©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

SOLUTIONS

Textual Examples

1. Calculate the mole fraction of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in a solution containing
20% of $C_{2} H_{6} O_{2}$ by mass.

D Watch Video Solution

2. Calculate the molarity of a solution containing 5 g of NaOH in 500 mL solution.

D Watch Video Solution

3. Calculate molality of 2.5 of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in 75 g of benzene.

D Watch Video Solution

4. If N_{2} gas is bubbled through water at 293 K , how many millimoles of N_{2} gas would dissolve in 1 litre of water ? Assume that N_{2} exerts a partial pressure of 0.987 bar. Given that Henry's law constant for N_{2} at 293 K is 76.48 k bar.

D Watch Video Solution

5. Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K are 200 mm Hg and 415 mm Hg respectively. (i)

Calculate the vapour pressure of the solution prepared by mixing 25.5 g of CHCl_{3} and 40 g of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K and (ii) mole fractions of each component in vapour phase.

- Watch Video Solution

6. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A nonvolatile, non-electrolyte solid weighing 0.5 g when added to 39.0 g of benzene (molar mass
$78 \mathrm{~g} \mathrm{~mol}^{-1}$), vapour pressure of the solution, then, is 0.845 bar. What is the molar mass of the solid substance?

D Watch Video Solution

7. 18 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is dissolved in 1 kg of water in a saucepan. At what temperature will water boil at 1.013 bar ? K_{b} for water is $0.52 \mathrm{~kg} \mathrm{~mol}^{-1}$.

D Watch Video Solution

8. The boiling point of benzene is 353.23 K .

When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point
is raised to 354.11 K . Calculate the molar mass
of the solute. K_{b} for benzene is $2.53 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

D Watch Video Solution

9. 45 g of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ is mixed with 600 g of water. Calculate (a) the freezing point depression and (b) the freezing point of the solution.
10. 1.00 g of a non-electrolyte solute dissolved
in 50 g of benzene lowered the freezing point of benzene by 0.40 K . The freezing point depression constant of benzene is 5.12 K kg mol^{-1}. Find the molar mass of the solute.

D Watch Video Solution

11. $200 \mathrm{~cm}^{2}$ of $a n$ aqueous solution of a protein contains 1.26 g of the protein. The oxmotic pressure of such a solution at 300 K is
found to be 2.57×10^{-3} bar. Calculate the molar mass of the protein.

D Watch Video Solution

12. 2 g of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K . Molal depression constant for benzene is 4.9 K $\mathrm{kg} \mathrm{mol}^{-1}$. What is the precentage association of acid if it forms dimer in solution?

D Watch Video Solution

13. 0.6 mL of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, having density $1.06 \mathrm{~g} \mathrm{~mL}^{-1}$, is dissolved in 1 litre of water. The depression in freezing point observed for this strength of acid was $0.0205^{\circ} C$. Calculate the van't Hoff factor and the dissociation constant of acid.

- Watch Video Solution

Very Short Answer Questions

1. Define the term solution.

D Watch Video Solution

2. Define molarity.

D Watch Video Solution

3. Define molarity.

4. Give an example of a solid solution in which
the solute is solid.

D Watch Video Solution
5. Define mole fraction.

- Watch Video Solution

6. Define mass percentage solution.
7. What is ppm of a solution ?

D Watch Video Solution
8. What role do the molecular interactions play in a solution of alcohol and water ?

- Watch Video Solution

9. State Raoult's law.

- Watch Video Solution

10. State Henry's law.
(Watch Video Solution
11. What is Ebullioscopic constant ?
(D) Watch Video Solution
12. What is Cryoscopic constant ?

- Watch Video Solution

13. Define osmotic pressure.

- Watch Video Solution

14. What are isotonic solutions ?

- Watch Video Solution

15. Amongst the following compounds, identify
which are insoluble, partially soluble and
highly soluble in water. (i) phenol (ii) toluene
(iii) formic acid (iv) ethylene glycol (v) chloroform (vi) pentanol.

D Watch Video Solution

16. Calculate the mass precentage of aspirin
$\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ when 6.5
gm of $C_{9} H_{8} O_{4}$ is dissolved in 450 g of $\mathrm{CH}_{3} \mathrm{CN}$.

D Watch Video Solution
17. Calculate the amount of benzoic acid
$\left(C_{6} H_{5} \mathrm{COOH}\right)$ required for preparing 250 ml of 0.15 M solution in methanol.

D Watch Video Solution
18. The depression in freezing point of water observed for the same amount of acetic acid, dichloro-acetic acid and trichloro acetic acid increases in the order given above. Explain briefly.

D Watch Video Solution

19. What is Van't Hoffs factor ' i ' and how is it related to ' α ' in the case of a binary electrolyte (1:1) ?
20. What is relative lowering of vapour pressure?

D Watch Video Solution

21. Calculate the mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a solution containing $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass.
22. Define osmotic pressure.

D Watch Video Solution

23. What is vapour pressure of a liquid ?

D Watch Video Solution

24. What is elevation of boiling point ?
25. What is depression of freezing point ?

- Watch Video Solution

26. Calculate the molality of 10 g of glucose in 90 g of water.

D Watch Video Solution

27. Calculate the mass percentage of benzene
$\left(C_{6} H_{6}\right)$ and carbon tetrachloride $\left(C C l_{4}\right)$ if

22 g of benzene is dissolved in 122 g of carbon
tetrachloride.

Then, calculate the mass percentage from the
formula
Mass $\%=\frac{\text { Mass of one component }}{\text { Mass of solution }} \times 100$

D Watch Video Solution

28. What are colligative properties ? Give their names.

D Watch Video Solution
29. Calculate the weight of Glucose required to prepare 500 ml of 0.1 M solution.

D Watch Video Solution

Short Anwer Questions

1. How many types of solutions are formed ?

Givee an example for each type of solution.
2. Define mass percentage, volume percentage and mass to volume percentage solutions.

- Watch Video Solution

3. Concentrated nitric acid used in the
laboratory work is 68% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the denisty of the solution is $1.504 \mathrm{~mL}^{-1}$?
4. A solution of glucose in water is labelled as
$10 \% \mathrm{w} / \mathrm{w}$. What would be the molarity of the solution?

D Watch Video Solution

5. A solution of sucrose in water is labelled as
$20 \% \mathrm{w} / \mathrm{w}$. What would be the mole fraction of each component in the solution ?
6. How many ml of 0.1 HCl is required to react completely with 1.0 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and

NaHCO 3 containing equi-molar amounts of both ?

D Watch Video Solution

7. A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass percentage of the resulting solution.
8. An antifreeze solution is prepared from 222.6 g of ethylene glycol $\left[\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)\right]$ and 200 g of water (solvent). Calculate the molality of the solution.

D Watch Video Solution

9. Why do gases always tend to be less soluble in liquids as the temperature is raised ?
10. What is meant by positive deviations from

Raoult's law and how is the sign of $\Delta_{\text {mix }} H$ related to positive deviation from Raoult's law
?

- Watch Video Solution

11. What is meant by negative deviation from

Raoult's law and how is the sign of $\Delta_{\text {mix }} H$
related to negative deviation from Raoult's law

- Watch Video Solution

12. The vapour pressure of water is $12.3 \mathrm{k} P_{a}$ at 300 K. Calculate the vapour pressure of 1 molal solution of a non-volatile solute in it.

D Watch Video Solution

13. Calculate the mass of a non-volatile solute
(molar mass $40 \mathrm{~g} \mathrm{~mol}^{-1}$) which should be
dissolved in 114 g Octane to reduce its vapour pressure to 80%.

D Watch Video Solution

14. A 5% solution (by mass) of cane suger in water has freezing point of 271 K . Calculate the
freezing point of 5% glucose in water if freezing point of water is 273.15 K .
15. If the osmotic pressure of glucose solution
is 1.52 bar at 300 K . What would be its concentration if $\mathrm{R}=0.083 \mathrm{~L}^{\text {bar }} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$?

D Watch Video Solution

16. Vapour pressure of of water at 293 K is
17.535 mm Hg . Calculate the vapour pressure of the solution at 293 K when 25 g of glucose is dissolved in 450 g of water ?

17. How is molar mass related to the elevation

 in boiling point of a solution?(Watch Video Solution
18. What is an ideal solution ?

- Watch Video Solution

19. What is relative lowering of vapour pressure ? How is it useful to determine the molar mass of a solute?

D Watch Video Solution

20. How is molar mass related to the depression in freezing point of a solution?

D Watch Video Solution

21. The vapour pressure of a solution containing non volatile solute is less than the vapour pressure of pure of solvent. Give reason.

D Watch Video Solution

22. Vapour pressure of pure water at 298 K is
23.8 mm Hg. 50 g urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and
its relative lowering.

Consider Raoult's law and formula for relative
lowering in vapour pressure,
$\frac{P_{A}^{0}-P_{s}}{P_{A}^{0}}=\frac{n_{B}}{n_{A}}=\frac{W_{B}}{M_{B}} \times \frac{M_{A}}{W_{A}}$
Where, $\frac{P_{A}^{0}-P_{s}}{P_{A}^{0}}$ is called relative lowering in
vapour pressure.

D Watch Video Solution

23. Calculate the vapour pressure of a solution
containing 9 g of glucose in 162 g of water at

293 K . The vapour pressure of water of 293 K is
17.535 mm Hg .

D Watch Video Solution

Long Answer Questions

1. An aqueous solution of 2% non volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molecular mass of the solute?
2. Heptane and Octane form an ideal solution.

At 373 K the vapour pressure of the two liquid components are $105.2 \mathrm{kP}_{a}$ and $46.8 \mathrm{kP}_{a}$ respectively. What will be the vapour pressure of a mixture of 26.0 g heptane and 35 g of octane?

D Watch Video Solution

3. A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour
pressure of $2.8 \mathrm{kP}_{a}$ at 298 K . Further 18 g of water is then added to the solution and the new vapur pressure becomes $2.9 \mathrm{kP}_{a}$ at 298 K. Calculate (i) The moar mass of the solute and (ii) Vapour pressure of water at 298 K .

D Watch Video Solution

4. Two elements A and B from compounds having formula AB_{2} and AB_{4}. When dissolved in 20 g of Benzene $\left(C_{6} H_{6}\right)$, 1g of AB_{2} lowers the freezing point by 2.3 K whereas 1.0 g of
AB_{4} lowers it by 1.3 K . The molar depression constant for benzene is $5.1 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}{ }^{-1}$. Calculate atomic masses of A and B.

D Watch Video Solution

5. Calculate the depression in the freezing point of water when 10 g of
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCOOH}$ is added to 250 g water.

$$
K_{a}=1.4 \times 10^{-3}, K_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}
$$

D Watch Video Solution

6. 19.5 g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ is dissolved in 500 g of water. The depression in freezing point of water observed is $1.0^{\circ} \mathrm{C}$. Calculate the Van't Hoff factor and dissociation constant of fluoroacetic acid.

- Watch Video Solution

7. 100 g of liquid $\mathrm{A}\left(\right.$ molar mass $140 \mathrm{~g} \mathrm{~mol}^{-1}$) was dissolved in 1000 g of liquid B (molar mass $180 \mathrm{~g} \mathrm{~mol}^{-1}$). The vapour pressure of pure
liquid B was found to be 500 torr. Calculate
the vapour pressure of pure liquid A and its
vapour pressure in the solution if the total
vapour pressure of the solution is 475 torr.

D Watch Video Solution

8. Determine the amount of $C a C l_{2} \quad$ (i=2.47)
dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at $27^{\circ} \mathrm{C}$.
9. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of $K_{2} S O_{4}$ in two litre of water at $25^{\circ} \mathrm{C}$ assuming that it is completely dissociated.

D Watch Video Solution

10. Benzene and Toluene form ideal solution
over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 K are 50.71 mm of Hg and 32.06 mm of

Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.

- Watch Video Solution

Intext Questions

1. Calculate the mole fraction of benzene is solution containing 30% by mass in carbon tetrachloride.

Then calculate the mole fraction by using the
formula

Mole fraction of a component
Number of moles of the component
$=\overline{\text { Total number of moles of all components }}$
$x_{A}=\frac{n_{A}}{n_{A}+n_{B}}$

D Watch Video Solution

2. Calculate the molarity of each of the following solution :
(a) 30 g of $\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 4.3 L of solution.
(b) 30 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ diluted to 500 mL .
(a) Molarity $=\frac{\text { moles of solute }}{\text { Volume of solution litre }}$
and moles
of
solute
mass of solute
$=\frac{\text { molar solution of solute }}{\text { maser }}$
So, first find molar mass by adding atomic masses of different elements, then find moles
of solute and then molarity.
(b) Use molarity equation for dilution.
$M_{1} V_{1}=M_{2} V_{2}$
(Before dilution) (After dilution)

D Watch Video Solution

3. Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$
required in making 2.5 kg of 0.25 molar aqueous solution.

We $\begin{gathered}\text { know that } \\ = \\ \text { Mass of solvent in } \mathrm{kg}\end{gathered}$
and moles of soute $=\frac{\text { Mass of solute }}{\text { Molar mass of solute }}$
So, find the molar mass of solute by adding atomic masses of different element present in it and mass by using the formula,

Molality
Mass of solute/molar mass of solute
Mass of solvent in kg
4. Calculate a) molality b) molarity and c) mole fraction of KI if the density of 20% (mass / mass) aqueous KI is $1.202 \mathrm{~g} \mathrm{~mL}^{-1}$.

As density and \% by mass is given, so find the mass of solute and solvent (as $\mathrm{x} \%$ solution contains $x \mathrm{~g}$ solute $\mathrm{in}(100-\mathrm{x}) \mathrm{g}$ solvent).

Find volume of the solution, by using,"
Volume $=\frac{\text { Mass }}{\text { Density }}$
Recall the formulae of molality, molarity and mole fraction, to calculate them.

Molality

Mass of solute/ molar mass of solute
 Mass of solventin kg

D Watch Video Solution

5. $H_{2} S$, a toxic gas with rotten egg like smell, is used for the qualitative analysis. If the solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water at STP is 0.195 m , calculate Henry's law constant.

D Watch Video Solution

6. Henry's law constant for CO_{2} in water is
$1.67 \times 10^{8} \mathrm{~Pa}$ at 298 K . Calculate the quantity of CO_{2} in 500 mL of soda water when packed under 2.5 atm CO_{2} pressure at 298 K .

D Watch Video Solution

7. The vapour pressure of pure liquids A and B are 450 and 700 mm Hg respectively, at 350 K .

Find out the composition of the liquid mixture
if total vapour pressure is 600 mm Hg . Also
find the composition of the vapour phase.

Apply Raoult's
law
$P_{T}=P_{A}^{0} x_{A}+P_{B}^{0} x_{B}=P_{B}^{0} x_{A}+P_{B}^{0}\left(1-x_{A}\right)$
to calculate mole fraction of $A\left(x_{A}\right)$ and
$B\left(x_{B}\right)$.

In vapour phase, partial pressure are used insted of number of moles.

- Watch Video Solution

8. Boiling point of water 750 mm Hg is $99.63^{\circ} C$. How much sucrose is to be added to

500 g of water such that it boils at $100^{\circ} \mathrm{C}$.
[K_{b} for water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
i) Since boiling point is changing, apply the formula for elevation in boiling point,
$\Delta \mathrm{T}_{b}=K_{b} m$
ii) $m=\frac{W_{B}}{M_{B} \cdot W_{A}}$

So, $\Delta T_{b}=\frac{K_{b} . W_{B}}{M_{B} \times W_{A}}$
Or $W_{B}=\frac{\Delta T_{b} \times M_{B} \times W_{A}}{K_{b}}$
iii) Find ΔT_{b} as $\Delta T_{b}=T_{b}=T_{b}-T_{b}^{0}$
$T_{b}=$ Boiling point of solution
$T_{b}^{0}=$ Boiling point of pure solvent
9. Calculate the mass of ascorbic acid (Vitamin

C, $C_{6} H_{8} O_{6}$) to be dissolved in 75 g of acetic acid to lower its melting point by $1.5^{\circ} C . K_{\mathrm{f}}=3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

Since, lowering of melting point is given apply the formula for lowering of melting point, i.e.,
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} . m$
$\Delta T_{\mathrm{f}}=\frac{K_{\mathrm{f}} \cdot W_{B}}{M_{B} \times W_{A}} \quad$ or $\quad W_{B}=\frac{\Delta T_{\mathrm{f}} \cdot M_{B} \cdot W_{A}}{K_{\mathrm{f}}}$

D View Text Solution

10. Calculate the osmotic pressure in Pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass $1,85,000$ in 450 mL of water at $37^{\circ} \mathrm{C}$.

Use the formula for osmotic pressure
$(\pi)=\operatorname{CRT}$ and $\mathrm{C}=\frac{n}{V}$ and $\mathrm{n}=\frac{W_{B}}{M_{B}}$

