©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA
 PUBLICATION)

SYSTEM OF CIRCLE

Solved Probems

1. Find the angle between the circles

$$
\begin{aligned}
& x^{2}+y^{2}+4 x-14 y+28=0 \text { and } \\
& x^{2}+y^{2}+4 x-5=0
\end{aligned}
$$

2. If the angle between the circles
$x^{2}+y^{2}-12 x-6 y+41=0$ and
$x^{2}+y^{2}+k x+6 y-59=0$ is 45° find k.

D Watch Video Solution

3. Find the question of the circle which passes through $(1,1)$ and cuts orthogonally each of the circles.
$x^{2}+y^{2}-8 x-2 y+16=0$ and
$x^{2}+y^{2}-4 x-1=0$.

(D) Watch Video Solution

4. Find the equation of the circle which is orthogonal to each of the following three circles.

$$
\begin{equation*}
x^{2}+y^{2}+2 x+17 y+4=0 \tag{1}
\end{equation*}
$$

$x^{2}+y^{2}+7 x+6 y+11=0\left(_\right)(2)$
and $x^{2}+y^{2}-x+22 y+3=0$

D Watch Video Solution

5. If the straight line represented by Itbgt $x \cos \alpha+y \sin \alpha=p$
inersects the circle
$x^{2}+y^{2}=a^{2}$
at the points A and B, then show that the equation of the circle with
AB as diameter is $\left(x^{2}+y^{2}-a^{2}\right)-2 p(x \cos \alpha+y \sin \alpha-p)=0$.

- View Text Solution

6. Find the equation of the circle passing therough the points of intersection of the circles.

$$
\begin{equation*}
x^{2}+y^{2}-8 x-6 y+21=0 \tag{1}
\end{equation*}
$$

$x^{2}+y^{2}-2 x-15=0$
and (1, 2).

- Watch Video Solution

7. Let us find the equation the radical axis of the circles S $\equiv x^{2}+y^{2}-5 x+6 y+12=0$
and $S^{1} \equiv x^{2}+y^{2}+6 x-4 y-14=0$

D Watch Video Solution

8. Let us find the equation of the radical axis of the circles

$$
\begin{equation*}
2 x^{2}+2 y^{2}+3 x+6 y-5=0 \tag{1}
\end{equation*}
$$ and $3 x^{2}+3 y^{2}-7 x+8 y-11=0$

9. Let find the radical and centre of the circles $x^{2}+y^{2}-2 x+6 y=0$
$x^{2}+y^{2}-4 x-2 y+6=0$
and $x^{2}+y^{2}-12 x+2 y+3=0$

D Watch Video Solution

10. Find the equation and length of the common chord of the two circles
$S \equiv x^{2}+y^{2}+3 x+5 y+4=0$
and $S^{1} \equiv x^{2}+y^{2}+5 x+3 y+4=0$

- View Text Solution

11. Show that the circles

$$
\begin{equation*}
S \equiv x^{2}+y^{2}-2 x-4 y-20=0 \tag{1}
\end{equation*}
$$

and $S^{1} \equiv x^{2}+y^{2}+6 x+2 y-90=0$
touch each other internally. Find their point of contact and the equation of common tnagent.

- View Text Solution

12. Find the equation fo the circle whose diameter is the common chord of the circles

$$
\begin{equation*}
S \equiv x^{2}+y^{2}+2 x+3 y+1=0 \tag{1}
\end{equation*}
$$ and $S^{1} \equiv x^{2}+y^{2}+4 x+3 y+2=0$

D Watch Video Solution

13. Let us find the equation of a circle which cuts each of the following circles orthogonally

$$
\begin{align*}
& S^{\prime} \equiv x^{2}+y^{2}+3 x+2 y+1=0 \tag{1}\\
& S^{\prime \prime} \equiv x^{2}+y^{2}-x+6 y+5=0 \tag{2}
\end{align*}
$$

and $S^{\prime \prime \prime} \equiv x^{2}+y^{2}+5 x-8 y+15=0$

Exerxcise 2 A

1. Find k if the following pairs of circles are orthogonal.
$x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0$.

D Watch Video Solution

2. Find k if the following pairs of circles are orthogonal.
$x^{2}+y^{2}-6 x-8 y+12=0$,
$x^{2}+y^{2}-4 x+6 y+k=0$

D Watch Video Solution

3. Find k if the following pairs of circles are orthogonal.
$x^{2}+y^{2}-5 x-14 y-34=0$.
$x^{2}+y^{2}+2 x+4 y+k=0$

D Watch Video Solution

4. Find k if the following pairs of circles are orthogonal.
$x^{2}+y^{2}+4 x+8=0, x^{2}+y^{2}-16 y+k=0$

D Watch Video Solution

5. Find the angle between the circles given by the equations.
$x^{2}+y^{2}-12 x-6 y+41=0$,
$x^{2}+y^{2}+4 x+6 y-59=0$.

D Watch Video Solution

6. Find the angle between the circles given by the equations.
$x^{2}+y^{2}+6 x-10 y-135=0$,
$x^{2}+y^{2}-4 x-116=0$

D Watch Video Solution

7. Show that the angle between the circles
$x^{2}+y^{2}=a^{2}, x^{2}+y^{2}=a x+a y$ is $\frac{3 \pi}{4}$.

D Watch Video Solution

8. Show that the circles given by the following equation intersect each other orthogonally.
$x^{2}+y^{2}-2 x-2 y-7=0$,
$3 x^{2}+3 y^{2}-8 x+29 y=0$.

D Watch Video Solution
9. Show that the circles given by the following equation intersect each other orthogonally.
$x^{2}+y^{2}+4 x-2 y-11=0$,
$x^{2}+y^{2}-4 x-8 y+11=0$.

D Watch Video Solution

10. Show that the circles given by the following equation intersect each other orthogonally.
$x^{2}+y^{2}-2 x+4 y+4=0$,
$x^{2}+y^{2}+3 x+4 y+1=0$.

- Watch Video Solution

11. Show that the circles given by the following equation intersect each other orthogonally.
$x^{2}+y^{2}-2 l x+g=0$,
$x^{2}+y^{2}-2 m y-g=0$.

D Watch Video Solution

12. Find the equation of the circle which passes through the origin and intersects the circles below, orthogonally.
$x^{2}+y^{2}-4 x+6 y+10=0$.
$x^{2}+y^{2}+12 y+6=0$.

D Watch Video Solution

13. Find the equation of the circle which passes through the origin and intersects the circles below, orthogonally.
$x^{2}+y^{2}-4 x-6 y-3=0$.
$x^{2}+y^{2}-8 y+12=0$.
14. Find the equation of the circle which passes through the point $(0,-3)$ and intersects the circles given by the equation $x^{2}+y^{2}-6 x+3 y+5=0$ and $x^{2}+y^{2}-x-7 y=0$ orthogonally.

- View Text Solution

15. Find the equation of the circle passing through the origin, having its centre on the line $x+y=4$ and intersecting the circle $x^{2}+y^{2}-4 x+2 y+4=0$ orthogonlly.

D Watch Video Solution

16. Find the equation of the circle which passes through the point $(2,0),(0,2)$ and orthogonally to the circle
$2 x^{2}+2 y^{2}+5 x-6 y+4=0$.

D Watch Video Solution

17. Find the equation of the circle which cuts orthogonally the circle $x^{2}+y^{2}-4 x+2 y-7=0$ and having a center at $(2,3)$.

- Watch Video Solution

18. Find the equation of the circle which intersects the circle $x^{2}+y^{2}-6 x+4 y-3=0$ orthogonally and passes through the point (3,0) and touches Y -axis.

(D) Watch Video Solution

19. Find the equation of the circle which cuts the circle $x^{2}+y^{2}+4 x-6 y+11=0$ and $\quad x^{2}+y^{2}-10 x-4 y+21=0$
rthogonally and has the diameter along the staight line $2 x+3 y=7$

- View Text Solution

20. If P, Q are conjugate points with respect to a circles $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ then prove that the circle PQ as diameter cuts the circles $\mathrm{S}=0$ orthogonally.

- View Text Solution

21. If the equation fo two circles whose radii are a, a ' are $S=0$ and $S^{\prime}=0$, then show that circles $\frac{S}{a}+\frac{S^{\prime}}{a^{\prime}}=0$ and $\frac{S}{a}-\frac{S^{\prime}}{a^{\prime}}=0$ intersect orthogonally.
22. Find the equation of the circle which intersects each of the following circles orthogonlly
i) $x^{2}+y^{2}+2 x+4 y+1=0$.
$x^{2}+y^{2}-2 x+6 y-3=0$.
$2\left(x^{2}+y^{2}\right)+6 x+8 y-3=0$.

- View Text Solution

23. Find the equation of the circle which intersects each of the following circles orthogonlly
$x^{2}+y^{2}+4 x+2 y+1=0$.
$2\left(x^{2}+y^{2}\right)+8 x+6 y-3=0$,
$x^{2}+y^{2}+6 x-2 y-3=0$.

D Watch Video Solution

24. If the straight line $2 \mathrm{x}+3 \mathrm{y}=1$ intersects the circle $x^{2}+y^{2}=4$ at the points A and B, then find the equation of the circle having $A B$ as diameter.

- Watch Video Solution

25. If $x+y=3$ is the equation of the chord $A B$ of circle $x^{2}+y^{2}-2 x+4 y-8=0$, find the equation of the circle having $\overline{A B}$ as diameter.

D Watch Video Solution

26. Find the equation of the circle passing through the intersection of the circles $x^{2}+y^{2}=2 a x$ and $x^{2}+y^{2}=b y$ and having its center on the line $\frac{x}{a}-\frac{y}{b}=2$.
27. Find the equation of the radical axis of the following circles.
$x^{2}+y^{2}-3 x-4 y+5=0$.
$3\left(x^{2}+y^{2}\right)-7 x+8 y-11=0$

D Watch Video Solution

2. Find the equation of the radical axis of the following circles.
$x^{2}+y^{2}+2 x+4 y+1=0$.
$x^{2}+y^{2}+4 x+y=0$

(D) Watch Video Solution

3. Find the equation of the radical axis of the following circles.
$x^{2}+y^{2}+4 x+6 y-7=0$.
$4\left(x^{2}+y^{2}\right)+8 x+12 y-9=0$.
4. Find the equation of the radical axis of the following circles.
$x^{2}+y^{2}-2 x-4 y-1=0$.
$x^{2}+y^{2}-4 x-6 y+5=0$.

D Watch Video Solution

5. Find the equation of the common chord of the following pair of circles.
$x^{2}+y^{2}-4 y+3=0$,
$x^{2}+y^{2}-5 x-6 y+4=0$.

- Watch Video Solution

6. Find the equation of the common chord of the following pair of circles.
$x^{2}+y^{2}+3 y+1=0$,
$x^{2}+y^{2}+4 x+3 y+2=0$.

D Watch Video Solution

7. Find the equation of the common chord of the following pair of circles.
$(x-a)^{2}+(y-b)^{2}=c^{2}$,
$(x-b)^{2}+(y-a)^{2}=c^{2}(a \neq b)$

- Watch Video Solution

8. find the equation of the common tangent of the following circles at their point of contact.
$x^{2}+y^{2}+10 x-2 y+22=0$,
$x^{2}+y^{2}+2 x-8 y+8=0$.

- Watch Video Solution

9. find the equation of the common tangent of the following circles at their point of contact.
$x^{2}+y^{2}-8 y-4=0, x^{2}+y^{2}-2 x-4 y=0$.

D Watch Video Solution

10. Show that the circles
$x^{2}+y^{2}-2 y-8 x+8=0$ and
$x^{2}+y^{2}-2 x+6 y+6=0$ touch each other and find the point of contact.
11. if the two circles
$x^{2}+y^{2}+2 g x+2 f y=0$ and
$x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y=0$ touch each other then show that $\mathrm{f}^{\prime} \mathrm{g}=$ fg'

- Watch Video Solution

12. Find the radical centre of the following circles.
$x^{2}+y^{2}-4 x-6 y+5=0$
$x^{2}+y^{2}-2 x-4 y-1=0$
$x^{2}+y^{2}-6 x-2 y=0$

D Watch Video Solution

13. Find the radical centre of the following circles.
$x^{2}+y^{2}+4 x-7=0,2 x^{2}+2 y^{2}+3 x+5 y-9=0, x^{2}+y^{2}+y=0$

D Watch Video Solution

14. Show that the common chord of the circle cles $x^{2}+y^{2}-6 x-4 y+9=0$ and $x^{2}+y^{2}-8 x-6 y+23=0$ is the diameter of the second circle and also find its length.

D Watch Video Solution

15. Find the equation and length of the common chord of the following circles.
$x^{2}+y^{2}+2 x+2 y+1=0$,
$x^{2}+y^{2}+4 x+3 y+2=0$.
16. Find the equation and length of the common chord of the following circles.

$$
\begin{aligned}
& x^{2}+y^{2}-5 x-6 y+4=0, \\
& x^{2}+y^{2}-2 x-2=0
\end{aligned}
$$

D Watch Video Solution

17. Prove that the radical axis of the circles
$x^{2}+y^{2}+2 g x+2 f y+c=0$ and $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$
is the diameter of the latter circle (or the former bisects the circumference fo the latter) if $2 g^{\prime}\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f^{\prime}\right)=c-c^{\prime}$.

- View Text Solution

18. Show that the circles
$x^{2}+y^{2}+2 a x+c=0$ and
$x^{2}+y^{2}+2 b y+c=0$ touch each other if
$1 / a^{2}+1 / b^{2}=1 / c$.

- Watch Video Solution

19.

Show
that
the
circles
$x^{2}+y^{2}-2 x=0$ and $x^{2}+y^{2}+6 x-6 y+2=0$ touch each of contact. Is the point of contact external or internal?

D Watch Video Solution

20. Find the equation of the circle which cuts the following circles orthogonally.
$x^{2}+y^{2}+4 x-7=0$.
$2 x^{2}+2 y^{2}+3 x+5 y-9=0$,
$x^{2}+y^{2}+y=0$.
21. Find the equation of the circle which cuts the following circles orthogonally.
$x^{2}+y^{2}+2 x+4 y+1=0$,
$2 x^{2}+2 y^{2}+6 x+8 y-3=0$,
$x^{2}+y^{2}-2 x+6 y-3=0$.

- View Text Solution

22. Find the equation of the circle which cuts the following circles orthogonally.
$x^{2}+y^{2}+2 x+17 y+4=0$,
$x^{2}+y^{2}+7 x+6 y+11=0$,
$x^{2}+y^{2}-x+22 y+3=0$.

- View Text Solution

23. Find the equation of the circle which intersects each of the following circles orthogonlly
$x^{2}+y^{2}+4 x+2 y+1=0$.
$2\left(x^{2}+y^{2}\right)+8 x+6 y-3=0$,
$x^{2}+y^{2}+6 x-2 y-3=0$.
(D) Watch Video Solution
