

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

QUESTION PAPER -2019

Very Short Answer Type Questions

1. Write the parametric equations of the circle

$$2x^2 + 2y^2 = 7.$$

2. Find the value of k if the points (1, 3) and (2, k) are conjugated with respect to the circle $x^2 + y^2 = 35$.

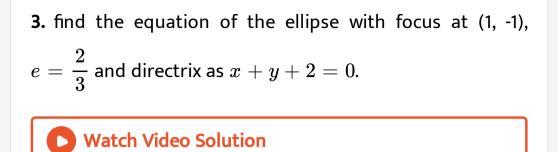
3. Find the equation of radical axis of the circles $x^2+y^2+4x+6y-7=0, 4ig(x^2+y^2ig)+8x+12y-9=0$

Watch Video Solution

4. Find the equation of the normal to the parabola $y^2 = 4x$ which is parallel to y - 2x + 5 = 0.

5. If the eccentricity of the hyperbola is $\frac{5}{4}$, then find the

eccentricity of conjugate hyperbola.


• Watch Video Solution
6. Evaluate :
$$\int \frac{1 + \cos^2 x}{1 - \cos 2x} dx$$
, on $\subset R / \{n\pi : n \in z\}$
• Watch Video Solution
7. Evaluate : $\int \frac{1}{x \log x [\log(\log x)]} dx$, on $(1, \infty)$.
• Watch Video Solution

8. Evaluate :
$$\int_{0}^{a} (\sqrt{a} - \sqrt{x})^{2} dx.$$

9. Find the value of the integral
$$\int_{0}^{\pi/2} \cos^{11} x dx$$

• Watch Video Solution
10. Find the general solution of :
$$\frac{dy}{dx} = \frac{2y}{x}$$

• Watch Video Solution

1. Find the equation of the circle which cuts orthogonally the circle $x^2 + y^2 - 4x + 2y - 7 = 0$ and having the centre at (2, 3).

Watch Video Solution

2. The lilne y=mx+x and the circle $x^2+y^2=a^2$ intersect at A and B. If $AB=2\lambda$, then show that : $c^2=\left(1+m^2
ight)\left(a^2-\lambda^2
ight).$

4. Find the equations of tangents to the elipse $2x^2 + 3y^2 = 11$ at the points whose ordinate is 1.

5. Find the foci, eccentricity, equations of the directrix, length of latus rectum of the hyperbola $x^2 - 4y^2 = 4$.

6. Find
$$\int_{0}^{2\pi} \sin^4 x \cos^6 x dx$$

Watch Video Solution
7. Solve the differential equation :
 $\cos x \cdot \frac{dy}{dx} + y \sin x = \sec^2 x$.
Watch Video Solution

Long Answer Type Questions

1. Show that the points (9, 1), (7, 9), (-2, 12), (6, 10) are concyclic and find the equation of the circle on which they

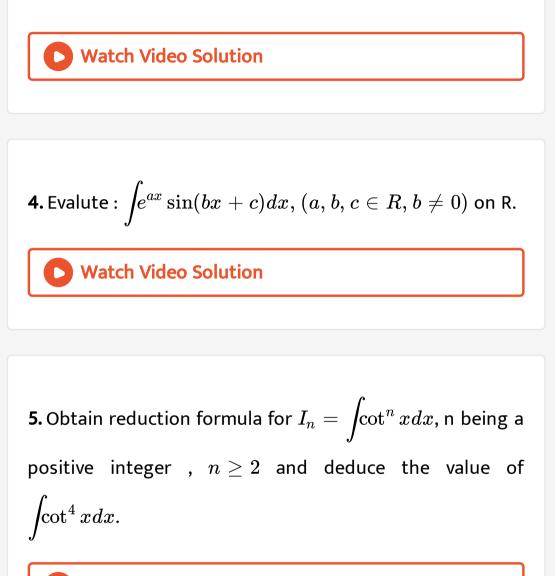
2. Show that the four common tangents can

be drawn for the circles given by

$$x^2+y^2-14x+6y+33=0$$
 ____(1)

and $x^2 + y^2 + 30x - 2y + 1 = 0$ ____(2)

and find the internal and external centres


of similitude.

3. From an external point P tangents are drawn to the parabola y(2) = 4ax and these tangents make angles

 $\theta_1, \theta_2 with its a \xi ssucht$ cot theta_(1)+cot theta_(2)` is a

constant 'a' show that P lies on a horizontal line.

$$\mathbf{6.} \int_0^\pi x \sin^7 x \cos^6 x dx$$

Watch Video Solution

7. Solve the differential equation : $rac{dy}{dx} = rac{2y+x+1}{2x+4y+3}$