes fro 0.03 M to 0.02 in 25 min . Calculate the average rate of reaction using units of time both in minutes an second.

- Watch Video Solution

17. In a reaction $2 A \rightarrow$ Products, the concentration of A decreases from $0.5 \mathrm{molI}^{-1}$ to $0.4 \mathrm{molL}^{-1}$ in 10 minutes. Calculate the rate during this

- Watch Video Solution

18. For a reaction, $A+B \rightarrow$ Product : the rate law is given by $r=k[A]^{1 / 2}[B]^{2}$ What is the order of the reaction ?

- Watch Video Solution

19. The convertion of molecules X to Y follows second order kinetics. If concentration of X is increased by three times, how will it affect the rate of formation of Y .

- Watch Video Solution

20. A first order reaction has a rate constatn $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?
21. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

- Watch Video Solution

22. What is the effect of temperature on the rate constant ?

- Watch Video Solution

23. The rate constant of the chemical reaction doubled for an increase of

10 K in absolute temperature from 298 K . Calculate E_{a}.

- Watch Video Solution

24. The activation energy for the reactio $2 H I_{(g)} \rightarrow H_{2(g)}+I_{2(g)}$ at581 K is $209.5 \mathrm{~kJ} / \mathrm{mol}$. Calculte the fraction of molecules having energy equal to or grater than activation energy. $\left[R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

- Watch Video Solution

Dam Sure

1. Diffine conductivity of a material. Give its SI units.

- Watch Video Solution

2. State Faraday's seconed law of electroystis.

- Watch Video Solution

3. State Kohlrausch's law of independent magration of ions.
4. Define electrochemical equivalent (e.c.e).

- Watch Video Solution

5. State and explain Kohlrausch's law of indendent migration of ions.

- Watch Video Solution

6. Define emf. Calculat the emf of the following galvanic cell :

$$
\begin{aligned}
& Z n_{(s)}+C u_{(a q)}^{+2} \rightarrow Z n_{(a q)}^{+2}+C u_{(s)} \\
& E_{z n^{+2 / Z n}}^{0}=0.76 V(\text { anode }), E_{c u+3 / C_{u}}^{0}=+0.34 \text { (Cathode) }
\end{aligned}
$$

- Watch Video Solution

7. Write Nernst equation for a metal and non metal eletrode.
8. What is Rate of a reaction

- Watch Video Solution

9. What is Rate equation (or) Rate expression (or) Rate Law ?

- Watch Video Solution

10. Write the difference between Order and Molecularity of a reaction.

- Watch Video Solution

11. A first order reaction is found to have a rate constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half- life of the reaction.
12. What is Zero Order reaction ?

- Watch Video Solution

13. What is First Order reaction ? Give example.

- Watch Video Solution

14. What are pseudo first order reactions ? Give one example.

- Watch Video Solution

15. What is Half life of a reaction?

- Watch Video Solution

16. Give two example for gaseous first order reactions.

- Watch Video Solution

17. What is a second order reaction ? Give one example.

- Watch Video Solution

18. Explain the factors influencing rate of reaction.

- Watch Video Solution

