

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

THEORY OF EQUATIONS

Solved Problems

1. Form the polynomial equation of degree 3 whose roots are 2,3 and 6.

Watch Video Solution

2. Find the relation between the roots and the coefficients of the cubic equation .

 $3x^3 - 10x^2 + 7x + 10 = 0$

3. Write down the relations between the roots and the coefficients of the

bi-quadratic equation

$$x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$$

Watch Video Solution

4. If 1,2,3 and 4 are the roots of $x^4 + ax^3 + bx^2 + cx + d = 0$, then find

the values of a,b,c and d.

Watch Video Solution

5. If a,b,c are roots of $x^3 - px^2 + qx - r = 0$ and $r \neq 0$, then find $rac{1}{a^2} + rac{1}{b^2} + rac{1}{c^2}$ in terms of p,q,r.

6. Find the sum of the squares and the sum of the cubes of the roots of the equations $x^3 - px^2 + qx - r = 0$ in terms of p,q,r

Watch Video Solution

7. Obtain the cubic equation, whose roots are the squares of the roots of the equation ,

 $x^3 + p_1 x^2 + p_2 x + p_3 = 0$

Watch Video Solution

8. Let , $lpha, eta, \gamma$ be the roots of

 $x^3+px^2+qx+r=0$. Then find the

 $lphaeta+eta\gamma+\gammalpha \ ext{and} \ lphaeta\gamma$

9. Let , $lpha,\,eta,\,\gamma$ be the roots of $x^3+px^2+qx+r=0.$ Then find the

(i)
$$\sum \alpha^2$$

10. Let , $lpha,eta,\gamma$ be the roots of $x^3+px^2+qx+r=0.$ Then find the

(ii)
$$\sum \frac{1}{\alpha}$$

Watch Video Solution

11. Let , $lpha,\,eta,\,\gamma$ be the roots of $x^3+px^2+qx+r=0.$ Then find the

(ii) $\sum \alpha^3$

Watch Video Solution

12. Let , $lpha,eta,\gamma$ be the roots of $x^3+px^2+qx+r=0$. Then find the

(iv)
$$\sum eta^2 \gamma^2$$

13. Let , $lpha, eta, \gamma$ be the roots of

 $x^3+px^2+qx+r=0$. Then find the

(v)
$$(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$$

Watch Video Solution

14. Let $lpha, eta, \gamma$ be the roots of

$$x^3+ax^2+bx+c=0$$
 then find $\sum lpha^2eta+\sum lphaeta^2.$

Watch Video Solution

15. If $lpha,eta,\gamma$ are the roots of $x^3+px^2+qx+r=0$, then form the cubic equation whose roots are $lpha(eta+\gamma),eta(\gamma+lpha),\gamma(lpha+eta)$

16. solve $x^3 - 3x^2 - 16x + 48 = 0$

17. Find the roots of
$$x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$$

Watch Video Solution

18. solve $x^3 - 7x^2 + 36 = 0$ given one root being twice the other .

Watch Video Solution

19. Given that 2 is a root of $x^3 - 6x^2 + 3x + 10 = 0$, find the other roots

20. Given that two roots of $4x^3 + 20x^2 - 23x + 6 = 0$ are equal,find all

the roots of the given equation .

21. Given that the sum of two roots of $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$ is

zero , find the roots of the equation .

Watch Video Solution

22. Solve $4x^3 - 24x^2 + 23x + 18 = 0$,givne that the roots of this

equation are in arithmetic progression

Watch Video Solution

23. solve $x^3 - 7x^2 + 14x - 8 = 0$ given that the roots are in geometric

progression.

24. Solve $x^4 - 5x^3 + 5x^2 + 5x - 6 = 0$ given that the product of two of

its roots is 3

Watch Video Solution

25. Solve $x^4 + x^3 - 2x^2 - 12x + 9 = 0$, Given that it has two pairs of equal roots .

Watch Video Solution

26. Prove that the sum of any two of roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ is equal to the sum of the remaining two roots of the equation iff $p^3 - 4pq + 8r = 0$

View Text Solution

27. Form the polynomial equation of degree 4 whose roots are

$$4 + \sqrt{3}, 4 - \sqrt{3}, 2 + I$$
 and $2 - i$

Watch Video Solution

28. Solve $6x^4 - 13x^3 - 35x^2 - x + 3 = 0$ given that one of its roots is $2 + \sqrt{3}$

Watch Video Solution

29. Find the polynomial equation of degree 4 whose roots are the negatives of the roots of $x^4 - 6x^3 + 7x^2 - 2x + 1 = 0$

Watch Video Solution

30. Find the algebraic equation of the degree 4 whose roots are 3 times the roots of the equation $.6x^4 - 7x^3 + 8x^2 - 7x + 2 = 0$

31. Form the equation whose roots are m times the roots of the equation

$$x^3+rac{x^2}{4}-rac{x}{16}+rac{1}{72}=0$$
 and deduce the case when m =12 .

Watch Video Solution

32. Find the algebraic equation of degree 5 whose roots are the translates of the roots of $x^5 + 4x^3 - x^2 + 11 = 0$ by -3.

Watch Video Solution

33. Find the algebraic equation of degree 4 whose roots are the translates of the roots

$$4x^4 + 32x^3 + 83x^2 + 76x + 21 = 0$$
 by 2.

34. Find the polynomial equation whose roots are the reciprocals of the

roots of the equation

 $x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$

Watch Video Solution

35. Find the polynomial equation whose roots are the squares of the roots of $x^3 - x^2 + 8x - 6 = 0$

Watch Video Solution

36. Show that $2x^3 + 5x^2 + 5x + 2 = 0$ is a reciprocal equation of class

one .

Watch Video Solution

37. slove the equation $4x^3 - 13x^2 - 13x + 4 = 0$

1. Form polynomial equations of the lowest degree , with roots as given

below .

Hint : Equation having roots $lpha,eta,\gamma$ is $(x-lpha)(x-eta)(x-\gamma)=0$

1,-1,3

Watch Video Solution

2. Form polynomial equations of the lowest degree , with roots as given

below

`1pm 2i, 4,2

Hint : In an equation Imaginary roots occur in conjugate pairs.

Watch Video Solution

3. Form polynomial equations of the lowest degree , with roots as given

below

$$2\pm\sqrt{3},1\pm2i$$

4. Form polynomial equations of the lowest degree , with roots as given

below 0,0,2,,2,-2,-2

Watch Video Solution	
----------------------	--

5. Form polynomial equations of the lowest degree , with roots as given

below

$$1\pm\sqrt{3},2,5$$

Watch Video Solution

6. Form polynomial equations of the lowest degree , with roots as given

below

$$0,1,-\frac{3}{2}, -\frac{5}{2}$$

7. If α, β, γ are the roots of

 $4x^3-6x^2+7x+3=0$ then find the value of $lphaeta+eta\gamma+\gammalpha.$

8. if 1,1,
$$\alpha$$
 are the roots of

 $x^3-~ imes^2~+9x-4=0$,then find lpha .

Watch Video Solution

9. If -1,2 and lpha are the roots of

 $2x^3+x^2-7x-6=0$, then find lpha

10. If 1,-2 and 3 are roots of

$$x^3-2x^2+ax+6=0$$
 , then find a .

11. If the product of the roots of

 $4x^3+16x^2-9xa=0$ is 9 , then find a .

Watch Video Solution

12. Find the values of s_1, s_2, s_3 and s_4 for each of the following equations .

$$x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$$

Hint : $s_1 = \sum_{i=1}^4 lpha_i, s_2 = \sum_{l \le i \le j \le 4} lpha_i lpha i, s_3 = \sum_{l \le i \le j \le k \le 4} lpha_i lpha_j lpha_k, s_4 = lpha_1 lpha_2$
Vatch Video Solution

13. Find the values of s_1, s_2, s_3 and s_4 for each of the following equations .

$$8x^{4} - 2x^{3} - 27x^{2} + 6x + 9 = 0$$

Hint: $s_{1} = \sum_{r=1}^{4} \alpha_{i}, s_{2} = \sum_{l \leq i \leq j \leq 4} \alpha_{i} \alpha i, s_{3} = auml \leq i \leq j \leq k \leq 4 \alpha_{i} \alpha_{j}$
Watch Video Solution
14. If α, β and 1 are the roots of $x^{3} - 2x^{2} - 5x + 6 = 0$, then find α and β
Watch Video Solution

(i)
$$\sum lpha^2 eta^2(ii) \sum lpha eta(lpha+eta)$$

15 If α β and α are the roots of

16. If lpha,eta and γ are the roots of $x^3+px^2+qx+r=0$ then find the

following :

(i) $\alpha + \beta + \gamma$

(ii) $lpha imes eta + eta imes \gamma + \gamma imes lpha$

(iii) $lpha imes eta imes \gamma$

Watch Video Solution

17. If lpha,eta and γ are the roots of $x^3+px^2+qx+r=0$ then find the following : $\sum rac{1}{lpha^2eta^2}$

Watch Video Solution

18. If lpha,eta and γ are the roots of $x^3+px^2+qx+r=0$ then find the

$$\mathsf{following}: \frac{\beta^2 + \gamma^2}{\beta\gamma} + \frac{\gamma^2 + \alpha^2}{\gamma\alpha} + \frac{\alpha^2 + \beta^2}{\alpha\beta} \ \text{or} \ \sum \frac{\beta^2 + \gamma^2}{\beta\gamma}$$

Watch Video Solution

19. If α, β and γ are the roots of $x^3 + px^2 + qx + r = 0$ then find the following : $(\beta + \gamma - 3\alpha)(\gamma + \alpha - 3\beta)(\alpha + \beta - 3\gamma)$

20. If lpha,eta and γ are the roots of $x^3+px^2+qx+r=0$ then find the following : $\sum lpha^3eta^3$

Watch Video Solution

21. If
$$\alpha$$
, β , γ are the roots of $x^3-6x^2+11x-6=0$ then find the equation whose roots are $lpha^2+eta^2,\,eta^2+\gamma^2,\,\gamma^2+lpha^2$

22. If
$$\alpha$$
, β , γ are the roots of
 $x^3 - 7x + 6 = 0$ then find the equation whose roots are
 $(\alpha - \beta)^2$, $(\beta - \gamma)^2$, $(\gamma - \alpha)^2$
Watch Video Solution

3. Given that roots of $x^3 + 3px^2 + 3qx + r = 0$ are in

(i)A.P., show that
$$2p^3 - 3qp + r = 0$$

Watch Video Solution

4. Given that roots of $x^3 + 3px^2 + 3qx + r = 0$ are in

G.P. show that $p^3r=q^3$

Watch Video Solution

5. Given that roots of $x^3 + 3px^2 + 3qx + r = 0$

(iii) H.P ,. Show that $2q^3 = r(3pq-r)$

Watch Video Solution

6. Find the condition that $x^3 - px^2 + qx - r = 0$ may have the roots in

G.P .

7. Solve $9x^3 - 15x^2 + 7x - 1 = 0$, given that two of its roots are equal .

Watch Video Solution

8. Given that one root of $2x^3 + 3x^2 - 8x + 3 = 0$ is double of another

root , find the roots of the equation.

> Watch Video Solution

9. Solve $x^3 - 9x^2 + 14x + 24 - 0$, given that two of the roots are in the

ratio 3:2.

10. Solve the following equation , given that the root of each are in A.P.

(i)
$$8x^3 - 36c^2 - 18x + 81 = 0$$

Watch Video Solution

11. Solve the following equation ,given that the root of each are in A.P.

(ii)
$$x^3 - 3x^2 - 6x + 8 = 0$$

Watch Video Solution

12. solve the following equations, given that the roots of each are in G.P

(i)
$$3x^3 - 26x^2 + 52x - 24 = 0$$

Watch Video Solution

13. solve the following equations , given that the roots of each are in G.P

(ii)
$$54x^3 - 39x^2 - 26x + 16 = 0$$

14. Solve the following equations, given that the roots of each are in H.P.

(i)
$$6x^3 - 11x^2 + 6x - 1 = 0$$

Watch Video Solution

15. Solve the following equations, given that the roots of each are in H.P.

(ii)
$$15x^3 - 23x^2 + 9x - 1 = 0$$

Watch Video Solution

16. solve the following equation , given that they have multiple roots .

$$x^4 - 6x^3 + 13x^2 - 24x + 36 = 0$$

17. solve the following equation , given that they have multiple roots .

$$3x^4 + 16x^3 + 24x^2 - 16 = 0$$

Watch Video Solution

18. Solve $x^4+x^3-16x^2-4x+48=0$ that the product of the two roots is 6 .

Watch Video Solution

19. solve $8x^4 - 2x^3 - 27x^2 + 6x + 9 = 0$ given that two roots have the

same absolute value , but are oppsite in signs .

Watch Video Solution

20. Solve $18x^3 + 81x^2 + 121x + 60 = 0$ given that one roots is equal to

half the sum of the remainging roots .

21. Find the condition in order that the equation $ax^4 + 4bx^3 + 6cx^2 + 4dx + e = 0$

may have a pair of equal roots .

Watch Video Solution

22. Show that $x^5 - 5x^3 + 5x^2 - 1 = 0$ has three equal roots and find

this roots .

Watch Video Solution

23. Find the repeated roots of $x^5-3x^4-5x^3+27x^2-32x+12=0$

7. Form the polynomial equation with rational coefficients whose roots are $i-\sqrt{5}$

8. Form the polynomial equation with rational coefficients whose roots

are $-\sqrt{3}+i\sqrt{2}$

Watch Video Solution

9. Solve the equation $x^4 + 2x^3 - 5x^2 + 6x + 2 = 0$ given that 1+I is one

of its roots .

Watch Video Solution

10. solve the equation $3x^3-4x^2+x+88=0$ which has $2-\sqrt{-7}$ as a

root.

11. Solve $x^4 - 4x^2 + 8x + 35 = 0$,given that $2 + i\sqrt{3}$ is a root.

14. Solve the equations

 $x^4+2x^3-16x^2-22x+7=0$ given that $2-\sqrt{3}$ is a root of it .

Watch Video Solution

15. Solve the equation , $3x^5-4x^4-42x^3+56x^2+27x-36=0$ given that $\sqrt{2}+\sqrt{5}$ is one of its roots .

Watch Video Solution

16. Solve the equation $x^4 - 9x^3 + 27x^2 - 29x + 6 = 0$ given that one root of it is $2 - \sqrt{3}$

Watch Video Solution

17. Show that equation

$$rac{a^2}{x-a'}+rac{b^2}{x-b'}+rac{c^3}{x-c'}+.....+rac{k^2}{x-k'}=x-m$$

3. Find the transformed equation whose roots aren the negatives of the roots of $x^7 + 3x^5 + x^3 - x^2 + 7x + 2 = 0$

4. Find the polynomial equation whose roots are the reciprocals of the

roots of $x^4 - 3x^3 + 7x^2 + 5x - 2 = 0$

Watch Video Solution

5. Find the polynomial equation whose roots are the reciprocals of the

roots of $x^5 + 11x^4 + x^3 + 4x^2 + 13x + 6 = 0$

Watch Video Solution

6. Find the polynomial equation whose roots are the squares of the roots

of
$$x^4 + x^3 + 2x^2 + x + 1 = 0$$

7. Form the polynomial equation whose roots are the squares of the

roots of $x^3 + 3x^2 - 7x + 6 = 0$

Watch Video Solution

8. Form the polynomial equation whose roots are cubes of the roots of

 $x^3 + 3x^2 + 2 = 0$

Watch Video Solution

9. Find the polynomial equation whose roots are the translates of those of the equation $x^4 - 5x^3 + 7x^2 - 17x + 11 = 0$ by -2.

10. Find the polynomial equation whose roots are the translates of those

of
$$x^5 - 4x^4 + 3x^2 = 4x + 6 = 0$$
 by -3.

11. Find the polynomial equation whose roots are the translates of the roots of the equation . $x^4 - x^3 - 10x^2 + 4x + 24 = 0$ by 2 .

Watch Video Solution

12. Find the polynomial equation whose roots are the translates of the equation $3x^5 - 5x^3 + 7 = 0$ by 4.

Watch Video Solution

13. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their

transformed equations . $x^3 - 6x^2 + 10x - 3 = 0$

14. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their transformed equations $x^4 + 4x^3 + 2x^2 - 4x - 2 = 0$

Watch Video Solution

15. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their transformed equations $x^3 - 6x^2 + 4x - 7 = 0$

Watch Video Solution

16. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their

transformed equations $x^3 + 6x^2 + 4x + 4 = 0$

17. Transform each of the following equations into ones in which the coefficients of the third highest power of x is zero . $x^4 + 2x^3 - 12x^2 + 2x - 1 = 0$

Watch Video Solution

18. Transform each of the following equations into ones in which the coefficients of the third highest power of x is zero . $x^3 + 2x^2 + x + 1 = 0$

Watch Video Solution

19. Solve the following equations . $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$

4. If 1,-2 and 3 are roots of

 $x^3-2x^2+ax+6=0$, then find a .

Watch Video Solution

5. If the product of the roots of

 $4x^3+16x^2-9x-a=0$ is 9 , then find a .

Watch Video Solution

6. Find the transformed equation whose roots are the negative of the roots of $x^4 + 5x^3 + 11x + 3 = 0$

7. Form the polynamial equation of 3 whose roots are 2,3 and 6.

2. If α , β and γ are the roots of

 $x^3-2x^2+3x-4=0$, then find

(i)
$$\sum \alpha^2 \beta^2(ii) \sum \alpha \beta(\alpha + \beta)$$

Watch Video Solution
3. Solve the $x^3 - 3x^2 - 6x + 8 = 0$ equation , given that the roots of each are in A.P.
Watch Video Solution
4. Solve $x^4 - 4x^2 + 8x + 35 = 0$, given that $2 + i\sqrt{3}$ is a root.
Watch Video Solution

5. Find the polynomial equation whose roots are the reciprocals of the

roots of
$$x^4 - 3x^3 + 7x^2 + 5x - 2 = 0$$

1. Solve the $8x^3 - 36x^2 - 18x + 81 = 0$ equation, given that the roots of each are in A.P.

Watch Video Solution

2. Solve the $3x^3 - 26x^2 + 52x - 24 = 0$ equations , given that the roots

of each are in G.P.

Watch Video Solution

3. Solve $18x^3 + 81x^2 + 121x + 60 = 0$ given that one roots is equal to

half the sum of the remainging roots .

Watch Video Solution

4. Solve the equation $2x^5 + x^4 - 12x^3 - 12x^2 + x + 2 = 0$

