

MATHS

BOOKS - CALCUTTA BOOK HOUSE MATHS (BENGALI ENGLISH)

THEOREMS ON CONCURRENCE

Examples Select The Correct Answer Mcq

1. (i) The circumcentre of the triangle ABC is O, If $\angle BOC = 80^{\circ}, ext{ then } ar{BAC} =$

A. $40^{\,\circ}$

B. 160°

C. 130°

D. 110°

Answer:

2. (ii) Orthocentre of the triangle ABC is O, If

 $igtriangle BAC = 40^\circ$, then igtriangle BOC =

A. 80°

B. 140°

C. 110°

D. 40°

Answer:

3. (iii) Incentre of the triangle ABC is O, If $\angle BAC = 40^{\circ}$, then $\angle BOC =$

A. 80°

B. 110°

C. 140°

D. $40^{\,\circ}$

Answer:

4. (iv) The centroid of the ΔABC is G, If the area of the ΔGBC be 12 Sq. cm, the area of the ΔABC is

A. 24 Sq. cm

B. 6 Sq. cm

C. 36 Sq. cm

D. None of these

Answer:

5. (v) If the circum-radius of the right-angled triangle ABC be 5 cm, then the length of its hypotenuse will be-

A. 2.5 cm

B. 10 cm

C. 5 cm

D. None of these

Answer:

Watch Video Solution

Examples Short Answer Type Questions

1. (i) The sides of a triangle are 6 cm, 8 cm and 10 cm, find the position of the circum-centre of the triangle.

2. (ii) AD is median of the equilateral ΔABC and G is its centroid. The side of the triangle is $3\sqrt{3}$ cm, then find the length of AG.

3. Which of the following pairs of linear equations has unique solution, no solution or infinitely many solutions. In case there is unique solution, find it by using cross-multiplication method x-3y-3 = 0, 3x-9y-2 = 0

Watch Video Solution

4. (iv) In the isosceles triangle ABC, $\angle ABC = \angle ACB$ and median $AD = \frac{1}{2}BC$. If AB= $\sqrt{2}$ cm, then find the length of the circumradius of the $\triangle ABC$.

Examples Long Answer Type Questions

1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

> Watch Video Solution

2. Two medians BE and CF of ΔABC intersect at

G. Prove that area of the quadrilateral

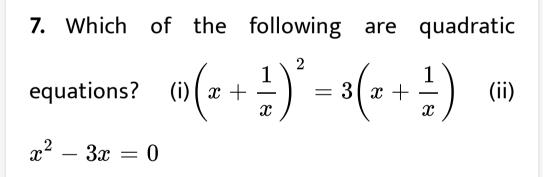
$$AFGE = rac{1}{3}\Delta ABC.$$

3. Which of the following pairs of linear equations has unique solution, no solution or infinitely many solutions

 $3x - 5y = 20, \, 6x - 10y = 40$

4. The bisector of the interior angles $\angle B$ and $\angle C$ of the ΔABC , meet at H. Prove that $\angle BHC = 90^\circ + \frac{1}{2} \angle BAC$.

Watch Video Solution


5. Prove that if the three medians of a triangle

be equal, then it is an equilateral triangle.

6. Which term of the AP: 121, 117,113,, is its first

negative term?

8. Find the sum of the following APs: 2, 7, 12,.....

to 10 terms.

9. Find the sum of given below: 34 + 32 + 30 + ...

+ 10

Exercise Select The Correct Answer Mcq

1. (i) G is the centroid of the equilateral ABC. If

AB = 10 cm, then the length of AG is

A.
$$5\sqrt{3}$$
 cm
B. $\frac{5}{\sqrt{3}}$ cm
C. $10\sqrt{3}$ cm
D. $\frac{10\sqrt{3}}{3}$ cm

Answer: D

2. (ii) AD is median of the ΔABC and the centroid of ΔABC is O. If AO=10 cm, then the length of OD is

A. 2.4 cm

B. 5 cm

C. 7.5 cm

D. 20 cm

Answer: B

3. (iii) O is the incentre of the ΔABC and $\angle BOC = 116^{\circ}$. Then $\angle BAC =$

A. 52°

B. 55°

C. 60°

D. 75°

Answer: A

4. (iv) AD is a median of the ΔABC and G is its

centroid. Then AD: AG =

A. 2:3

B. 3:4

C.3:2

D. 3:5

Answer: C

5. (v) The point of intersection of the bisectors

of the angles of any triangle is called-

A. circum-centre

B. incentre

C. centroid

D. orthocentre

Answer: B

6. (vi) The point of intersection of the three medians of any triangle is called-

A. circum-centre

B. incentre

C. centroid

D. orthocentre

Answer: C

7. (vii) Circum-radius of any right-angled triangle

is

A. half of its hypotenuse

B. one-third of its hypotenuse

C. two-third of its hypotenuse

D. twice of its hypotenuse

Answer: A

8. (viii) The length of the side of a triangle are 8 cm, 15 cm and 17 cm. Then length of its circum-radius is

A. 4 cm

B. 7.5 cm

C. 8.5 cm

D. 20 cm

Answer: C

9. (ix) Circum-centre, incentre, centroid and orthocentre will be the same of

A. an isosceles triangle

B. an equilateral triangle

C. a right-angled triangle

D. a right-angled isosceles triangle

Answer: B

10. (x) I is the incentre of the $\Delta ABC, ota BAC = 44^\circ, ext{ then } ota BIC =$

A. 134°

B. $110^{\,\circ}$

C. 112°

D. 68°

Answer: C

11. (xi) O is the orthocentre of the ΔABC If

 $igtriangle BAC = 55^\circ$, then igtriangle BOC =

A. $125^{\,\circ}$

B. 135°

C. 145°

D. None of these

Answer: A

1. (i) The length of the circum-radius of the rightangled ΔABC is 4 cm. Find its length of hypotenuse.

Watch Video Solution

2. (ii) How many points of triangle are equidistant from its sides and what it its name?

3. (iii) In the right-angled triangle ABC, $\angle ABC = 90^{\circ}$ and AB = 5cm and BC = 12cm, then find its length of circum-radius.

4. (iv) In $\Delta ABC, \angle ABC = 90^{\circ}$ and if AB = 6cm and BC = 8cm, then find circumradius of ΔABC .

5. (v) ΔABC is equilateral and AD is a median of it. If G be the centroid of ΔABC and GD = 10cm. find the length of GB.

Watch Video Solution

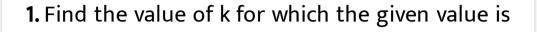
6. (vi) ΔABC is an equilateral triangle of sides 6

cm. If G be its centroid, find the length of AG.

7. Find the sum of the following A.P.
1,3,5,7,......,199
Watch Video Solution

8. (viii) O is the orthocentre of ΔABC . If

 $\angle BOC = 4 \angle BAC$, then find


 $\angle BOC$ and $\angle BAC$.

9. (ix) AD, BE and CF are the three medians of ΔABC and intersect at G. The area of the ΔABC is 36 Sq. cm. Find (a) the area of ΔAGB and (b) the area of the guadrilateral BDGF.

Watch Video Solution

10. (x) DEF is the pedal triangle of the equilateral

 ΔABC . Find $\angle BED$.

a solution of the given equation $7x^2+kx-3=0$ at $x=rac{2}{3}$

Watch Video Solution

2. Determine the nature of the roots of following quadratic equations : (i) $2x^2 - 3x + 5 = 0$ (ii) $2x^2 - 6x + 3 = 0$

3. Some students planned a picnic. The budget for food was Rs. 480. But eight of these failed to go and thus the cost of food for each member increased by Rs. 10. How many students attended the picnic ?

Watch Video Solution

4. Find the value of k for which the given value is

a solution of the given equation $x^2+3ax+k=0$ at x=-a

5. A piece of cloth costs Rs. 35. If the piece were 4 m longer and each metre costs Re. one less, the cost would remain unchanged. How long is the piece ?

6. Two medians BE and CF of ΔABC intersect at

G. Prove that area of the quadrilateral $AFGE=rac{1}{3}\Delta ABC.$

8. Find the values of k for which the roots are real and equal in the following equations : $5x^2 - 4x + 2 + k(4x^2 - 2x - 1) = 0$

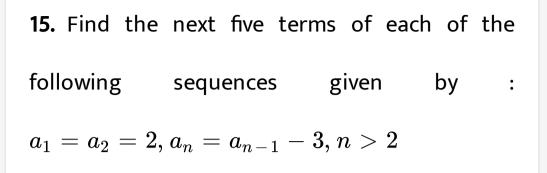
9. I is the incentre of the ΔABC . The perpendicular drawn from I to BC intersects BC at. P. Prove that AB - AC = BP - CP.

10. Find the values of k for which the roots are real and equal in the following equations : $kx^2 + 4x + 1 = 0$

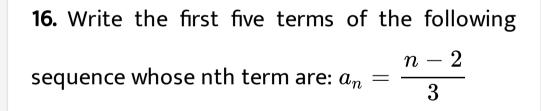
Watch Video Solution

11. E is the mid-point of AD, a median of the ΔABC . The extended BE intersects AC at F. prove that $AF=\frac{1}{3}AC$.

Watch Video Solution


12. Write the first five terms of the following sequence whose nth term are: $a_n=3n+2$

13. In $\triangle ABC, \angle B \leq \angle C$. If the interior bisector of $\angle BAC$ be AP and $AQ \perp BC$. then prove that $\angle PAQ = \frac{1}{2}(\angle B - \angle C)$


Watch Video Solution

14. P is a point on the median AD of the ΔABC .

Prove that area of ΔAPB = area of ΔAPC .

Watch Video Solution

17. A bag contains 3 red balls, 5 black balls and 4 white balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is white?