

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

HYPERBOLA

Sovled Problems

1. Find the centre eccentricity, foci, directrices

and length of the lotus rectum of the

hyperbolas.

$$4x^2 - 9y^2 - 8x - 32 = 0$$

Watch Video Solution

2. Find the centre eccentricity, foci, directrices and length of the lotus rectum of the hyperbolas.

$$4{(y+3)}^2-9{(x-2)}^2=1$$

3. If *eande* ' the eccentricities of a hyperbola and its conjugate, prove that $\frac{1}{e^2} + \frac{1}{e'^2} = 1$.

Watch Video Solution

4. If the line lx+my+n=0 s a tangent to the hyperboal $rac{x^2}{a^2}-rac{y^2}{b^2}=1$, then show that $a^2l^2-b^2m^2=n^2$

5. If the lx + my = 1 is a normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then shown that $\frac{a^2}{l^2} - \frac{b^2}{m^2} = (a^2 + b^2)^2$

6. Find the equation of the tangents to the hyperbola $3x^2 - 4y^2 = 12$ which are (i) Parallel and (ii) perpendicular to the line y = x - 7

7. Find the equation of the tangents to the hyperbola $3x^2 - 4y^2 = 12$ which are Perpendicular to the line y = x - 7

Watch Video Solution

8. Prove that the points of intersection of two

perpendicular tangents to the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ lies on the circle $x^2+y^2=a^2-b^2$

9. A circle cuts the rectangular hyperbolaxy = 1 in the points $(x_1, y_1), r = 1, 2, 3, 4.$

Prove that $x_1x_2x_3x_4=y_1y_2y_3y_4=1$

Watch Video Solution

Exercise 5 A

1. One focus of a hyperbola is located at the point (1,-3) and the corresponding directrix is

the line y=2. Find the equation of the hyperbola if its eccentricty is $\frac{3}{2}$.

2. If the lines 3x - 4y = 12 and 3x + 4y = 12 meets on a hyperbola S=0 then find the eccentricity of the hyperbola S=0

3. Find the equation of the hyperbola whose foci are $(\pm 5, 0)$ the transverse axis is of length 8.

4. Find the equation of the hyperbola, whose asymptotes are the straight line (x + 2y + 3) = 0, (3x + 4y + 5) = 0 and which passes through the point (1,-1).

6. Find the prodcut of lengths from any point

on the hyperbola
$$\displaystyle rac{x^2}{16} - \displaystyle rac{y^2}{9} = 1$$
 to its

asymptotes.

7. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugatehyperbola.

8. Find the equation of the hyperbola whose asymptotes are 3x = +5y and the vartices are $(\pm 5, 0)$.

9. Find the equation of the normal at $\theta = \frac{\pi}{3}$

to the hyperbola $3x^2 - 4y^2 = 12$.

Watch Video Solution

10. If the angle between the asymptotes is 30°

then find its eccentricity.

11. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.

 $16y^2 - 9x^2 = 144$

Watch Video Solution

12. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.

$$x^2 - 4y^2 = 4$$

13. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.

$$5x^2 - 4y^2 + 20x + 8y = 4$$

Watch Video Solution

14. Find the centre, foci, eccentricity equation

of the directrices, length of the latus rectum

of the hyperbola.

$$9x^2 - 16y^2 + 72x - 32y - 16 = 0$$

15. Find the equation of the hyperbola whose

foci are (4,2) and (8,2) and ec entricity is 2.

Watch Video Solution

16. Find the equation of the hyperbola of given length of transvers axis 6 whose vertex bisects

of the distance between the centre and the

focus.

17. Find the equation of the tangents to the

hyperbola $x^2 - 4y^2 = 4$ which are

parallel and perpendicular to the line x+2y=0

18. Find the equation of the tangents to the hyperbola $x^2 - 4y^2 = 4$ which are Perpendicular to the line x + 2y = 0

 $(\,-2,1)$

20. Prove that the produt of the perpendicular

distacne from any points on a hyperbola to its

asymptotes is constant.

Watch Video Solution

21. Tangents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ make angle θ_1, θ_2 with transvrse axis of a hyperbola. Show that the points of intersection of these tangents lies on the curve $2xy = k(x^2 - a^2)$ when

 $an heta_1+ an heta_2=k$

22. Show that the equation

$$rac{x^2}{9-c}+rac{y^2}{5-c}=1$$
 represents.

A hyperbola if c is any real constant between 5

and 9.

Watch Video Solution

23. Show that the equation

$$rac{x^2}{9-c}+rac{y^2}{5-c}=1$$
 represents.

1. Find the equation of the tangents to the hyperbola $3x^2 - 4y^2 = 12$ which are (i) Parallel and (ii) perpendicular to the line y = x - 7

Watch Video Solution

2. Find the equation of the tangents to the hyperbola $3x^2 - 4y^2 = 12$ which are Perpendicular to the line y = x - 7

