d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

THEORY OF EQUATIONS

Solved Problems

1. Form the polynomial equation of degree 3 whose roots are 2,3 and 6 .

- Watch Video Solution

2. Find the relation between the roots and the coefficients of the cubic equation.

$$
3 x^{3}-10 x^{2}+7 x+10=0
$$

3. Write down the relations between the roots and the coefficients of the bi-quadratic equation
$x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$

- Watch Video Solution

4. If $1,2,3$ and 4 are the roots of $x^{4}+a x^{3}+b x^{2}+c x+d=0$, then find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

- Watch Video Solution

5. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are roots of $x^{3}-p x^{2}+q x-r=0$ and $\mathrm{r} \neq 0$, then find $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$ in terms of $\mathrm{p}, \mathrm{q}, \mathrm{r}$.

- Watch Video Solution

6. Find the sum of the squares and the sum of the cubes of the roots of the equations $x^{3}-p x^{2}+q x-r=0$ in terms of $\mathrm{p}, \mathrm{q}, \mathrm{r}$

Watch Video Solution

7. Obtain the cubic equation, whose roots are the squares of the roots of the equation ,
$x^{3}+p_{1} x^{2}+p_{2} x+p_{3}=0$

- Watch Video Solution

8. Let , α, β, γ be the roots of
$x^{3}+p x^{2}+q x+r=0$. Then find the
$\alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$

- Watch Video Solution

9. Let , α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$. Then find the
(i) $\sum \alpha^{2}$

Watch Video Solution

10. Let , α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$. Then find the
(ii) $\sum \frac{1}{\alpha}$

- Watch Video Solution

11. Let , α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$. Then find the
(ii) $\sum \alpha^{3}$

- Watch Video Solution

12. Let , α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$. Then find the (iv) $\sum \beta^{2} \gamma^{2}$
13. Let , α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$. Then find the
(v) $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$

- Watch Video Solution

14. Let α, β, γ be the roots of
$x^{3}+a x^{2}+b x+c=0$ then find $\sum \alpha^{2} \beta+\sum \alpha \beta^{2}$.

- Watch Video Solution

15. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$, then form the cubic equation whose roots are $\alpha(\beta+\gamma), \beta(\gamma+\alpha), \gamma(\alpha+\beta)$

- Watch Video Solution

16. solve $x^{3}-3 x^{2}-16 x+48=0$

- Watch Video Solution

17. Find the roots of $x^{4}-16 x^{3}+86 x^{2}-176 x+105=0$

- Watch Video Solution

18. solve $x^{3}-7 x^{2}+36=0$ given one root being twice the other .

- Watch Video Solution

19. Given that 2 is a root of $x^{3}-6 x^{2}+3 x+10=0$, find the other roots

- Watch Video Solution

20. Given that two roots of $4 x^{3}+20 x^{2}-23 x+6=0$ are equal,find all the roots of the given equation.

- Watch Video Solution

21. Given that the sum of two roots of $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$ is zero, find the roots of the equation .

- Watch Video Solution

22. Solve $4 x^{3}-24 x^{2}+23 x+18=0$,givne that the roots of this equation are in arithmetic progression

- Watch Video Solution

23. solve $x^{3}-7 x^{2}+14 x-8=0$ given that the roots are in geometric progression.
24. Solve $x^{4}-5 x^{3}+5 x^{2}+5 x-6=0$ given that the product of two of its roots is 3

- Watch Video Solution

25. Solve $x^{4}+x^{3}-2 x^{2}-12 x+9=0$, Given that it has two pairs of equal roots.

- Watch Video Solution

26. Prove that the sum of any two of roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$ is equal to the sum of the remaining two roots of the equation iff $p^{3}-4 p q+8 r=0$
27. Form the polynomial equation of degree 4 whose roots are
$4+\sqrt{3}, 4-\sqrt{3}, 2+I$ and $2-i$

- Watch Video Solution

28. Solve $6 x^{4}-13 x^{3}-35 x^{2}-x+3=0$ given that one of its roots is $2+\sqrt{3}$

- Watch Video Solution

29. Find the polynomial equation of degree 4 whose roots are the negatives of the roots of $x^{4}-6 x^{3}+7 x^{2}-2 x+1=0$

- Watch Video Solution

30. Find the algebraic equation of the degree 4 whose roots are 3 times the roots of the equation. $6 x^{4}-7 x^{3}+8 x^{2}-7 x+2=0$
31. Form the equation whose roots are m times the roots of the equation $x^{3}+\frac{x^{2}}{4}-\frac{x}{16}+\frac{1}{72}=0$ and deduce the case when $\mathrm{m}=12$.

- Watch Video Solution

32. Find the algebraic equation of degree 5 whose roots are the translates of the roots of $x^{5}+4 x^{3}-x^{2}+11=0$ by -3 .

- Watch Video Solution

33. Find the algebraic equation of degree 4 whose roots are the translates of the roots $4 x^{4}+32 x^{3}+83 x^{2}+76 x+21=0$ by 2.

- Watch Video Solution

34. Find the polynomial equation whose roots are the reciprocals of the roots of the equation
$x^{4}+3 x^{3}-6 x^{2}+2 x-4=0$

- Watch Video Solution

35. Find the polynomial equation whose roots are the squares of the roots of $x^{3}-x^{2}+8 x-6=0$

- Watch Video Solution

36. Show that $2 x^{3}+5 x^{2}+5 x+2=0$ is a reciprocal equation of class one .

- Watch Video Solution

37. slove the equation $4 x^{3}-13 x^{2}-13 x+4=0$
38. Solve the equation $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$.

- Watch Video Solution

39. solve $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$

- Watch Video Solution

40. Solve the equation $6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$

Watch Video Solution

Exercise 4 A

1. Form polynomial equations of the lowest degree, with roots as given below .

Hint: Equation having roots α, β, γ is $(x-\alpha)(x-\beta)(x-\gamma)=0$ 1,-1,3

- Watch Video Solution

2. Form polynomial equations of the lowest degree, with roots as given below

1pm 2i, 4,2
Hint : In an equation Imaginary roots occur in conjugate pairs.

(D) Watch Video Solution

3. Form polynomial equations of the lowest degree, with roots as given below
$2 \pm \sqrt{3}, 1 \pm 2 i$
4. Form polynomial equations of the lowest degree, with roots as given below 0,0,2,2,-2,-2

- Watch Video Solution

5. Form polynomial equations of the lowest degree, with roots as given below
$1 \pm \sqrt{3}, 2,5$

- Watch Video Solution

6. Form polynomial equations of the lowest degree, with roots as given below
$0,1,-\frac{3}{2},-\frac{5}{2}$
7. If α, β, γ are the roots of $4 x^{3}-6 x^{2}+7 x+3=0$ then find the value of $\alpha \beta+\beta \gamma+\gamma \alpha$.

- Watch Video Solution

8. if $1,1, \alpha$ are the roots of
$x^{3}-x^{2}+9 x-4=0$, then find α.

- Watch Video Solution

9. If $-1,2$ and α are the roots of
$2 x^{3}+x^{2}-7 x-6=0$, then find α

- Watch Video Solution

10. If $1,-2$ and 3 are roots of $x^{3}-2 x^{2}+a x+6=0$, then find a.
11. If the product of the roots of
$4 x^{3}+16 x^{2}-9 x a=0$ is 9 , then find a.

- Watch Video Solution

12. Find the values of s_{1}, s_{2}, s_{3} and s_{4} for each of the following equations.
$x^{4}-16 x^{3}+86 x^{2}-176 x+105=0$
Hint: $s_{1}=\sum_{i=1}^{4} \alpha_{i}, s_{2}=\sum_{l \leq i \leq j \leq 4} \alpha_{i} \alpha i, s_{3}=\sum_{l \leq i \leq j \leq k \leq 4} \alpha_{i} \alpha_{j} \alpha_{k}, s_{4}=\alpha_{1} \alpha_{2}$

- Watch Video Solution

13. Find the values of s_{1}, s_{2}, s_{3} and s_{4} for each of the following equations.
$8 x^{4}-2 x^{3}-27 x^{2}+6 x+9=0$
$\left.\operatorname{Hint}: s_{1}=\sum_{r=1}^{4} \alpha_{i}, s_{2}=\sum_{l \leq i \leq j \leq 4} \alpha_{i} \alpha i, s_{3}=a u m l \leq i \leq j \leq k \leq 4\right) \alpha_{i} \alpha_{j}$

- Watch Video Solution

14. If α, β and 1 are the roots of $x^{3}-2 x^{2}-5 x+6=0$, then find α and β

- Watch Video Solution

15. If α, β and γ are the roots of
$x^{3}-2 x^{2}+3 x-4=0$, then find
(i) $\sum \alpha^{2} \beta^{2}(i i) \sum \alpha \beta(\alpha+\beta)$

(Watch Video Solution

16. If α, β and γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then find the following :
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \times \beta+\beta \times \gamma+\gamma \times \alpha$
(iii) $\alpha \times \beta \times \gamma$

- Watch Video Solution

17. If α, β and γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then find the following : $\sum \frac{1}{\alpha^{2} \beta^{2}}$

- Watch Video Solution

18. If α, β and γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then find the following : $\frac{\beta^{2}+\gamma^{2}}{\beta \gamma}+\frac{\gamma^{2}+\alpha^{2}}{\gamma \alpha}+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$ or $\sum \frac{\beta^{2}+\gamma^{2}}{\beta \gamma}$

- Watch Video Solution

19. If α, β and γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then find the following: $(\beta+\gamma-3 \alpha)(\gamma+\alpha-3 \beta)(\alpha+\beta-3 \gamma)$

Watch Video Solution

20. If α, β and γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then find the following : $\sum \alpha^{3} \beta^{3}$

- Watch Video Solution

21. If α, β, γ are the roots of
$x^{3}-6 x^{2}+11 x-6=0$ then find the equation whose roots are $\alpha^{2}+\beta^{2}, \beta^{2}+\gamma^{2}, \gamma^{2}+\alpha^{2}$

- Watch Video Solution

22. If α, β, γ are the roots of
$x^{3}-7 x+6=0$ then find the equation whose roots are $(\alpha-\beta)^{2},(\beta-\gamma)^{2},(\gamma-\alpha)^{2}$
23. If α, β, γ are the roots of $x^{3}-3 a x+b=0$ prove that $\sum(\alpha-\beta)(\alpha-\gamma)=9 a$.

- Watch Video Solution

Exercise 4 B

1. Solve $x^{3}-3 x^{2}-16 x+48=0$, given that tha sum of two roots is zero .

- Watch Video Solution

2. Find the condition that $x^{3}-p x^{2}+q x-r=0$ may have sum of its two roots is zero.

- Watch Video Solution

3. Given that roots of $x^{3}+3 p x^{2}+3 q x+r=0$ are in
(i)A.P., show that $2 p^{3}-3 q p+r=0$

Watch Video Solution

4. Given that roots of $x^{3}+3 p x^{2}+3 q x+r=0$ are in
G.P. show that $p^{3} r=q^{3}$

- Watch Video Solution

5. Given that roots of $x^{3}+3 p x^{2}+3 q x+r=0$
(iii) H.P ,. Show that $2 q^{3}=r(3 p q-r)$

- Watch Video Solution

6. Find the condition that $x^{3}-p x^{2}+q x-r=0$ may have the roots in G.P .
7. Solve $9 x^{3}-15 x^{2}+7 x-1=0$, given that two of its roots are equal .

- Watch Video Solution

8. Given that one root of $2 x^{3}+3 x^{2}-8 x+3=0$ is double of another root, find the roots of the equation.

- Watch Video Solution

9. Solve $x^{3}-9 x^{2}+14 x+24-0$, given that two of the roots are in the ratio 3:2.

- Watch Video Solution

10. Solve the following equation, given that the root of each are in A.P .
(i) $8 x^{3}-36 c^{2}-18 x+81=0$

- Watch Video Solution

11. Solve the following equation, given that the root of each are in A.P .
(ii) $x^{3}-3 x^{2}-6 x+8=0$

- Watch Video Solution

12. solve the following equations, given that the roots of each are in G.P
(i) $3 x^{3}-26 x^{2}+52 x-24=0$

- Watch Video Solution

13. solve the following equations, given that the roots of each are in G.P
(ii) $54 x^{3}-39 x^{2}-26 x+16=0$
14. Solve the following equations, given that the roots of each are in H.P.
(i) $6 x^{3}-11 x^{2}+6 x-1=0$

- Watch Video Solution

15. Solve the following equations, given that the roots of each are in H.P .
(ii) $15 x^{3}-23 x^{2}+9 x-1=0$

- Watch Video Solution

16. solve the following equation, given that they have multiple roots .
$x^{4}-6 x^{3}+13 x^{2}-24 x+36=0$

- Watch Video Solution

17. solve the following equation, given that they have multiple roots .

$$
3 x^{4}+16 x^{3}+24 x^{2}-16=0
$$

- Watch Video Solution

18. Solve $x^{4}+x^{3}-16 x^{2}-4 x+48=0$ that the product of the two roots is 6 .

- Watch Video Solution

19. solve $8 x^{4}-2 x^{3}-27 x^{2}+6 x+9=0$ given that two roots have the same absolute value, but are oppsite in signs .

- Watch Video Solution

20. Solve $18 x^{3}+81 x^{2}+121 x+60=0$ given that one roots is equal to half the sum of the remainging roots .
21. Find the condition in order that the equation $a x^{4}+4 b x^{3}+6 c x^{2}+4 d x+e=0$ may have a pair of equal roots.

- Watch Video Solution

22. Show that $x^{5}-5 x^{3}+5 x^{2}-1=0$ has three equal roots and find this roots .

- Watch Video Solution

23. Find the repeated roots of $x^{5}-3 x^{4}-5 x^{3}+27 x^{2}-32 x+12=0$

- Watch Video Solution

24. Solve the equation $8 x^{3}-20 x^{2}+6 x+9=0$ given that the equation has multiple roots.

- Watch Video Solution

Exercise 4 C

1. From the polynomial equation whose roots are
$2+3 i, 2-3 i, 1+i, 1-i$

- Watch Video Solution

2. From the polynomial equation whose roots are $3,2,1+1,1-1$

- Watch Video Solution

3. From the polynomial equation whose roots are $1+1,-1,-1+1,-1-1$
4. From the polynomial equation whose roots are $1+1,1-1,1+\mid, 1-1$

- Watch Video Solution

5. Form the polynomial equation with rational coefficients whose roots $\operatorname{are} 4 \sqrt{3}, 5+2 i$

- Watch Video Solution

6. Form the polynomial equation with rational coefficients whose roots are $1+5 i, 5-I$

- Watch Video Solution

7. Form the polynomial equation with rational coefficients whose roots are $i-\sqrt{5}$

- Watch Video Solution

8. Form the polynomial equation with rational coefficients whose roots are $-\sqrt{3}+i \sqrt{2}$

- Watch Video Solution

9. Solve the equation $x^{4}+2 x^{3}-5 x^{2}+6 x+2=0$ given that $1+1$ is one of its roots .

- Watch Video Solution

10. solve the equation $3 x^{3}-4 x^{2}+x+88=0$ which has $2-\sqrt{-7}$ as a root.
11. Solve $x^{4}-4 x^{2}+8 x+35=0$,given that $2+i \sqrt{3}$ is a root.

- Watch Video Solution

12. Solve the equation $x^{4}-6 x^{3}+11 x^{2}-10 x+2=0$,given that $2+\sqrt{3}$ is a root of the equation.

- Watch Video Solution

13. Given that $-2+\sqrt{-7}$ is a root of the equation $x^{4}+2 x^{2}-16 x+77=0$ solve it completely .

- Watch Video Solution

14. Solve the equations
$x^{4}+2 x^{3}-16 x^{2}-22 x+7=0$ given that $2-\sqrt{3}$ is a root of it.

- Watch Video Solution

15. Solve the equation, $3 x^{5}-4 x^{4}-42 x^{3}+56 x^{2}+27 x-36=0$ given that $\sqrt{2}+\sqrt{5}$ is one of its roots.

- Watch Video Solution

16. Solve the equation $x^{4}-9 x^{3}+27 x^{2}-29 x+6=0$ given that one root of it is $2-\sqrt{3}$

- Watch Video Solution

17. Show that equation
$\frac{a^{2}}{x-a^{\prime}}+\frac{b^{2}}{x-b^{\prime}}+\frac{c^{3}}{x-c^{\prime}}+\ldots \ldots+\frac{k^{2}}{x-k^{\prime}}=x-m$

Where a ,b,c.......k, m,a',b',c'.......k' are all real numbers, cannot have a non real root .

D View Text Solution

Exercise 4 D

1. Find the algebraic equation whose roots are 2 times the roots of $x^{5}-2 x^{4}+3 x^{3}-2 x^{2}+4 x+3=0$

- Watch Video Solution

2. Find the transformed equation whose roots are the negative of the roots of $x^{4}+5 x^{3}+11 x+3=0$

D Watch Video Solution

3. Find the transformed equation whose roots aren the negatives of the roots of $x^{7}+3 x^{5}+x^{3}-x^{2}+7 x+2=0$

- Watch Video Solution

4. Find the polynomial equation whose roots are the reciprocals of the roots of $x^{4}-3 x^{3}+7 x^{2}+5 x-2=0$

- Watch Video Solution

5. Find the polynomial equation whose roots are the reciprocals of the roots of $x^{5}+11 x^{4}+x^{3}+4 x^{2}+13 x+6=0$

- Watch Video Solution

6. Find the polynomial equation whose roots are the squares of the roots of $x^{4}+x^{3}+2 x^{2}+x+1=0$
7. Form the polynomial equation whose roots are the squares of the roots of $x^{3}+3 x^{2}-7 x+6=0$

- Watch Video Solution

8. Form the polynomial equation whose roots are cubes of the roots of $x^{3}+3 x^{2}+2=0$

- Watch Video Solution

9. Find the polynomial equation whose roots are the translates of those of the equation $x^{4}-5 x^{3}+7 x^{2}-17 x+11=0$ by -2 .

- Watch Video Solution

10. Find the polynomial equation whose roots are the translates of those of $x^{5}-4 x^{4}+3 x^{2}=4 x+6=0$ by -3.

- Watch Video Solution

11. Find the polynomial equation whose roots are the translates of the roots of the equation. $x^{4}-x^{3}-10 x^{2}+4 x+24=0$ by 2 .

- Watch Video Solution

12. Find the polynomial equation whose roots are the translates of the equation $3 x^{5}-5 x^{3}+7=0$ by 4 .

- Watch Video Solution

13. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their
transformed equations. $x^{3}-6 x^{2}+10 x-3=0$

- Watch Video Solution

14. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their transformed equations $x^{4}+4 x^{3}+2 x^{2}-4 x-2=0$

- Watch Video Solution

15. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their transformed equations $x^{3}-6 x^{2}+4 x-7=0$

- Watch Video Solution

16. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their
transformed equations $x^{3}+6 x^{2}+4 x+4=0$

- Watch Video Solution

17. Transform each of the following equations into ones in which the coefficients of the third highest power of x is zero. $x^{4}+2 x^{3}-12 x^{2}+2 x-1=0$

- Watch Video Solution

18. Transform each of the following equations into ones in which the coefficients of the third highest power of x is zero. $x^{3}+2 x^{2}+x+1=0$

- Watch Video Solution

19. Solve the following equations. $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$
20. Solve the following equations $2 x^{5}+x^{4}-12 x^{3}-12 x^{2}+x 2=0$

- Watch Video Solution

Dam Sure Vsaq 2 Marks

1. Form polynomial equation of the lowest degree with roots $1,-1,3$

- Watch Video Solution

2. If $1,1, \alpha$ are the roots of $x^{3}-6 x^{3}+9 x-4=0$ then $\alpha=$

- Watch Video Solution

3. If $-1,2, \alpha$ are the roots of the equation $2 x^{3}+x^{2}-7 x-6=0$, then α is
4. If $1,-2$ and 3 are roots of $x^{3}-2 x^{2}+a x+6=0$, then find a.

- Watch Video Solution

5. If the product of the roots of
$4 x^{3}+16 x^{2}-9 x-a=0$ is 9 , then find a.

- Watch Video Solution

6. Find the transformed equation whose roots are the negative of the roots of $x^{4}+5 x^{3}+11 x+3=0$

- Watch Video Solution

7. Form the polynamial equation of 3 whose roots are 2,3 and 6 .

- Watch Video Solution

8. Let α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$ then find $\sum \alpha^{3}$

- Watch Video Solution

Dam Sure Saq 4 Marks

1. If α, β and 1 are the roots of $x^{3}-2 x^{2}-5 x+6=0$, then find α and β

- Watch Video Solution

2. If α, β and γ are the roots of
$x^{3}-2 x^{2}+3 x-4=0$, then find
(i) $\sum \alpha^{2} \beta^{2}(i i) \sum \alpha \beta(\alpha+\beta)$

- Watch Video Solution

3. Solve the $x^{3}-3 x^{2}-6 x+8=0$ equation, given that the roots of each are in A.P .

- Watch Video Solution

4. Solve $x^{4}-4 x^{2}+8 x+35=0$,given that $2+i \sqrt{3}$ is a root.

- Watch Video Solution

5. Find the polynomial equation whose roots are the reciprocals of the roots of $x^{4}-3 x^{3}+7 x^{2}+5 x-2=0$

- Watch Video Solution

1. Solve the $8 x^{3}-36 x^{2}-18 x+81=0$ equation, given that the roots of each are in A.P.

- Watch Video Solution

2. Solve the $3 x^{3}-26 x^{2}+52 x-24=0$ equations, given that the roots of each are in G.P.

- Watch Video Solution

3. Solve $18 x^{3}+81 x^{2}+121 x+60=0$ given that one roots is equal to half the sum of the remainging roots.

- Watch Video Solution

4. Solve the equation $2 x^{5}+x^{4}-12 x^{3}-12 x^{2}+x+2=0$
