đず doubtnut

MATHS

BOOKS - CALCUTTA BOOK HOUSE MATHS (BENGALI ENGLISH)

PYTHAGORAS THEOREM

Very Short Answer Type Questions

1. A person travels from a place firstly 24 m west and then 10 m north. Then the distance
of the person from the starting point will be
A. 34 m
B. 17 m
C. 26 m
D. 25 m

Answer: C

2. If $\triangle A B C$ be an equilateral triangle and

$A D \perp B C$, then $A D^{2}=$
A. $\frac{3}{2} D C^{2}$
B. $2 D C^{2}$
C. $3 D C^{2}$
D. $4 D C^{2}$

Answer: C
(Watch Video Solution
3. $A B C$ is an isosceles triangle of which
$A C=B C$ and $A B^{2}=2 A C^{2}$. Then value of
$\angle C$ will be -
A. 30°
B. 90°
C. 45°
D. 60°

Answer: B
4. Two rods of 13 m length and 7 m length are situated perpendicularly on the ground and the distance between their foots is 8 m .The distance between their top parts is
A. 9 m
B. 10 m
C. 11 m
D. 12 m

Answer: B
5. The lengths of two diagonals of a rhombus are 24 cm and 10 cm respectively. Then the perimeter of the rhombus s
A. 13 cm
B. 26 cm
C. 52 cm
D. 25 cm

Answer: C

Example 2

1. If the ratio of the lengths of three sides of a
triangle is $3: 4: 5$,then the triangle will always be a right-angled triangle.

D Watch Video Solution

2. State True or False- If in a circle of radius

10 cm length, a chord subtends right-angle at
the centre, then the length of the chord will be 5 cm .

D Watch Video Solution

Fill In The Blanks

1. In a right-angled triangle, the area of a square drawn on the hypotenuse is equal to
the of the areas of the squares drawn on other two sides.
2. In an isosceles right-angled triangle if the length of each of two equal sidesin $4 \sqrt{2}$, then the length of the hypotenuse will be cm.

D Watch Video Solution

3. In a rectangle figure $A B C D$, the two diagonals AC and BD intersect each other at the point O , $\mathrm{ifAB}=12 \mathrm{~cm}, \mathrm{AO}=6.5 \mathrm{~cm}$, then the length of $B C$ is cm.

Example 3

1. In the given figure,the point O is situated
within the triangle $P Q R$ in such a way that,
$\angle P O Q=90^{\circ}, O P=6 \mathrm{~cm}$ and $O Q=8 \mathrm{~cm}$. If
$\mathrm{PR}=24 \mathrm{~cm}$ and $\angle Q P R=90^{\circ}$, then find the
length of QR.

D Watch Video Solution

2. The point O is situated within the rectangular figure $A B C D$ in such a way that $O B$ $=6 \mathrm{~cm}, O D=8 \mathrm{~cm}$ and $O A=5 \mathrm{~cm}$. Determine the
length of OC

- Watch Video Solution

3. In the triangle $A B C$,the perpendicular $A D$, from the point A on the side $B C$ meets the side $B C$ at the point D. If $B D=8 \mathrm{~cm}, D C=2 \mathrm{~cm}$ and $A D$ $=4 \mathrm{~cm}$, then find the measure of $\angle B A C$.

- Watch Video Solution

4. In a right-angled triangle $A B C$,
$\angle A B C=90^{\circ}, A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and
the perpendicular $B D$ on the side $A C$ from the point B which meets the side $A C$ at the point D. Determine the length of BD.

Long Answer Type Question

1. If the following are the lengths of the three sides of a triangle, then write the cases where the triangles are right -angled triangles :
(a) $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$ (b) $9 \mathrm{cam}, 11 \mathrm{~cm}, 6 \mathrm{~cm}$,

- Watch Video Solution

2. In the road of Laxmi's locality there is a ladder of 15 m length kept in such a way that it
has touched Pujas's window at a height of 9 m
above the ground. Now keeping the foot of
the ladder at the same point of that road, the
ladder is rotated in such a way that it touched

Laxmi's window situated on the other side of
the road. If Laxmi's window is 12 m above the
ground, then determine the breadth of that road.
3. If the length of one diagonal of a rhombus
having the side10 cm length of 12 cm ,then calculate the length of other diagonal.

- Watch Video Solution

4. PQR is a triangle whose $\angle Q$ is right angle. If
S is any point on $Q R$, then prove that $P S^{2}+Q R^{2}=P R^{2}+Q S^{2}$

5. Prove that the sum of squares drawn on the

 sides of a rhombus is equal to the sum of squares drawn on two diagonals.
D Watch Video Solution

6. $A B C$ is an equilateral triangle. $A D$ is perpendicular to $B C$. Prove that
$A B^{2}+B C^{2}+C A^{2}=4 A D^{2}$
7. ABC is a right-angled triangle of which $\angle A=$ right angle. P and Q are two points on $A B$ and $A C$ respectively.By joining P,Q,B,Q and C,P prove that $B Q^{2}+P C^{2}=B C^{2}+P Q^{2}$

D Watch Video Solution

8. If the diagonals of the quadrilateral $A B C D$
intersect each other orthogonally,then prove
that $A B^{2}+C D^{2}=B C^{2}+D A^{2}$
9. $A D$ is the height of the triangle $A B C$. If
$A B>A C$,then prove
that

$$
A B^{2}-A C^{2}=B D^{2}-C D^{2}
$$

D Watch Video Solution

10. Two perpendicular $B D$ and $C E$ are drawn
from the vertices B and C respectively on the
sides AC and AB of the $\triangle A B C$, which intersect each other at the point P. Prove that
$A C^{2}+B P^{2}=A B^{2}+C P^{2}$
11. $A B C$ is a right-angled isoscels triangles of which $\angle C$ is a right angle. If D is any point on AB . Then prove that $A D^{2}+B D^{2}=2 C D^{2}$

- Watch Video Solution

12. In $\triangle A B C, \angle A=$ right angle. If $C D$ is a median, then prove that
$B C^{2}=C D^{2}+3 A D^{2}$.
13. $O X, O Y$ and $O Z$ are the perpendiculars drawn from an internal point O of the $\triangle A B C$ on its sides $B C, C A$ and $A B$ respectively. Prove that
$A Z^{2}+B X^{2}+C Y^{2}=A Y^{2}+C X^{2}+B Z^{2}$

D Watch Video Solution

14. In the $\Delta R S T, \angle S$ right angle. X and Y are
the midpoints of RS and ST respectively. Prove
that $R Y^{2}+X T^{2}=5 X Y^{2}$.

- Watch Video Solution

15. If in $\triangle A B C, A D \perp B C$, then prove that
$A B^{2}+C D^{2}=A C^{2}+B D^{2}$

- Watch Video Solution

16. Prove that the area of the square drawn on
the diagonal of a square is twice the area of the given square.

- Watch Video Solution

17. O is any point inside a rectangle $A B C D$, Prove that $O A^{2}+O C^{2}=O B^{2}+O D^{2}$

D Watch Video Solution

18. $A B C D$ is a rhombus.Prove that $A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}$
19. In $\triangle A B C, A D \perp B C$. Prove that $A B^{2}-B D^{2}=A C^{2}-C D^{2}$
(Watch Video Solution
20. In $\triangle A B C, A D \perp B C$ which intersects BC at D. If $B D=3 C D$, then prove that $2 A B^{2}=2 A C^{2}+B C^{2}$
21. In the isosceles triangle $A B C, A B=A C$ and $B E$
is perpendicular to $A C$ from B. Prove that
$B C^{2}=2 A C \times C E$

- Watch Video Solution

22. In an isosceles right-angled triangle $A B C$,
$\angle B=90^{\circ}$. The bisector of $\angle B A C$ intersects
the side $B C$ at the point D. Prove that

$$
C D^{2}=2 B D^{2}
$$

23. Prove that the sum of the areas of the squares drawn on the sides of a rhombus is equal to the sum of the areas of two squares drawn on the diagonals of the given square.

- Watch Video Solution

24. $\triangle P Q R$ is a right-angled isosceles triangle of which the two sides $P Q$ and QR are equal.

The bisector of $\angle P$ intersects the side QR at the point S.Prove that $S R^{2}=2 Q S^{2}$.
25. P is an external point of the square $A B C D$. If
$P A>P B$,then prove that
$P A^{2}-P B^{2} \cong P D^{2}-P C^{2}$

- Watch Video Solution

26. In the right-angled $\mathrm{ABC}, \angle A=1$ right angle. BE and CF are two medians of $\triangle A B C$. Prove that $4\left(B E^{2}+C F^{2}\right)=5 B C^{2}$

Watch Video Solution

27. A perpendicular AD is drawn on BC from
the vertex A of the acute $\triangle A B C$. Prove that
$A C^{2}=A B^{2}+B C^{2}-2 B C . B D$
OR
Prove that the square drawn on the opposite side of theacute angle of an acute triangle is equal to the areas of the sum of the squares drawn on its other two sides being subtracted by twice the area of the rectangle formed by
one of its sides and the projection of the other side to this side.

D Watch Video Solution

28. Prove that if equilateral triangles are drawn on the sides of a right-angled triangles
then the area of the equilateral triangle, drawn on the hypotenuse is equal to the sum of the areas of the other two equilateral triangals drawn on its other two sides.
29. O is an internal point of the rectangle PQRS . Prove that $O Q^{2}+O S^{2}=O P^{2}+Q R^{2}$

D Watch Video Solution

30. In the right-angled triangle $\mathrm{ABC}, \angle C=90^{\circ}$

If the length of perpendicular drawn from C
on $A B$ be p and $A B=c, B C=a, C A=b$, then prove
that $(a) \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}},(b) p c=a b$.
31. $\triangle A B C$ is an equilateral triangle. D is a point on the side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $7 A B^{2}=9 A D^{2}$

- Watch Video Solution

32. Prove that if the difference of the areas of
the squares drawn on any two sides of a triangle be equal to the area of square drawn ono its third side, then the triangle is a rightangled triangle.
33. In $\triangle A B C, \mathrm{AD}$ is a perpendicular drawn from A to the side BC . If $A D^{2}=B D . C D$, then prove that the triangle is a right-angled triangle.

D Watch Video Solution

34. One of the two acute angles of a righangled triangle is twice the other.Prove that between the sides adjacent to the right angle,
the area of the square drawn on the greater side is thrice the area of the square drawn on the smaller side.

D Watch Video Solution

35. In $\triangle A B C, \angle A$ is a right angle and AO is perpendicular to $B C$. Prove that $A O^{2}=B O . C O$.
36. Prove that in the quadrilateral of which the
two diagonals intersect each other at right
angles, the sum of the squares of any two sides is equal to the sum squares of the other two sides.

D Watch Video Solution

37. $\triangle A B C$ is an obtus triangle in which $\angle B=$ obtus angle. If $A D$ is perpendicular to $B C$ (or
extended BC) ,then prove that
$A C^{2}=A B^{2}+B C^{2}+2 B C \times B D$.

D Watch Video Solution

38. In $\triangle A B C, \mathrm{AD}$ is a median and $\mathrm{AM} \perp$ BC.Prove that
(a) $A C^{2}=A D^{2}+B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
$A B^{2}=A D^{2}-B C . D M+\left(\frac{B C}{2}\right)^{2} \quad$ (с)
$A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

D Watch Video Solution

1. A person at first travels 28 m east from a certain place and then he travels $\sqrt{57} \mathrm{~m}$ south of it. The distance of the person from the starting point will be
A. $(28+\sqrt{57}) m$
B. 29 m
C. $(28-\sqrt{57}) m$
D. None of these

Answer: b

D Watch Video Solution

2. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$
and $\mathrm{BC}=6 \mathrm{~cm}$. Then the value of $\angle B$ will be
A. 120°
B. 60°
C. 90°
D. 45°

Answer: C

D Watch Video Solution

3. A ladder is situated against a wall in such a way that its foot is at a distance of 2.5 m away
from the wall and its vertex touches a window which is at a height of 6 m from the ground.Then the length of the ladder will be
A. 6.1 m
B. 6.3 m
C. 6.4 m
D. 6.5 m

Answer: d

D Watch Video Solution

4. An aeroplane flows towards the north from an airport at a speed of 1000 km per hour.In the same time another aeroplane also flows towards the west at a speed of 1200 km per hour the same place. Then the distance
between the aeroplanes after $1 \frac{1}{2}$ hours will be
A. $30 \sqrt{61} \mathrm{~km}$
B. $300 \sqrt{61} \mathrm{~km}$
C. $3 \sqrt{61} \mathrm{~km}$
D. $300 \sqrt{62} \mathrm{~km}$

Answer: b

- Watch Video Solution

1. The length of the sides of an equilateral
$\Delta A B C$ is 2 a units. Find the height of the triangle.

D Watch Video Solution

2. Two pillars of lengths 6 m and 11 m stands up
vertically with the ground. If the distance between their foots be 12 m ,then find the distance between their vertices.
3. A ladder of length 10 m just touches a window 8 m high from the ground on a wall.

Find the distance between the foot of the ladder from the wall.

- Watch Video Solution

4. O is an internal point of the rectangle $A B C D$
such that $O B=6 \mathrm{~cm}, O D=8 \mathrm{~cm}$ and $O A$
$=\sqrt{19} \mathrm{~cm}$. Then find the length of OC.

- Watch Video Solution

5. In the right-angled triangle $\mathrm{ABC}, \angle A=$ right angle. If AB
$=(3 x-\sqrt{2}) c m, B C=\sqrt{9 x^{2}+2} \mathrm{~cm}$, then
find the value of $A C$.
(D) Watch Video Solution
6. If the ratio of three sides of a triangle be $\sqrt{2}: \sqrt{3}: \sqrt{5}$, then the triangle is always a right-angled triangle.
7. The quantities $5 a, 12 a$ and $13 a$ are all Pythagorian quantities.

D Watch Video Solution

8. If the area of the square drawn on any side of a triangle is equal to the sum of the areas of the squares drawn on the other two sides of the triangle ,then the triangle will be right-
angled triangle, the opposite angle of the greatest side of which will be

D Watch Video Solution
9. The number $5,12 \ldots \ldots \ldots \ldots \ldots .$. are

Pythagorian numbers.

D Watch Video Solution

10. If D be the mid-point of the side $B C$ of
$\triangle A B C$,
then
$A B^{2}+A C^{2}=2 B D^{2}+$

- Watch Video Solution

11. If the length of one of the diagonals of a rhombus with sides 13 cm be 10 cm , then find the length of its other diagonal.

- Watch Video Solution

12. The lengths of three sides of a triangle are
the perpendicular drawn from the opposite vertex of the side of length 13 cm to that side.

D Watch Video Solution

13. If the distance between the foots of two
pillar of lengths 35 m and 50 m be 20 m , then
find the distance between their vertices.

D Watch Video Solution
14. If the lengths of the diagonals of a
rhombus be 18 cm and 24 cm . Then find the length of its sides.

- Watch Video Solution

