

MATHS

BOOKS - CALCUTTA BOOK HOUSE MATHS (BENGALI ENGLISH)

SIMILARITY

Examples

1. A line parallel to the side BC of ΔABC

intersects the sides AB and AC at the points

x and Y respectively. If AX=2.4cm,

AY=3.2cm and YC=4.8cm, then the length of AB is

A. 3.6cm

B.6cm

C.6.4cm

D. 7.2cm

Answer:

2. The point D and E are situated on the sides

AB and AC of ΔABC in such a way that

 $DE \mid \ \mid BC$ and $AD \colon DB = 3 \colon 1$, If

EA=3.3cm, then the length of AC is

A. 1.1cm

B.4cm

C. 4.4cm

D.5.5cm

Answer:

3. In the adjoining figure if $DE \mid BC$, then the value of x is

A. 4

B. 1

C. 3

D. 2

Answer:

4. In the trapezium ABCD, $AB \mid DC$ and the two points P and Q are situated on the sides AD and BC in such a way that $PQ \mid DC$, if PD = 18cm, BQ = 35cm, QC = 15cm, then the length of AD is.

A. 60cm

B.30cm

C. 12*cm*

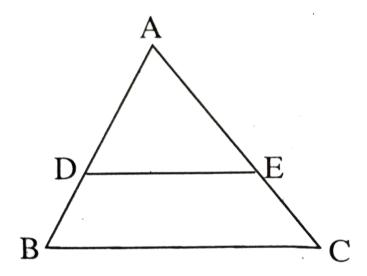
D. 15*cm*

Answer:

5. In the adjoining figure if DP=5cm,

DE = 15cm, DQ = 6cm and QF = 18cm,

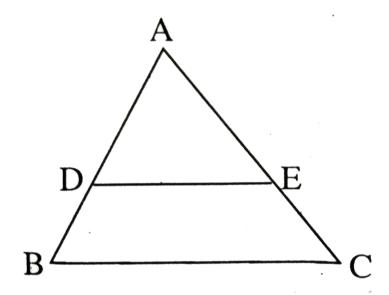
then


A. PQ = EF

B. $PQ \mid \mid EF$

C. PQ
eq EF

D. $PQ \not\!\!\!/ EF$.


6. Two similar triangles are always congruent.

7. In the adjoining figure if $DE \mid BC$, then

$$\frac{AB}{BD} = \frac{AC}{CE}.$$

8. A straight line parallel to any side of any triangle divides other two sides (or the extended two sides)_____.

Watch Video Solution

9. If the bases of two triangles are situated on a same line and the other vertex of the two triangles are common, then the ratio of the areas of two triangles are _____ to the ratio of their bases

Watch Video Solution

10. The straight line parallel to the parallel sides of a trapezium divides _____ other two sides.

Watch Video Solution

11. In the adjoining figure, if in $\triangle ABC$, $\frac{AD}{DB}=\frac{AE}{EC}$ and if $\angle ADE=\angle ACB$, then write what type of triangle according to side $\triangle ABC$ is ?

12. In the adjoining figure $DE \mid BC$ and if $AD \colon BD = 3 \colon 5$, then find (are of ΔADE) : (area ΔCDE).

13. In the adjoining figure, $LM \mid AB$ and if AL = (x-3) unit, AC = 2x unit.

BM=(x-2) unit and BC=(2x+3) unit, find the value of x.

Watch Video Solution

DE||PQ||BC and $AD=3cm,\;DP=xcm,\;$

14. In the adjoining figure, if in $\triangle ABCD$,

|DE||PQ||BC and $AD=3cm,\;DP=xcm$

 $PB=4cm, \qquad AE=4cm, \qquad EQ=5cm,$

QC=ycm, then determine the value of x

and y.

15. In the adjoining figure, if $DE \mid BC$, $BE \mid \ \mid XC$ and $\dfrac{AD}{DB} = \dfrac{2}{\mbox{\scriptsize 1}}$, then find the value of $\frac{AX}{XB}$.

Watch Video Solution

16. All squares are \square (congruent/similar)

Watch Video Solution

17. All circles are \Box (congruent /similar)

18. All $\square s$ (equliateral/isoscele) triangles are always similar.

Watch Video Solution

19. Two quadrilaterals will be similar if their similar angles are \Box (equal/proportional) and similar sides are $\Box s$ (unequal/porportional)

20. Any two congruent figures are similar

21. Any two similar figures are always congruent.

22. The corresponding angles of any two polygonal figures are equal.

23. The corresponding sides of any two polygonal figures are proportional.

24. The square and rhombus are always similar.

25. Write an example of a pair of similar figures.

Watch Video Solution

26. Construct a pair of dissimilar figures.

Watch Video Solution

27. A line parallel to the side BC of ΔABC intersects the sides AB and AC at the points

P and Q respectively.

(a) If PB=AQ, AP=9 units, QC=4units, then calculate the length of PB.

(b) The length of PB is twice of AP and the length of QC is 3 units more than the length

of AQ, then calculate the length of AC.

(c) If AP = QC, the length of AB is 12 units and the length of AQ is 2 units , then calculate the length of CQ.

28. X and Y are two points on the sides PQ and PR respectively of the ΔPQR .

(a) If PX=2 units, XQ=3.5 units,YR=7 units and PY=4.25 units, then find whether XY and QR are parallel or not.

(b) If PQ=8 units, YR=12 units, PY=4 units and the length of PY is 2 units less than that of XQ, then find whether XY and QR are parallel or not.

29. With the help of Thales' theorem prove that the line drawn through mid-point of one side of a triangle parallel to another side bisects the third side.

Watch Video Solution

30. In $\triangle ABC$, P is a point on the median AD. Extended BP and CP intersect AC and ABat Q and R respectively. Prove that $RQ \mid \mid BC$.

31. The two medians BE and CF of ΔABC intersect each other at the point G and if the line segment FE intersects the line segment AG at the point O, then prove that AO=3OG.

Watch Video Solution

32. Prove that the line segment joining the mid-point of two transverse sides of a trapezium is parallel to its parallel sides.

33. D is any point on the side BC of ΔABC . P and Q are centroids of ΔABD and ΔADC respectively. Prove that $PQ \mid \; \mid BC$.

Watch Video Solution

34. Two triangles ΔPQR and ΔSQR are drawn on the same base QR and on the same side of QR and their areas are equal. If F and

G are two centroids of two triangles, then prove that $FG \mid \mid QR$.

35. Prove that two adjacent angles of any parallel side of an isoceles trapezium are equal.

36. $\triangle ABC$ and $\triangle DBC$ are situated on the same base BC and on the same side of BC. E is any point on the side BC. Two line through the point E and parallel to AB and BD intersects the sides AC and DC at the points E and E are situated on the same situated

Watch Video Solution

37. In a right-angled trigangle $\angle A$ is a right-angle and AO is perpendicular to BC at the

point O. Prove that $AO^2 = BO \times CO$.

Watch Video Solution

38. A straight line drawn through D of the parallelogram ABCD intersects AB and the extended part of CB at the points E and Frespectively. Prove that AD: AE = CF: CD.

39. Two chords AB and CD of a circle intersect at a internal point P of the circle. Prove that $AP \times BP = CP \times DP$.

Watch Video Solution

40. AB is a diameter of a circle. BP is a tangent to the circle at B. A straight line passing through A intersects BP at C and the circle at D. Prove that $BC^2 = AC \times CD$.

41. In the cyclic quadrilateral ABCD, the diagonal BD bisects the diagonal AC. Prove that $AB \times AD = CB \times CD$.

Watch Video Solution

42. AD is a diameter of the circumcircle of ΔABC . AE is perpendicular to BC. Prove that $AB \times AC = AD \times AE$.

43. XY is a straight line parallel to the side MT of the parallelogram MNOT, which intersects the side MN at X and the side TO at Y. E and F are two points on XY. If ME and TF are extended, they intersect at P and the extended NE and OF intersect each other at Q. Prove that PQ||MN||TO.

44. In ΔPQR , $\angle Q=2\angle R$, The bisector of $\angle PQR$ intersects PR at the point D. Prove that $PQ\cdot QR=QD$. PR.

Watch Video Solution

45. PQ is a diameter of a circle and AB is such a chord of it that it is perpendicular to PQ. If C be the point of intersection of PQ and AB, then prove that PC. QC = AC. BC

Watch Video Solution

46. PQRS is cyclic quadrilateral. Extended PQ and SR intersect each other at A. Prove that AP. AQ = AR. AS.

47. In
$$\Delta ABC$$
 and ΔDEF if $\frac{AB}{DE}=\frac{BC}{DF}=\frac{AC}{EF}$, then-

A.
$$\angle B = \angle E$$

B.
$$\angle A = \angle D$$

$$\mathsf{C}. \angle B = \angle D$$

D.
$$\angle A = \angle F$$

Answer:

Watch Video Solution

48. If in ΔDEF and ΔPQR , $\angle D=\angle Q$ and

 $\angle E = \angle R$, then which one of the followings

is not correct?

A.
$$\frac{EF}{PR} = \frac{DF}{PQ}$$

B.
$$rac{QR}{PQ}=rac{EF}{DF}$$
C. $rac{DE}{QR}=rac{DF}{PQ}$

$$QR$$
 PQ D. $rac{EF}{RP}=rac{DE}{QR}$

Answer:

49. In
$$\triangle ABC$$
 and $\triangle DEF$, $\angle A=\angle E=40^\circ$, $AB\!:\!ED=AC\!:\!EF$ and $\angle F=65^\circ$, then the value of $\angle B$ is

A. 35°

B. 65°

C. 75°

D. 85°

Answer:

50. In
$$\Delta ABC$$
 and ΔPQR , if $\frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}$, then

A.
$$\angle A = \angle Q$$

$$\mathsf{B.}\, \angle A = \angle P$$

$$\mathsf{C}. \angle A = \angle R$$

$$\mathrm{D.}\, \angle B = \angle Q$$

Answer:

Watch Video Solution

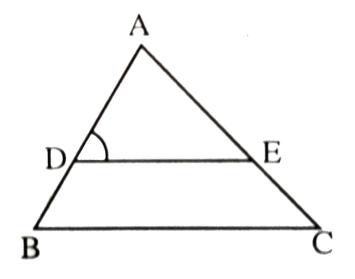
51. In $\triangle ABC$, AB=9cm, BC=6cm and CA=7.5cm. In ΔDEF , the corresponding side of BC is EF, EF=8cm and if ΔDEF $\sim \Delta ABC$, then the perimeter of ΔDEF will be

A. 22.5cm

 $B.\,25cm$

C. 27*cm*

D. 30*cm*


Answer:

52. If the correspondig angles of two quadrillaterals are equal, then they are similar.

Watch Video Solution

53. In the adjoining figure, If $\angle ADE = \angle ACB$, then $\Delta ADE \sim \Delta ACB$.

54. In ΔPQR , D is a point on the side QR so that $PD\perp QR$, will it be correct to say that ΔPQD - ΔRPD .? why?

55. Two triangles are similar if their_____sides are proportional.

56. Ther perimeters of ΔABC and ΔDEF are 30cm and 18cm respectively. $\Delta ABC \sim \Delta DEF$, BC and EF are corresponding sides. If BC = 9cm, the EF = ?.

57. In the following figure, if $\angle ACB = \angle BAD$, AC=8cm,~AB=16cm~ and AD=3cm, then find the length of BD.

58. In the adjoining figure, $\angle ABC=90^{\circ}$ and $BD\perp AC$. If AB=5.7cm,~BD=3.8cm,

CD = 5.4cm, then find the length of BC.

Watch Video Solution

59. In the figure beside, $\angle ABC=90^\circ$ and $BD\perp AC.$ If BD=8cm and AD=4cm , then find the length of CD.

60. In trapezium ABCD, $BC \mid AD$ and AD = 4cm. The two diagonals AC and BD intersect at the point O in such a way that $\frac{AO}{OC} = \frac{DO}{OB} = \frac{1}{2}$. Find the length of BC.

Watch Video Solution

61. $\Delta ABC \sim \Delta DEF$ and in ΔABC and ΔDEF , the corresponding sides of AB, BC and CA are DE, EF and DF respectively. If

 $\angle A=47^{\circ}$ and $\angle E=83^{\circ}$, then find the value of $\angle C$.

Watch Video Solution

62. In ΔABC , $\angle ABC=90^{\circ}$ and $BD\perp AC$, if BD=8cm and AD=5cm, then calculate the length of CD.

63. ABC is a right angled triangle whose $\angle B$ is right angle and $BD \perp AC$, if AD = 4cm and CD = 16cm, then calculate the length of BD and AB.

Watch Video Solution

64. AB is a diameter of a circle with centre O, P is any point on the circle, the tangent drawn through the point P intersects the two tangents drawn through the points A and B

at the points Q and R respectively. If the radius of the circle be r, then prove that $PQ. PR = r^2.$

Watch Video Solution

65. Modhurima have drawn a semicircle with a diameter $AB.\ A$ perpendicular is drawn on AB from any point C on AB which intersects the semicircle at the point D. Prove that CDis a mean proportion of AC and BC.

66. In right angled triangle ABC, $\angle A$ is a right angle. AD is perpendicular on the hypotenuse BC. Prove that $\frac{\Delta ABC}{\Delta ACD} = \frac{BC^2}{AC^2}$.

Watch Video Solution

67. AB is a diameter of a circle with centre O. A line drawn through the point A intersects the circle at the point ${\it C}$ and the tangent through B at the point D. Prove that $(a)BD^2=AD.\,DC$. (b) The area of the

rectangle of formed by AC and AD for any straight line is always equal.

Watch Video Solution

68. The length of the shadow of a stick of length 6cm is 4cm. At the same time, if the length of the shadow of a tower be 28 metres, then find the height of the tower.

69. Prove by the theorem of Thales that the third side of a triangle is parallel to the line segment obtained by joining the mid-points of any two sides of the triangle and is half in length of its third side.

Watch Video Solution

70. Two parallel straight lines intersect three concurrent straight lines at the points A, B, C

and X,Y,Z respectively. Prove that

AB:BC=XY:YZ.

71. Kamala have drawn a trapezium PQRS of which $PQ \mid SR$. If the diagonals PR and QS intersect each other at O, then prove that OP:OR=OQ:OS, If SR=2PQ, then prove that O is a point of trisection of both the diagonals.

72. PQRS is a parallelogram. If a straight line EF through S intersects PQ and extended RQ at the points X and Y respectively, then prove that $PS\colon PX=QY\colon QX=RY\colon RS$

Watch Video Solution

73. ΔABC and ΔPQR are two similar acute triangles. Their circumcentres are X and Y respectively. If BC and QR be two

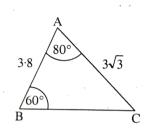
corresponding sides, then prove that

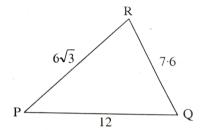
BX:QY=BC:QR.

Watch Video Solution

74. The two chords PQ and RS of a circle intersects each other at the point X within the circle. By joining P, S and R, Q prove that ΔPXS and ΔRSQ are similar. From this also prove that PX: XQ = RX: XS.

75. If two chords of a circle intersect internally, then the rectangle of two parts of one is equal to the rectangle of two parts of other.


Watch Video Solution


76. The two points P and Q are on a straight line, At the points P and Q, PR and QS are perpendicular on the straight line. PS and QR intersect each other at the point O. OT is perpendicular on PQ. Prove that $\frac{1}{OT} = \frac{1}{PR} + \frac{1}{OS}.$

77. ΔABC is inscribed in a circle, AD is a diameter of the circle and AE is perpendicular on the side BC, which intersects the side BC at the point E. Prove that ΔAEB and ΔACD are similar. From this also prove that $AB \times AC = AE \times AD$.

1. In the following figure , $\angle P =$

A. 30°

B. 40°

C. 50°

D. 60°

Answer:

2. A girl of height 90cm is walking away from the foot of a lamp-post at a speed of $1.2m/{\rm sec}$. If the lamp is at a height of 3.6m from the ground, then the length of the shadow of the girl after 4 sec is

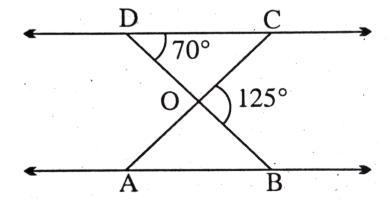
A. 4.8m

B. 2.4m

C. 1.6m

D.0.8m

Answer:



Watch Video Solution

3. In the figure beside , $\Delta ODC \sim \Delta OBA$,

$$\angle BOC = 125^{\circ}$$
 and $\angle CDO = 70^{\circ}$ then

$$\angle DOC =$$

A. 55°

B. 60°

C. 65°

D. 70°

Answer:

Watch Video Solution

4. In ΔPQR the straight line parallel to QR intersects the sides PQ and PR at the points E and F respectively. If EQ=2PE and FR=PF+3, then the length of PR is

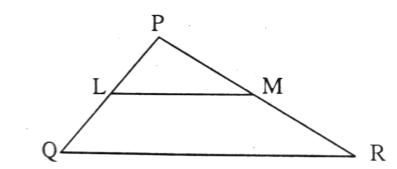
A. 1 unit

B. 3 units

C. 6 units

D. 9 units

Answer:



Watch Video Solution

5. In the ΔPQR , a straight line parallel to QRintersects the sides PQ and PR at the points

L and M. If PL=n. PL and

LQ = (p+1)LQ, then n-p=

- **A.** 0
- B. 1
- **C**. 2
- D. 3

Answer:

6. In ΔPQR , PQ=24cm, PR=32cm and PS is the bisector of $\angle QPR$, where QS=8cm. Then the length of SR=

A. 12cm

B. 14cm

 $\mathsf{C.}\ 16cm$

D. 18*cm*

Answer:

7. In ΔABC , $\frac{AB}{AC}=\frac{BD}{DC}.$ If $\angle B=70^{\circ}$ and

$$\angle C = 50^{\circ}$$
 , then $\angle BAD =$

A. 30°

B. 45°

C. 60°

D. 90°

Answer:

8. In ΔABC , D and E are two such points on the sides AB and AC respectively that $DE \mid \; \mid BC$. If AD = x + 3, BD = 3x + 19,

AE=x and CE=3x+4, then the value of

x =

A. 2

B. 3

C. 4

D. 5

Answer:

Watch Video Solution

9. In ΔABC the straight line DE parallel to BC intersects the other two sides at the points D and E respectively. If AB=4.2cm,

AC=3.6cm and AD=6.3cm and

AD=6.3cm, then AE=

A. 5.04cm

B. 5.41cm

 $\mathsf{C.}\,5.44cm$

D.5.4cm

Answer:

Watch Video Solution

10. In $\triangle ABC$, a straight line parallel to BC intersects the sides AB and AC at the points L and M. If the length of AM be thrice of the length of AL, then $BL\colon CM=$

- A. 1:2
- B. 1:3
- C.2:3
- D. 3:1

Answer:

Watch Video Solution

11. The straight line parallel to the side BC of

 ΔABC intersects the sides AB and AC at

the points D and E respectively. Then

$$\frac{AB}{BD} = \frac{AC}{CE}$$

Watch Video Solution

12. If a straight line divides any two sides (or their extended sides) of a triangle in any ratio, it will be parallel to third side.

13. If two or more than two triangles be equiangular and the ratios of their corresponding sides be equal, then the triangles are called _____ triangles.

Watch Video Solution

14. If the shapes and sizes of two or more than two triangles be the same, then they are called triangles.

15. A straight line parallel to any side of any triangle divides other two sides (or the extended two sides) .

Watch Video Solution

16. PQRS is a trapezium of which $PS \mid \ \mid \ QR$

. Its two diagonals PR and QS intersects each

other at the point O. If PO=3, RO=x-3, SO=x-2 and OQ=3x-13, then find the value of 'x'

17. In ΔABC a straight line parallel to BC intersects the sides AB and AC at the points P and Q respectively. If AP=QC, $AB=12cm,\ AQ=2cm$, then find the value of CQ.

Watch Video Solution

18. The line segments AB and PQ intersect each other at the point C. AP and BQ are

perpendiculars on AB respectively. If $CA=20cm,\ CB=8cm$ and AP=10cm,then find the value of BQ.

Watch Video Solution

19. In ΔPQR , $\angle QPR=90^{\circ}$ and $PD\perp QR$. If PR=8cm and PQ=6cm, then find the value of DQ.

20. In trapezium PQRS, $PQ \mid \mid SR$. If PQ = 6cm, SR = 9cm and QS = 15cm and the point of intersection of the diagonals be C, then find the length of CQ.

Watch Video Solution

21. In trapezium PQRS, $PQ \mid \mid SR$. If PQ = 4 units , SR = 6units . If the diagonals of the trapezium intersect each other at the points C, then find the ratio CQ: CS.

Watch Video Solution

22. In ΔPQR , A and B are two such points on

PQ and PR respectively that $AB \mid \; \mid \; QR.$ If

PA = 1.7cm,

PQ=6.8cm and PR=9cm, then find the value of PB.

23. In the right-angled triangle ABC,

 $\angle B = 90^{\circ}$ and the points D and E are on the

sides AC and BC such that $DE \mid AB$. If AB = 9cm, DE = 3cm and AC = 24cm, then find the value of AD.

Watch Video Solution

24. PS is perpendicular on the hypotenuse QRof the right-angled triangle PQR. If QR=16cm and QS=9cm, then find the length of PQ.

25. In ΔPQR , D and E are two such points on the sides PQ and PR that $DE \mid \mid QR$. If $\frac{PD}{QD} = \frac{4}{13}$ and PR = 20.4cm, then find the length of PE.

26. In $\triangle ABC$, the bisector of $\angle ABC$ intersects AC at the point P. Prove that $CB\colon BA=CP\colon PA$.

27. In trapezium ABCD, AB and DC are parallel. A straight line parallel to AB intersects AD and BC at the points E and F respectively. Prove that DE: EA = CF: FB.

Watch Video Solution

28. D is any point on the side BC of the ΔABC . P and Q are the centroids of ΔABD and ΔACD . Prove that $PQ \mid \; \mid BC$.

29. Prove that the line segment obtianed by joining the midpoints of two transversed sides of a trapezium is parallel to the parallel sides of the trapezium.

Watch Video Solution

30. In $\triangle ABC$, the bisector AD of $\angle BAC$ intersects BC at D. Prove that the ΔABC is an isoceles triangle.

31. Write the following sentences true or false: Square and rhombuses are always identical.

Watch Video Solution

32. AB=6.4cm. It is divided internally and externally at the points P and Q respectively in the ratio 5:3 . Prove that $\frac{2}{AB}=\frac{1}{AP}+\frac{1}{AQ}.$

Exercise 5 2

1. In ΔPQR and ΔDEF ,

$$rac{PQ}{DE} = rac{QR}{EF} = rac{RP}{FD}.$$
 Then which one of the

following is correct?

A.
$$\angle P = \angle E$$

B.
$$\angle P = \angle D$$

$$\mathsf{C}. \angle Q = \angle F$$

$$D. \angle P = \angle R$$

Watch Video Solution

2. In $\triangle ABC$ and $\triangle DEF$ if $\angle B=\angle E$ and $\angle C=\angle F$, then which of the following in not correct?

A.
$$\frac{AB}{DE} = \frac{AC}{DF}$$

$$\mathrm{B.}\,\frac{BC}{EF}=\frac{AC}{DF}$$

$$\text{C.} \frac{AB}{EF} = \frac{AC}{DF}$$

D.
$$\frac{AC}{DF}=\frac{BC}{EF}$$

Watch Video Solution

3. In ΔPQR and ΔDEF , $\angle Q=\angle E=42^\circ$, $\frac{PQ}{DE}=\frac{QR}{EF}$ and if $\angle F=60^\circ$, then the value

of $\angle P$ is

A. 78°

B. 48°

C. 68°

D. 90°

Watch Video Solution

4. In the right-angled triangles ΔPQR and

$$\Delta DEF$$
, $\angle Q=\angle E=$ right angle. If

$$PQ=ig(\sqrt{2}+1ig)cm. \qquad QR=ig(\sqrt{2}-1ig)cm$$
,

$$DE = ig(2\sqrt{2}+1ig)cm$$
 and

$$EF = ig(2\sqrt{2}-1ig)cm$$
, then ΔPQR and

 ΔDEF are

A. congruent

B. similar

C. of equal areas

D. not similar

Answer:

Watch Video Solution

5. ΔABC and ΔBDE are two equilateral triangles. If D is the mid-point of BC, then the ratio of the areas of ΔABC and ΔBDE is

- A. 2:1
- B. 1:2
- C. 1: 4
- D.4:1

Watch Video Solution

6. If the ratio of the sides of two similar triangles be 4:9, then ratio of areas will be

A. 16:81

B. 2:3

C.4:9

D. 81:16

Answer:

Watch Video Solution

7. $\Delta PQR \sim \Delta DEF$ and their areas are 49 sqcm and 121 sq-cm respectively. If DE=44cm, then the value of PQ is

B.30cm

 $\mathsf{C}.\,32cm$

D.28cm

Answer:

Watch Video Solution

8. Write the following sentences true or false:

Any two identical image are congruent.

Watch Video Solution

9. C and B are two points on the straight line XY, P is an external point of XY. If XC=6cm, YB=9cm and area of $\Delta PXC=6.6$ sq-cm, then the area of ΔPYB is

A. 8.8 sq-cm

B. 9.9 sq-cm

C. 10.10 sq-cm

D. 11.11 sq-cm

Watch Video Solution

10. In ΔPQR , a straight line parallel to QR intersects PQ and PR at the points D and E respectively. If PD=2.4cm, PE=3.2cm and ER=4.8cm, then the length of PQ is

A. 6.6cm

B. 6.4cm

 $\mathsf{C}.\,6.2cm$

D.6.0cm

Answer:

Watch Video Solution

11. Fill the blank :All _____(equilateral/isosceles) triangle are always identical.

12. state true or false; Two equiangular triangles are always congruent.

Watch Video Solution

13. state true or false; If the two sides of two triangles are in proportion, then they are similar.

14. If the areas of two similar triangles be equal, they are _____.

Watch Video Solution

15. The ratio of the areas of two similar triangels is equal to the _____of their corresponding sides.

16. Prove that the perimeters of two similar triangles are proportional to any two corresponding sides of them.

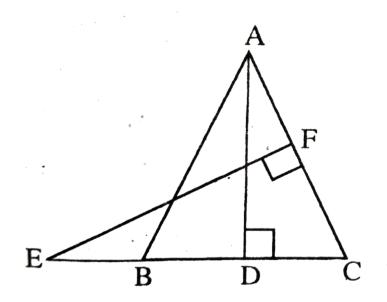
Watch Video Solution

17. AD is a perpendiuclar drawn from the vertex A of the right-angled triangle ABC on its side BC. If AB:AC=5:4, then find the value of the ratio BD:DC.

18. Fill the blank :All circles are_____(uniform/identical)

19. Fill the blank :All square are (uniform/identical)

20. Write the following sentences true or false: Any two identical figure are similar.



Watch Video Solution

21. The diagonals of the quadrilateral ABCD intersect each other at O in such a way that $\frac{AO}{BO} = \frac{CO}{DO}.$ Prove that ABCD is a trapezium.

22. In the figure beside is a point on the extended part of $CB.\Delta ABC$ is an isosceles triangle of which AB=AC. If $AD\perp BC$ and $EF\perp AC$, then prove that $\Delta ABD\sim\Delta ECF$.

23. D is a point on the side BC of ΔABC . If

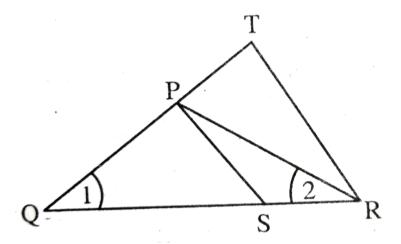
$$\angle ADC = \angle BAC$$
, then prove that

$$CA^2 = CB \times CD.$$

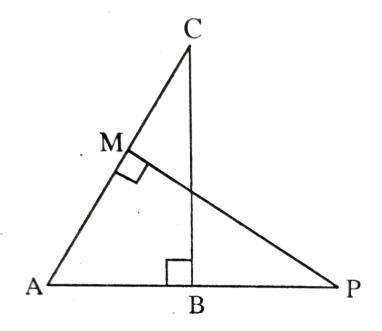
Watch Video Solution

24. If AD and PM be two medians of ΔABC

and ΔPQR respectively, where


 ΔABC - ΔPQR , then prove that

$$\frac{AB}{PQ} = \frac{AD}{PM}.$$


25. In the figure beside , $\frac{QR}{QS} = \frac{QT}{PR}$ and

 $\angle 1=\angle 2.$ Prove that ΔPQS - ΔTQR .

26. In the adjoining figure , $\angle B$ and $\angle M$ of the right angled triangles ΔABC and ΔAMP are right angles. Prove that (a) $\Delta ABC \sim \Delta AMP$, (b) $\frac{CA}{PA} = \frac{BC}{MP}$.

27. CD and GH are the bisectors of $\angle ACB$ and $\angle EGF$ respectively. If D lies on AB of ΔABC and H lies on EF of ΔEFG and if $\Delta ABC \sim \Delta EFG$, then prove that (a) $\frac{CD}{GH} = \frac{AC}{FG}, \qquad (b)\Delta DCB \sim \Delta HGE, \\ (c)\Delta DCA \sim \Delta HGF$

