©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

HYPERBOLA

Sovled Problems

1. Find the centre eccentricity, foci, directrices
and length of the lotus rectum of the
hyperbolas.

$$
4 x^{2}-9 y^{2}-8 x-32=0
$$

D Watch Video Solution

2. Find the centre eccentricity, foci, directrices and length of the lotus rectum of the hyperbolas.
$4(y+3)^{2}-9(x-2)^{2}=1$
3. If eande' the eccentricities of a hyperbola and its conjugate, prove that $\frac{1}{e^{2}}+\frac{1}{e^{\prime 2}}=1$.

D Watch Video Solution

4. If the line $l x+m y+n=0 \mathrm{~s}$ a tangent to
the hyperboal $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then show that $a^{2} l^{2}-b^{2} m^{2}=n^{2}$

D Watch Video Solution

5. If the $l x+m y=1$ is a normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then shown that $\frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\left(a^{2}+b^{2}\right)^{2}$

- Watch Video Solution

6. Find the equation of the tangents to the hyperbola $3 x^{2}-4 y^{2}=12$ which are

Parallel and (ii) perpendicular to the line
$y=x-7$
7. Find the equation of the tangents to the hyperbola $3 x^{2}-4 y^{2}=12$ which are Perpendicular to the line $y=x-7$

D Watch Video Solution

8. Prove that the points of intersection of two perpendicular tangents to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ lies on the circle
$x^{2}+y^{2}=a^{2}-b^{2}$
9. A circle cuts the rectangular hyperbola $x y=1$ in the points $\left(x_{1}, y_{1}\right), r=1,2,3,4$.

Prove that $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=1$

D Watch Video Solution

Exercise 5 A

1. One focus of a hyperbola is located at the
point ($1,-3$) and the corresponding directrix is
the line $y=2$. Find the equation of the
hyperbola if its eccentricty is $\frac{3}{2}$.

D Watch Video Solution

2.

If
the
lines
$3 x-4 y=12$ and $3 x+4 y=12$ meets on a
hyperbola $S=0$ then find the eccentricity of the
hyperbola $\mathrm{S}=0$

D Watch Video Solution
3. Find the equation of the hyperbola whose foci are $(\pm 5,0)$ the transverse axis is of length 8.

- Watch Video Solution

4. Find the equation of the hyperbola, whose
asymptotes are the straight line
$(x+2 y+3)=0,(3 x+4 y+5)=0 \quad$ and
which passes through the point (1,-1).
5. If $3 x-4 y+k=0$ is a tangent to
$x^{2}-4 y^{2}=5$, find value of k .

D Watch Video Solution

6. Find the prodcut of lengths from any point on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ to its asymptotes.
7. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugatehyperbola.

- Watch Video Solution

8. Find the equation of the hyperbola whose asymptotes are $3 x=+5 y$ and the vartices are $(\pm 5,0)$.
(Watch Video Solution
9. Find the equation of the normal at $\theta=\frac{\pi}{3}$ to the hyperbola $3 x^{2}-4 y^{2}=12$.

- Watch Video Solution

10. If the angle between the asymptotes is 30° then find its eccentricity.
11. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.
$16 y^{2}-9 x^{2}=144$

D Watch Video Solution

12. Find the centre, foci, eccentricity equation
of the directrices, length of the latus rectum
of the hyperbola.
$x^{2}-4 y^{2}=4$
13. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.
$5 x^{2}-4 y^{2}+20 x+8 y=4$

D Watch Video Solution
14. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum
of the hyperbola.

$$
9 x^{2}-16 y^{2}+72 x-32 y-16=0
$$

D Watch Video Solution

15. Find the equation of the hyperbola whose foci are (4,2) and (8,2) and ec entricity is 2.

D Watch Video Solution

16. Find the equation of the hyperbola of given
length of transvers axis 6 whose vertex bisects
of the distance between the centre and the focus.

D Watch Video Solution

17. Find the equation of the tangents to the
hyperbola $x^{2}-4 y^{2}=4$ which are
parallel and perpendicular to the line $x+2 y=0$

D Watch Video Solution
18. Find the equation of the tangents to the hyperbola $x^{2}-4 y^{2}=4$ which are Perpendicular to the line $x+2 y=0$

D Watch Video Solution

19. Find the equation of the tangents drawn to
the hyperbola $2 x^{2}-3 y^{2}=6 \quad$ through
$(-2,1)$
20. Prove that the produt of the perpendicular distacne from any points on a hyperbola to its asymptotes is constant.

D Watch Video Solution

21. Tangents to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ make angle θ_{1}, θ_{2} with transvrse axis of a hyperbola. Show that the points of intersection of these tangents lies on the
curve

$$
2 x y=k\left(x^{2}-a^{2}\right)
$$

when
$\tan \theta_{1}+\tan \theta_{2}=k$
22. Show that the equation
$\frac{x^{2}}{9-c}+\frac{y^{2}}{5-c}=1$ represents.
A hyperbola if c is any real constant between 5 and 9.

D Watch Video Solution

23. Show that the equation
$\frac{x^{2}}{9-c}+\frac{y^{2}}{5-c}=1$ represents .

An ellipse if ' c ' is a real constant less than 5.

- Watch Video Solution

Vsaq

1. Find the equation of the hyperbola whose
foci are $(\pm 5,0)$ the transverse axis is of length 8.

- Watch Video Solution

1. Find the equation of the tangents to the hyperbola $3 x^{2}-4 y^{2}=12$ which are

Parallel and (ii) perpendicular to the line $y=x-7$

- Watch Video Solution

2. Find the equation of the tangents to the hyperbola $3 x^{2}-4 y^{2}=12$ which are Perpendicular to the line $y=x-7$

Watch Video Solution

