©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

CIRCLE

Solved Problems

1. Find the equation of circle with centre
$(1,4)$ and radius ' 5 '
A.
B.
C.
D.

Answer: i.e., $x^{2}+y^{2}-2 x-8 y-8=0$

D Watch Video Solution

2. Find the centre and radius of the circle
$x^{2}+y^{2}+2 x-4 y-4=0$
A.
B.
C.
D.

Answer: $=3$

D Watch Video Solution

3. Find the centre and radius of the circle
$3 x^{2}+3 y^{2}-6 x+4 y-4=0$
A.
B.
C.
D.

Answer: $=\frac{5}{3}$

D Watch Video Solution

4. Find the equation of the ciracle whose
centre is $(-1,2)$ and which passes through
$(5,6)$
A.
B.
C.
D.

Answer: $x^{2}+y^{2}+2 x-4 y-47=0$

D Watch Video Solution

5. Find the equation of the circle passing through $(2,3)$ and concentric with the
circle $x^{2}+y^{2}+8 x+12 y+15=0$
A. B.
C.
D.

Answer: $x^{2}+y^{2}+8 x+12 y-65=0$

D Watch Video Solution

6. From the point $\mathrm{A}(0,3)$ on the circle
$x^{2}+4 x+(y-3)^{2}=0$ a chord AB is drawn
and extended to a point M such that
$A M=2 A B$. Find the equation of the locus of M.
A.
B.
C.
D.

Answer: $x^{2}+y^{2}+8 x-6 y+9=0$

- Watch Video Solution

7. If the circle $x^{2}+y^{2}+a x+b y-12=0$ has
the centre at $(2,3)$ then find a, b, and the radius of the circle.
A.
B.
C.
D.

Answer: $=5$
(D) Watch Video Solution

8. If the circle $x^{2}+y^{2}-4 x+6 y+a=0$ has

radius 4 then find a.
A.
B.
C.
D.

Answer: $=-3$
(D) Watch Video Solution

9. Find the equation of the circle passing

through $(4,1),(6,5)$ and having the centre on the line $4 x+y-16=0$.
A.
B.
C.
D.

Answer: $x^{2}+y^{2}-6 x-8 y+15=0$

- Watch Video Solution

10. Suppose a point $\left(x_{1}, y_{1}\right)$ satisfies
$x^{2}+y^{2}+2 g x+2 f y+c=0$ then show that it represents a circle whenever g, f and c are real.
A.
B.
C.
D.

Answer: $=\left(x_{1}+g\right)^{2}+\left(y_{1}+f\right)^{2} \geq 0$
11. Find the equation of the circle whose extremities of a diameter are $(1,2)$ and
$(4,5)$
A.
B.
C.
D.

Answer: $x^{2}+y^{2}-5 x-7 y+14=0$
12. Find the other end of the diameter of the
circle $x^{2}+y^{2}-8 x-8 y+27=0$ if one end of it is $(2,3)$.
A.
B.
C.
D.

Answer: The other end of the diameter is ${ }^{`} B(6,5)$

13. Find the equation of the circum - circle

 of the traingle formed by the line$a x+b y+c=0(a b c \neq)$ and the coordinate axes.
A.
B.
C.
D.

Answer: $a b\left(x^{2}+y^{2}\right)+(b x+a y)=0$
14. Find the equation of the circle which passes through the vertices of the triangle
formed by $L_{1}=x+y+1=0$
$L_{2}=3 x+y+5=0$ and $L_{3}=2 x+y-5=0$
A.
B.
C.
D.

Answer: i.e.,$x^{2}+y^{2}-30 x-10 y+25=0$

Watch Video Solution

15. Find the centre of the circle passing through the points $(0,0),(2,0)$ and $(0,2)$.
A.
B.
C.
D.

Answer: Thus the center of the required circle is
(1,1$)^{\prime}$

16. Obtain the parametric equations of the

circle $x^{2}+y^{2}=1$
A.
B.
C.
D.

Answer:

17. Obtain the parametric equation of the
circle represented by
$x^{2}+y^{2}+6 x+8 y-96=0$
A.
B.
C.
D.

Answer: $0 \leq \theta \leq 2 \pi$
(D) Watch Video Solution
18. Locate the position of the point $(2,4)$ with respect to the circle.
$x^{2}+y^{2}-4 x-6 y+11=0$

D Watch Video Solution

19. Find the length of the tangent form
$(1,3)$ to the circle $x^{2}+y^{2}-2 x+4 y-11=0$.
A.
B.
C.

D Watch Video Solution

20. If a point P is moving such that the length
of tangents drawn from P to
$x^{2}+y^{2}-2 x+4 y-20=0$
and $x^{2}+y^{2}-2 x-8 y+1=0$
are in the ratio $2: 1$

Then show that the equation of the locus
of P is $x^{2}+y^{2}-2 x-12 y+8=0$
A.
B.
C.
D.

Answer: $x^{2} y^{2}-2 x-12 y+8=0$

D Watch Video Solution

21. If $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ repre-
sents a circle then show that the straight
line $l x+m y+n=0$
(i) touches the circle $S=0$ if
$\left(g^{2}+f^{2}-c\right)=\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}$

D View Text Solution

22. If $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ repre-
sents a circle then show that the straight
line $l x+m y+n=0$
(ii) meet the circle $S=0$ in two points if
$g^{2}+f^{2}-c>\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}$
23. If $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ repre-
sents a circle then show that the straight
line $l x+m y+n=0$
(iii) will not meet the circle if
$g^{2}+f^{2}-c<\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}$
D View Text Solution
24. Find the length of the chord intercepted
by the circle $x^{2}+y^{2}+8 x-4 y-16=0$ on
the line $3 x-y+4=0$.
25. Find the equation of tangents to $x^{2}+y^{2}$
$-4 x+6 y-12=0$ which are parallel to
$x+2 y-8=0$.

D Watch Video Solution

26. Show that the circle $S \equiv x^{2}+y^{2}+2 g x+$
$2 f y+c=0$ touches the
(i) X - axis if $g^{2}=c$
(ii) Y - axis if $f^{2}=c$.
27. Find the equation of the tangent to
$x^{2}+y^{2}-6 x+4 y-12=0$ at $(-1,1)$

D Watch Video Solution

28. Find the equation of the tangent to
$x^{2}+y^{2}-2 x+4 y=0$ at $(3,-1)$ Also find
the equation of tangent parallel to it.

D Watch Video Solution

29. If $4 x-3 y+7=0$ is a tangent ot the circle repesented by $x^{2}+y^{2}-6 x+4 y-12=0$, then find its point of contact.

D Watch Video Solution

30. Find the equations of circles which touch
$2 x-3 y+1=0$ at (1,1) and having radius $\sqrt{13}$

D Watch Video Solution
31. Show that the line $5 x+12 y-4=0$
touches the circle
$x^{2}+y^{2}-6 x+4 y+12=0$

D Watch Video Solution

32. If the parametric values of two points
A and B lying on the circle
$x^{2}+y^{2}-6 x+4 y-12=0$
are 30° and 60° respectively,
then find the equation of the chord
joining A and B

D Watch Video Solution

33. Find the equation of the tangent at the point 30° (parametric value of θ) of the circle is $x^{2}+y^{2}+4 x+6 y-39=0$.

- Watch Video Solution

34. Find the area of the triangle formed
by the tangent at $P\left(x_{1}, y_{1}\right)$ to the circle
$x^{2}+y^{2}=a^{2}$ with co-ordinate axes
where $x_{1}, y_{1} \neq 0$.

- Watch Video Solution

35. Find the equation of the momal to the
circle $x^{2}+y^{2}-4 x-6 y+11=0$ at $(3,2)$.
Also find the other point where the normal meets the circle.

D Watch Video Solution

36. Find the area of the triangle formed by
the normal at $(3,-4)$ to the circle
$x^{2}+y^{2}-22 x-4 y+25=0$ with the coordinate axes.

D Watch Video Solution

37. Show that the line $l x+m y+n=0$ is a normal to the circle $S=0$ if and only if
$g l+m f=n$
38. Fing the condition that the tangents
drawn from the exterior point (g, f) to
$S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ are perpen-
dicular to each other.

D Watch Video Solution

39. If θ_{1}, θ_{2} are the angles of inclination of
tangents through a point P to the circle
$x^{2}+y^{2}=a^{2}$ then find the locus of P when
$\cot \theta_{1}+\cot \theta_{2}=k$.
40. Find the chord of contact of $(2,5)$ with repect ot the circle
$x^{2}+y^{2}-5 x+4 y-2=0$.

D Watch Video Solution

41. If the chord of contact of a point P with
respect to the circle $x^{2}+{ }_{y}^{2}=a^{2}$ cut the
circle at A and B such that $\hat{A \mathrm{O} B}=90^{\circ}$
then show that P lies on the circle
$x^{2}+Y^{2} 2 a^{2}$

- View Text Solution

42. Find the equation of the polar of $(2,3)$
with respect to the
circle
$x^{2}+y^{2}+6 x+8 y-96=0$

D Watch Video Solution

43. Find the pole of $x+y+2=0$ with respect to the circle
$x^{2}+y^{2}-4 x+6 y-12=0$.
44. Show that the poles of the tangents to
the circle $x^{2}+y^{2}=a^{2}$ with respect
to the circle $(x+a)^{2}+y^{2}=2 a^{2}$ lie on $y^{2}+4 a x=0$.

D Watch Video Solution

45. Show that $(4,-2)$ and $(3,-6)$ are conjugate
with respect to the circle $x^{2}+y^{2}-24=0$.
46. if $(4, k)$ and $(2,3)$ are conjugate points
with respect to the circle $x^{2}+y^{2}=17$
then find k .

D Watch Video Solution

47. Show thet the lines $2 x+3 y+11=0$ and
$2 x-2 y-1=0$ are conjugate with respect
to the circle $x^{2}+y^{2}+4 x+6 y+12=0$
48. Show that the area of the triangle formed by the two tangents through $P\left(x_{1}, y_{1}\right)$ to the circle $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ and the chord of contact of P with respect
to $S=0$ is $\frac{r\left(S_{11}\right)^{3 / 2}}{S_{11}+r^{2}}$ where r is the radius of the circle.

D Watch Video Solution

49. Find the mid point of the chord
$x^{2}+y^{2}-2 x-10 y+1=0$
on the line $x-2 y+7=-0$.

D Watch Video Solution

50. Find the locus of mid-points of the chorde of $x^{2}+y^{2}=a^{2}$ from the points
lying on the line $l x+m y+n=0$.

D View Text Solution
51. Show that the four common tangents can be drawn for the circles given by
$x^{2}+y^{2}-14 x+6 y+33=0$
and $x^{2}+y^{2}+30 x-2 y+1=0$
and find the internal and external centres
of similitude.

D Watch Video Solution

52. Prove that the circles $x^{2}+y^{20-8 x-6 y+21=0}$
and $x^{2}+y^{2}-2 y-15=0$ have
exactly two common tangents. Also find the point of intersection of those tangents.

D View Text Solution

53. Show that the circles
$x^{2}+y^{2}-4 x-6 y-12=0$ and
$x^{2}+y^{2}+6 x+18 y+26=0$ touch each
other. Also find the point of contact and
common tangent at this point of contact.

- Watch Video Solution

54. Show that the circles
$x^{2}+y^{2}-4 x-6 y-12=0$ and
$5\left(x^{2}+y^{2}\right)-8 x-14 y-32=0$ touch each other and find their point of contact.

D Watch Video Solution

55. Find the equation of the pair of tangents
from $(10,4)$ to the circle $x^{2}+y^{2}=25$.

- Watch Video Solution

56. Find the equation ot all possible common
tangents of the circles
$x^{2}+y^{2}-2 x-6 y+6=0$ and $x^{2}+y^{2}=1$.

D View Text Solution

Exercise 1 A

1. Find the equation of the circle with centre

C and redius r where.
$C=(2,-3), r=4$
2. Find the equation of the circle with centre
C and redius r where.
$C=(-1,2), r=5$

D Watch Video Solution

3. Find the equation of the circle with centre

C and redius r where.

$$
C=(a,-b), r=a+b
$$

4. Find the equation of the circle with centre
C and redius r where.
$C=(-a,-b), r=\sqrt{a^{2}-b^{2}}(|a|>|b|)$

D Watch Video Solution

5. Find the equation of the circle with centre

C and redius r where.
$C=(\cos \alpha, \sin \alpha), r=1$
6. Find the equation of the circle with centre
C and redius r where.
$C=(-7,-3), r=4$

D Watch Video Solution

7. Find the equation of the circle with centre

C and redius r where.
$C=\left(-\frac{1}{2},-9\right), r=5$
8. Find the equation of the circle with centre

C and redius r where.
$c=\left(\frac{5}{2},-\frac{4}{3}\right), r=6$

D Watch Video Solution

9. Find the equation of the circle with centre
C and redius r where.
$C=(1,7), r=\frac{5}{2}$

Watch Video Solution
10. Find the equation of the circle with centre
C and redius r where.
$C=(0,0), r=9$

D Watch Video Solution

11. Find the equation of the circle passing
through the orgin and having the centre at $(-4,-3)$
12. Find the equation of the circle passing
through $(2,-1)$ having the centre at $(2,3)$.

D Watch Video Solution

13. Find the equation of the circle passing the through $(-2,3)$ centre at $(0,0)$.

D Watch Video Solution

14. Find the equation of the circle passing
through $(3,4)$ having and the centre at
$(-3,4)$.

- Watch Video Solution

15. Find the value of 'a' if
$2 x^{2}+a y^{2}-3 x+2 y-1=0$ represents a
circle and also find its radius.

D Watch Video Solution

16. Find the values of a, b, if $a x^{2}+b x y+3 y^{2}-$ $5 x+2 y-3=0$ represents a circle. Also find
the radius and center of the circle.

- Watch Video Solution

17. If $x^{2}+y^{2}+2 g x+2 f y-12=0$ represents
a circle with centre $(2,3)$, find g, f and its radius.

- Watch Video Solution

18. If $x^{2}+y^{2}+2 g x+2 f y=0$ represents a
circle with cerntre $(-4,-3)$ then find g, f
and the radius of the circle.

D Watch Video Solution

19. If $x^{2}+y^{2}-4 x+6 y+c=0$ represents a
circle with radius 6 then find the value of c.

D Watch Video Solution

20. Find the centre and radius of each of the
circles whose equations are given below.
(i) $x^{2}+y^{2}-4 x-8 y-41=0$

D Watch Video Solution

21. Find the centre and radius of each of the
circles whose equations are given below.
$3 x^{2}+3 y^{2}-5 x-6 y+4=0$

D Watch Video Solution

22. Find the centre and radius of each of the
circles whose equations are given below.
$3 x^{2}+3 y^{2}-6 x-12 y-1=0$
Find the radius and centre of the circle.

D Watch Video Solution

23. Find the centre and radius of each of the
circles whose equations are given below.
$x^{2}+y^{2}+6 x+8 y-96=0$

D Watch Video Solution
24. Find the centre and radius of each of the
circles whose equations are given below.
$2 x^{2}+2 y^{2}-4 x+6 y-3=0$

- Watch Video Solution

25. Find the centre and radius of each of the
circles whose equations are given below.
$2 x^{2}+2 y^{2}-3 x+2 y-1=0$

D Watch Video Solution
26. Find the centre and radius of each of the
circles whose equations are given below.
$\sqrt{1+m^{2}}\left(x^{2}+y^{2}\right)-2 c x-2 m c y=0$

- Watch Video Solution

27. Find the centre and radius of each of the
circles whose equations are given below.

$$
x^{2}+y^{2}+2 a x-2 b y+b^{2}=0
$$

28. Find the equations of the circles for which
the points given below are the end points of a diameter.
$(1,2),(4,6)$

D Watch Video Solution

29. Find the equations of the circles for which
the points given below are the end points of a diameter.
$(-4,3),(3,-4)$
30. Find the equations of the circles for which
the points given below are the end points of a diameter.
$(1,2),(8,6)$

D Watch Video Solution

31. Find the equations of the circles for which the points given below are the end points of a diameter.
$(4,2),(1,5)$

- Watch Video Solution

32. Find the equations of the circles for which
the points given below are the end points of a diameter.
$(7,-3),(3,5)$

D Watch Video Solution
33. Find the equations of the circles for which
the points given below are the end points
of a diameter.
$(1,1),(2,-1)$

D Watch Video Solution

34. Find the equations of the circles for which
the points given below are the end points of a diameter.
$(0,0),(2,7)$

- Watch Video Solution

35. Find the equations of the circles for which
the points given below are the end points
of a diameter.
$(3,1),(2,7)$

D Watch Video Solution

36. Obtain the parametric equation of each
of the following circles.
$x^{2}+y^{2}=4$
37. Obtain the parametric equation of each of the following circles.
$4\left(x^{2}+y^{2}\right)=9$

D Watch Video Solution

38. Obtain the parametric equation of each of the following circles.
$2 x^{2}+2 y^{2}=7$

- Watch Video Solution

39. Obtain the parametric equation of each of the following circles.
$(x-3)^{2}+(y-4)^{2}=8^{2}$

D Watch Video Solution

40. Obtain the parametric equation of each of the following circles.
$x^{2}+y^{2}-4 x-6 y-12=0$
41. Obtain the parametric equation of each of the following circles.
$x^{2}+y^{2}-6 x+4 y-12=0$

D Watch Video Solution

42. If the abscissae of points A, B are the roots
of the equation, $x^{2}+2 a x-b^{2}=0 \quad$ and ordinates of A, B are roots of $y^{2}+2 p y-q^{2}=0$, then find the equation of a circle for which $\overline{A B}$ is a diameter.
43. Show that $A(3,-1)$ lies on the circle
$x^{2}+{ }_{y}^{2}-2 x+4 y=0$. Also find the other
end of the diameter through A.

D Watch Video Solution

44. Show that $A(-3,0)$ lies on
$x^{2}+y^{2}+8 x+12 y+15=0$ and find the other end of
diameter thorugh A.
45. Find the equation of a circle which passes
through $(2,-3)$ and $(-4,5)$ and having the centre on $4 x+3 y+1=0$

D Watch Video Solution

46. Find the equation of a circle which passes
through $(4,1)(6,5)$ and having the centre on $4 x+3 y-24=0$
47. Find the equation of a circle which is
concentirc with $x^{2}+y^{2}-6 x-4 y-12=0$
and passing through $(-2,14)$.

D Watch Video Solution

48. Find the equation of the circle whose centre
lies on the X - axis and passing through $(-2,3)$
and $(4,5)$
(D) Watch Video Solution
49. If $A B C D$ is a square then show that the points A, B, C and D are concyclic.

D View Text Solution

50. Find the equation of circle passing
through each of the following three points.
$(3,4),(3,2),(1,4)$

D Watch Video Solution
51. Find the equation of circle passing through each of the following three points.
$(1,2),(3,-4),(5,-6)$

D Watch Video Solution

52. Find the equation of circle passing
through each of the following three points.
$(2,1),(5,5),(-6,7)$

Watch Video Solution
53. Find the equation of circle passing
through each of the following three points.
$(5,7),(8,1),(1,3)$

D Watch Video Solution

54. Find the equation of the circle passing through $(0,0)$ and making intercepts

4,3 on X - axis and Y - axis respectively

D
 Watch Video Solution

55. Find the equation of the circle passing
through $(0,0)$ and Making intercept 4 units on Y - axis.

D View Text Solution

56. Show that the following four points in
each jof the following are concyclic and
find the equation of the circle on which
they lie.
$(1,1),(-6,0),(-2,2),(-2-8) 1$
57. Show that the following four points in
each jof the following are concyclic and
find the equation of the circle on which they lie.
$(1,2),(3,-4),(5,-6),(19,8)$

D Watch Video Solution

58. Show that the following four points in
each jof the following are concyclic and
find the equation of the circle on which
they lie.
$(1,-6),(5,2),(7,0),(-1,-4)$

D Watch Video Solution

59. Show that the following four points in
each jof the following are concyclic and
find the equation of the circle on which
they lie.
$(9,1),(7,9),(-2,12),(6,10)$

D View Text Solution
60. If $(2,0),(0,1),(4,5)$ and $(0, c)$ are concy-
clic, and then find c.

D View Text Solution

61. Find the equation of the circum circle of
the triangle formed by the straight lines
given in each of the following:
$2 x+y=4, x+y=6, x+2 y=5$

D View Text Solution

62. Find the equation of the circum circle of
the triangle formed by the straight lines
given in each of the following:
$x-3 y-1=0, x+y+1=0$,
$2 x+3 y+4=0$

D View Text Solution

63. Find the equation of the circum circle of
the triangle formed by the straight lines
given in each of the following:
$5 x-3 y+4=0,2 x+3 y-5=0$,
$x+y=0$

- View Text Solution

64. Find the equation of the circum circle of
the triangle formed by the straight lines
given in each of the following:
$x-y-2=0$,
$2 x-3 y+4=0$,
$3 x-y+6=0$
65. Show that the locus of the point of
intersection of the lines $x \cos \alpha+Y \sin \alpha$
$=a, x \sin \alpha-y \cos \alpha=b(\alpha$ is a parameter) is a circle.

- View Text Solution

66. Show that the locus of a point such that
the ratio of distance of it from two given
points is constant $k(\neq \pm 1)$ is a circle.
67. Locate the position of the point P with resect to the circle $S=0$ when
$P(3,4)$ and $S \equiv x^{2}+y^{2}-4 x-6 y-12=0$

D Watch Video Solution

2. Locate the position of the point P with resect to the circle $S=0$ when
$P(1,5)$ and $S \equiv x^{2}+y^{2}-2 x-4 y+3=0$
3. Locate the position of the point P with resect to the circle $S=0$ when
$P(4,2)$ and $S \equiv 2 x^{2}+2 y^{2}-5 x-4 y-3=0$

D Watch Video Solution

4. Locate the position of the point P with resect to the circle $S=0$ when
$P(2,-1)$ and $S \equiv x^{2}+y^{2}-2 x-4 y+3=0$
5. Find the power of the point P with respect to the circle $S=0$ when
$P=(5,-6)$, and $S \equiv x^{2}+y^{2}+8 x+12 y+15$

(D) Watch Video Solution

6. Find the power of the point P with respect
to the circle $S=0$ when
$P=(-1,1)$ and $S \equiv x^{2}+y^{2}-6 x+4 y-12$

D Watch Video Solution
7. Find the power of the point P with respect to the circle $S=0$ when

$$
P=(2,3) \text { and } S \mathrm{~S}=\mathrm{x}^{\wedge}(2)+\mathrm{y}^{\wedge}(2)-2 \mathrm{x}+8 \mathrm{y}-23=0^{`}
$$

- Watch Video Solution

8. Find the power of the point P with respect
to the circle $S=0$ when
$P=(-2,4)$ and $S \equiv x^{2}+y^{2}+4 x-6 y-12$
(D) Watch Video Solution
9. Fing the length of tangent from P to the Itbr.,
circle $S=0$ when
$P=(-2,5)$ and $S \equiv x^{2}+y^{2}-25$

- Watch Video Solution

10. Fing the length of tangent from P to the,
circle $S=0$ when
$P=(0,0), S \equiv x^{2}+y^{2}-14 x+2 y+25$
(D) Watch Video Solution
11. Fing the length of tangent from P to the Itbr.,
circle $S=0$ when
$P=(2,5)$ and $S \equiv x^{2}+y^{2}-5 x+4 y-5$

D Watch Video Solution

12. If the length of the tangent from $(5,4)$ to the circle $x^{2}+y^{2}+2 k y=0$ is 1 the n find k .
13. If the length of the tangent from $(2,5)$ to
the circle $x^{2}+y^{2}-5 x+4 y+k=0$ is
$\sqrt{37}$ then find k.

D Watch Video Solution

14. If a point P is moving such that the lengths
of tangents drawn from P to the circles
$x^{2}+Y^{2}-4 x-6 y-12=0$ and
$x^{2}+y^{2}+6 x+18 y+26=0$ are in the ratio
$2: 3$, then
find jthe equation of the locus of P.
15. If a point P is moving such that the lengths of the tangents drawn form P to the circles
$x^{2}+y^{2}+8 x+12 y+15=0$ and
$x^{2}+y^{2}-4 x-6 y-12=0$ are equal
then find the equation of the locus of P

(D) Watch Video Solution

1. Find the equation of the tangent at P of the

circle $S=0$ where P and S are given by

$$
P=(7,-5), S \equiv x^{2}+y^{2}-6 x+4 y-12
$$

- Watch Video Solution

2. Find the equation of the tangent at P of the
circle $S=0$ where P and S are given by
$P=(-1,1), S \equiv x^{2}+y(2)-6 x+4 y-12$
(D) Watch Video Solution

3. Find the equation of the tangent at P of the

circle $S=0$ where P and S are given by

$$
P=(-6,-9) S \equiv x^{2}+y^{2}+4 x+6 y-39
$$

- Watch Video Solution

4. Find the equation of the tangent at P of the
circle $S=0$ where P and S are given by
$P=(3,4), S \equiv x^{2}+y^{2}-4 x-6 y+11$

D Watch Video Solution
5. Find the equation of the normal at P of the
circle $S=0$ where P and S are given by

$$
P=(3,-4), S \equiv x^{2}+y^{2}+x+y-24
$$

D Watch Video Solution

6. Find the equation of the normal at P of the
circle $S=0$ where P and S are given by

$$
P=(3,5), S \equiv x^{2}+y^{2}-10 x-2 y+6
$$

7. Find the equation of the normal at P of the

circle $S=0$ where P and S are given by
$P=(1,3), S \equiv 3\left(x^{2}+y^{2}\right)-19 x-29 y+76$

D Watch Video Solution

8. Find the equation of the normal at P of the
circle $S=0$ where P and S are given by
$P=(1,2), S \equiv x^{2}+y^{2}-22 x-4 y+25$
(D) Watch Video Solution
9. Find the length of the chord intercepted
by the circle $x^{2}+y^{2}-x+3 y-22=0$ on the line $y=x-3$

(D) Watch Video Solution

10. Find the length of the chord intercepted
by the circle $x^{2}+y^{2}-8 x-2 y-8=0$ on the
line $x+y+1=0$

D Watch Video Solution
11. Fins the length of the cord formed by
$x^{2}+y^{2}=a^{2}$ on the line
$x \cos \alpha+y \sin \alpha=p$.

D Watch Video Solution

12. Find the equation of circle with centre
$(2,3)$ and touching the line $3 x-4 y+1=0$
13. Find the equation of the circle with centre ($-3,4$) and touching y - axis.

(Watch Video Solution

14. Find the equation of tangents of the circle $x^{2}+y^{2}-8 x-2 y+12=0$ at the points
whose ordinates are 1.

- Watch Video Solution

15. Find the equation of tangents of the circle
$x^{2}+y^{2}-10=0$ at the points whose abscissae are 1.

D Watch Video Solution

16. If $x^{2}+y^{2}=c^{2}$ and $\frac{x}{a}+\frac{y}{b}=1$ intersect at

A and B , the find $\overline{A B}$. Hence deduce the
condition, the line touches the circle.
17. The lilne $y=m x+x$ and the circle $x^{2}+y^{2}=a^{2}$ intersect at A and B . If $A B=2 \lambda$, then show that: $c^{2}=\left(1+m^{2}\right)\left(a^{2}-\lambda^{2}\right)$.

D Watch Video Solution

18. Find the equation of the circle with centre
$(-2,3)$ cutting a chord length 2 units
on $3 x+4 y+4=0$

D Watch Video Solution
19. Find the equation of tangent and normal at $(3,2)$ of the circle $x^{2}+y^{2}-x-3 y-4=0$.

D Watch Video Solution

20. Find the equation of the tangent and

$$
\begin{aligned}
& \text { normal at }(1,1) \text { to the circle } \\
& 2 x^{2}+2 y^{2}-2 x-5 y+3=0
\end{aligned}
$$

21. Prove that the tangent at $(3,-2)$ of the
circle $x^{2}+y^{2}=13$ touches the circle $x^{2}+y^{2}+2 x-10 y-26=0$ and find its point of contact.

D Watch Video Solution

22. Show that the tangent at $(-1,2)$ of the
circle $x^{2}+y^{2}-4 x-8 y+7=0$
touches
the circle $x^{2}+y^{2}+4 x+6 y=0$ and also
find its point of contact.

- Watch Video Solution

23. find the equation of the tajngents ot the
circle $x^{2}+y^{2}-4 x+6 y-12=0$ which are parallel to $x+y-8=0$

D Watch Video Solution

24. Find the equations of the tangent of the
circle $x^{2}+y^{2}+2 x-2 y-3=0$ which are perpendicular to $3 x-y+4=0$
25. Find the equation of the tangents to the
circle $x^{2}+y^{2}-4 x-6 y+3=0$ which makes an angle 45° with X -axis.

(Watch Video Solution

26. Find the equation of the circle passing
through ($-1,0$) and touching $x+y-7=0$
at $(3,4)$
27. Find the equations of the circles passing
through ($-1,1$) touching the lines
$4 x+3 y+5-0$ and $3 x-4 y-10=0$

D View Text Solution

28. Show that $x+y+1=0$ touches the circle
$x^{2}+y^{2}-3 x+7 y+14=0$ and find its
point of contact.
(Watch Video Solution

1. Find the condition that the tangents

 drawn from $(0,0)$$S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ be
perpendicular to each lt brgt other.

D Watch Video Solution

2. Find the chord of contact of $(0,5)$ with respect to the circle
$x^{2}+y^{2}-5 x+4 y-2=0$

Watch Video Solution

3. Find the chord of contact of $(1,1)$ to the circle $x^{2}+y^{2}=9$.

D Watch Video Solution

4. Find the polar of $(1,2)$ with respect to
$x^{2}+y^{2}=7$

D Watch Video Solution
5. Find the polar of $(3,-1)$ with respect to $2 x^{2}+2 y^{2}=11$

D Watch Video Solution

6. Find the polar of $(1,-2)$ with respect of
$x^{2}+y^{2}-10 x-10 y+25=0$

(D) Watch Video Solution

7. Find the pole of $a x+b y+c=0(c \neq 0)$
with respect to $x^{2}+y^{2}=r^{2}$

- Watch Video Solution

8. Find the pole of $3 x+4 y-045=0$ with
respect to $x^{2}+y^{2}-6 x 8 y+5=0$

- Watch Video Solution

9. Find the pole of $x-2 y+22=0$ with respect to $x^{2}+y^{2}-5 x+8 y+6=0$

- Watch Video Solution

10. Show that the points $(-6,1)$ and $(2,3)$
are conjugate points with respect ot the
circle

D View Text Solution

11. Show that the points $(4,2)(3,-5)$ are
conjugate points with respect to the circle
$x^{2}+y^{2}-3 x-5 y+1=0$

D Watch Video Solution

12. Find the value of k if $k x+3 y-1=0$,
$2 x+y+5=0$ are conjugate lines with
respect to the circle
$x^{2}+y^{2}-2 x-4 y-4=0$.

- Watch Video Solution

13. Find the value of k if $x+y-5=0$
$2 x+k y-8=0$ are conjugate with respect
to the circle $x^{2}+y^{2}-2 x-2 y-1=0$
14. Find the value of k if the points $(1,3)$ and
$(2, k)$ are coujuate with respect to the
circle $x^{2}+y^{2}=35$.

D Watch Video Solution

15. Find the value of k if the points $(4,2)$ and ($k-3$)
are conjugate points with respect to the circle
$x^{2}+y^{2}-5 x+8 y+6=0$

D Watch Video Solution
16. Find the angle between the tangents
drawn from $(3,2)$ to the circle
$x^{2}+y^{2}-6 x+4 y-2=0$

D Watch Video Solution

17. Find the angle between the pair of
tangents drawn from $(1,3)$ to the circle
$x^{2}+y^{2}-2 x+4 y-11=0$

D Watch Video Solution
18. Find the angle between the pair of
tangents drawn from $(0,0)$ to the circle
$x^{2}+y^{2}-14 x+2 y+25=0$.

- Watch Video Solution

19. Show that the locus of P where the tangents drawn from P to the circle $x^{2}+y^{2}=a^{2}$ include an angle α is $x^{2}+y^{2}=a^{2} \operatorname{cosec} \frac{\alpha}{2}$
20. Find the locus of P if the tangents drawn
from P to $x^{2}+y^{2}=a^{2}$ are perpendicular to each othe.

- Watch Video Solution

21. Find the slope of the polar of $(1,3)$ with
respect to the circle $x^{2}+y^{2}-4 x-4 y-4=0$
Also find the distance from the centre to it.
22. If $a x+b y+c=0$ is the polar of $(1,1)$ with respect to the circle $x^{2}+y^{2}-2 x+2 y$
$+1=0$ and H. C. F. of a, b, c is equal to
one then find $a^{2}+b^{2}+c^{2}$.

- Watch Video Solution

23. Find the coordinates of the point of in-
tersection of tangents at the points where
$x+4 y-14=0$ meets the circle
$x^{2}+y^{2}-2 x+2 y-5=0$
24. (prove that) If the polar of the points on the circle
$x^{2}+y^{2}=a^{2}$ with respect to the circle
$x^{2}+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$
then prove that a, b, c, are in Geometrical progression.

D Watch Video Solution

25. Tangents are drawn to the circle
$x^{2}+y^{2}=16$
from the point $P(3,5)$. Find the area
of the triangle formend by these tangents
and the chord of contact of P.

D Watch Video Solution

26. Find the locus of the point whpse polars
with respect to the circles $x^{2}+y^{2}-4 x-$

$$
4 y-8=0 \text { and } x^{2}+y^{2}-2 x+6 y-2=0
$$

27. Find the locus of the foot of the perpendircular drawn from the origin to any chord of the circle $S \equiv x^{2}+y^{2}+2 g x+2 f y$
$+c=0$ which subtends a right angle at the origin.

D View Text Solution

Exercise 1 E

1. Discuss the relative position of the fol-
lowing pair of circles.
$x^{2}+y^{2}-4 x-6 y-12=0$
$x^{2}+y^{2}+6 x+18 y+26=0$.

D Watch Video Solution

2. Discuss the relative position of the following pair of circles.
$x^{2}+y^{2}+6 x+6 y+14=0$
$x^{2}+y^{2}-2 x-4 y-4=0$.

- Watch Video Solution

3. Discuss the relative position of the following pair of circles.
$(x-2)^{2}+(y+1)^{2}=9,(x+1)^{2}+(y-3)^{2}=4$

- Watch Video Solution

4. Discuss the relative position of the fol-
lowing pair of circles.
$x^{2}+y^{2}-2 x+4 y-4=0$
$x^{2} y^{2}+4 x-6 y-3=0$
5. Find the number of possible common tangents that exist for the following pairs of circles.
$x^{2}+y^{2}+6 x+6 y+14=0$
$x^{2}+y(2)-2 x-4 y-4=0$

D Watch Video Solution

6. Find the number of possible common tangents that exist for the following pairs of circles.
$x^{2}+y^{2}-4 x-2 y+1=0$,
$x^{2}+y^{2}-6 x-4 y+4=0$

D Watch Video Solution

7. Find the number of possible common
tangents that exist for the following pairs
of circles.
$x^{2}+y^{2}-4 x+2 y-4=0$,
$x^{2}+y^{2}+2 x-6 y+6=0$
8. Find the number of possible common tangents that exist for the following pairs of circles.
$x^{2}+y^{2}=4, x^{2}+y^{2}-6 x-8 y+16=0$

D Watch Video Solution

9. Find the number of possible common
tangents that exist for the following pairs of circles.
$x^{2}+y^{2}+4 x-6 y-3=0$
$x^{2}+y^{2}+4 x-2 y+4=0$.
10. Find the internal centre of similitude
for the circles $x^{2}+y^{2}+6 x-2 y+1=0$
and $x^{2}+y^{2}-2 x-6 y+9=0$.

D Watch Video Solution

11. Find the external centre of similitude for
the circles $x^{2}+y^{2}-2 x-6 y+9=0$
and $x^{2}+y^{2}=4$
12. Show that the circle
$\left.x^{2}+y^{2}\right)-6 x-2 y+1=0$,
$x^{2}+y^{2}+2 x-8 y+13=0$ touch each
other. Find the point of contact and the
equation of common tangent at their
point of contact.

D Watch Video Solution

13.

Show
thet
$x^{2}+y^{2}-6 x-9 y+13=0, x^{2}+y^{2}$
$-2 x-16 y=0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.

D View Text Solution

14. Find the equation of the circle which
touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at $(5,5)$ with radius 5 .

D Watch Video Solution

15. Find the direct common tangents of the circles.
$x^{2}+y^{2}+22 x-4 y-100=0$ and
$x^{2}+y^{2}-22 x+4 y+100=0$.

D Watch Video Solution

16. Find the transverse common tangents of
the circles $x^{2}+y^{2}-4 x-10 y+28=0$ and $x^{2}+y^{2}$
$+4 x-6 y+4=0$.
17. Find the pair of tangents from $(4,10)$ to the circle $x^{2}+y^{2}=25$.

D Watch Video Solution

18. Find the pair of tangents drawn from $(0,0)$
to $x^{2}+y^{2}+10 x+10 y+40=0$.
(D) Watch Video Solution
19. Find thhe equation of the circle which
touches $x^{2}+y^{2}-4 x+6 y-12=0$ at
$(-1,1)$ internally with a radius of 2 .

- Watch Video Solution

20. Find all common tangents of the
following pairs of circles.
$x^{2}+y^{2}=9$ and $x^{2}+y^{2}-16 x+2 y+49=0$

D View Text Solution
21. Find all common tangents of the
following pairs of circles.
$x^{2}+y^{2}+4 x+2 y-4=0$ and
$x^{2}+y^{2}-4 x-2 y+4=0$

D View Text Solution

22. Find the pair of tangents drawn from
$(3,2)$ to the circle $x^{2}+y^{2}-6 x+4 y-2=0$
(D) Watch Video Solution
23. Find the pair of tangents drawn from
$(1,3)$ to the circle $x^{2}+y^{2}-2 x+4 y-11=0$ and also find the angle between them.

- Watch Video Solution

24. Find the pair of tangents form the origin
to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$
and hence deduce a condition for these
tangents to be perpendicular.
25. From a point on the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$ two tangents are drawn to the circle $x^{2}+y^{2} 2 g x+2 f y+c$
$\sin ^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha=0(0<\alpha<\pi / 2)$.
