©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(ENGLISH)

STRUCTURE OF ATOM

Solved Example

1. calculate the number of protons, neutrons and electrons in.$_{35}^{85} \mathrm{Br}$
2. The number of electrons,protons, neutron in a species are 18,16 and 16 respectively. Assigns proper symbols

- Watch Video Solution

3. the vividh bharati station of All india Radio,

Delhi , broadcasts on a frequency of $1,368 \mathrm{kHz}$
(kilo hertz). Calculate the wavelength of the electromagnetic radiation emitted by
transmitter . Which part of the electromagnetic spectrum does it belong to

D Watch Video Solution

4. the wavelegth range of the visible spectrum extends from violet (400 nm) to red (750 nm).

Express these wavelengths in frequencies (Hz)
. $\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$

- Watch Video Solution

5. Calculate (a) Wavenumber and (b) frequency

 of yellow radiation having wavelength $5800 A^{\circ}$
- Watch Video Solution

6. calculate energy of one mole of photons of radiation whose frequency is $5 \times 10^{14} \mathrm{hz}$

- Watch Video Solution

7. A 100 watt bulb emits monochromatic light of wavelength 400 nm . Calculate the number of photons emitted per second by the bulb.

- Watch Video Solution

8. When electromagnetic radiaiton of
wavelength 300 nm falls on the surface of
sodium electrons are emitted with a kinetic enegry of $1.68 \times 10^{5} \mathrm{Jmol}^{-}$. What is the minimum enegry needed to remove an
electorn from sodium?

Strategy: The minimum enegry required to remove an electron from target metal is called work function W_{0} of the metal. It can be calculated from Eq., provided we know the energy of the incident photon and kinetic enegry of a single photoelectorn.

- Watch Video Solution

9. the threashold frequency v_{0} for a metal is
$7 \times 10^{14} s^{-1}$. Calculate the kinetic energy of
an electron emitted when radiation of fequency $v=1.0 \times 10^{15} s^{-1}$ hits the metal .

D Watch Video Solution

10. what are the frequency and wavelength of
a photon emitted during a transition from $\mathrm{n}=$

5 state to the $\mathrm{n}=2$ state in the hydrogen atom?
11. Calculate the energy associated with the first orbit of He^{+}. What is the radius of this orbit?

Hint $: E_{n}=-2.18 \times 10^{-18}\left(\frac{Z^{2}}{n^{2}}\right) J /$ atom $H e^{+}(Z=2)$
$r_{n}=\frac{52.9\left(n^{2}\right)}{Z} \mathrm{pm}$

- Watch Video Solution

12. what will be the wavelength of a ball of mass 0.1 kg moving with a velocity of $10 \mathrm{~ms}^{-1}$

- Watch Video Solution

13. The mass fo an electron is $9.1 \times 10^{-31} \mathrm{~kg}$.

If its K.E. is $3.0 \times 10^{25} \mathrm{~J}$. Calculate its wavelength .

- Watch Video Solution

14. calculate the mass of a photon with
wavelength 3.6 A

- Watch Video Solution

15. A microscope using suitable photons is employed to an electron in an atom within a distance of $0.1 \AA$. What is the uncertainty involved in the measurment of its velocity?

Mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$ and $h=6.626 \times 10^{-34} \mathrm{Js}$
16. A golf ball has a mass of $40 g$ and a speed of $45 \mathrm{~m} / \mathrm{s}$. If the speed can be measured within accuracy of 2%, calculate the uncertainty in the position.

D Watch Video Solution

17. what is the total number of orbitals
associated with the principal quartum number $n=3$?
18. using s, p, d notations describe the orbtal with the following quantum numbers .
(a) $n=2 I=1$, (b) $n=4, I=0$, (c) $n=5, I=3$, (d) $n=$
$3, I=2$

D Watch Video Solution

Exercise

1. (i) Calculate the number of electrons which
will together weigh one gram .
(ii) Calculate the mass and charge on one mole of electrons .

- Watch Video Solution

2. (i) Calculate the total number of electrons present in 1 mole of methane .
(ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of.${ }^{14} C$. (Assume
that mass of a neutron $=1.675 \times 10^{-27} g$)
(iii) Find (a) the total number of protons and
(b) the total mass of protons in 32 mg of NH_{3}
at $\quad S T P . \quad$ mass of proton

$$
\left.=1.672 \times 10^{-27} g\right)
$$

Will the answer change if the temperature and pressure are changed ?

D Watch Video Solution

3. how many neutrons and protons are there in the following nuclei?
$\cdot{ }_{6}^{13} \mathrm{C},{ }_{8}^{16} \mathrm{O},{ }_{12}^{24} \mathrm{Mg},{ }_{26}^{56} \mathrm{Fe},{ }_{38}^{88} \mathrm{Sr}$

D Watch Video Solution

4. Write the complete symbol for the atom with the given atomic number (Z) and atomic mass (A).
a. $Z=17, A=35$,
b. $Z=92, A=233$,
c. $Z=4, A=9$

- Watch Video Solution

5. Yellow light emitted from a sodium lamp has
a wavelength (λ) of 580 nm . Calculate the
frequency (ν). Wave number and energy of yellow light photon.

D Watch Video Solution

6. Find energy of each of the photons which
a. correspond to light of frequency
$3 \times 10^{15} \mathrm{~Hz}$.
b. have wavelength of $0.50 \AA$.

D Watch Video Solution
7. Calculate the wavelength, frequency, and wave number of a light wave whose period is $2.0 \times 10^{-10} s$.

- Watch Video Solution

8. what is the number of photons of light with
a wavelength of 4000 pm that provide 1 J of energy ?
9. A photon of wavelength $4 \times 10^{-7} \mathrm{~m}$ strikes on metal surface, the work function of the metal being 2. 13 eV Calculate :
(i) the energy of the photon (ev)
(ii) the kinetic energy fo the emission and
the velocity of the photoelectron
$\left(1 e V=1,6020 \times 10^{-19} J\right)$,

- Watch Video Solution

10. Electromagnetic radiation of wavelength

242 nm is just sufficient to ionise a sodium
atom. Calculate the energy corresponding to
this wavelength and the ionisation potential of Na .

D Watch Video Solution

11. A 25 watt bulb emits monochromatic yellow
light of wavelength of $0.57 \mu \mathrm{~m}$. Calculate the rate of emission of quanta per second.

D Watch Video Solution

12. Electrons are emitted with zero velocity
from a metal surface when it is exposed to radiation of wavelength $6800 \AA$. Calculate threshold frequency $\left(v_{0}\right)$ and work function $\left(W_{0}\right)$ of the metal.

D Watch Video Solution

13. what is the wavelength of light emitted when the electron in a hydrogen atom
undergoes transition from an energy level with $n=4$ to and energy level with $n=2$?

D Watch Video Solution

14. How much energy is required to ionise a H atom if the electron occupies $n=5$ orbit ?

Compare your answer with the ionization energy of H -atom (energy required to remove the electron from $n t h$ orbit).
15. What is the maximum number of emission
lines when the excited electron of a H atom in
$n=6$ drop to the ground state?

D Watch Video Solution

16. a. The energy associated with the first orbit in the hydrogen atom is
$-2.18 \times 10^{-18} \mathrm{Jatom}^{-1}$. What is the energy associated with the fifth orbit?
b. Calculate the radius of Bohr's fifth orbit for hydrogen atom.

- Watch Video Solution

17. Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen. $\left(R_{H}=109677 \mathrm{~cm}^{-1}\right)$.

- Watch Video Solution

18. What is the energy in joules required to shift the electron of the hydrogen atom from
the first Bohr orbit to the fifth Bohr orbit?

And what is the wavelength of the light emitted when the electron returns to the ground state ? The ground state electron energy is -218×10^{-11} erg.

- Watch Video Solution

19. What is the energy in joules required to
shift the electron of the hydrogen atom from
the first Bohr orbit to the fifth Bohr orbit ?

And what is the wavelength of the light emitted when the electron returns to the
ground state ? The ground state electron energy is $-218 \times 10^{-11} \mathrm{erg}$.

D Watch Video Solution

20. Calculate the wavelength of an electron moving with a velocity of $2.05 \times 10^{7} \mathrm{~ms}^{-1}$.

- Watch Video Solution

21. The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$.

If its K.E. is $3.0 \times 10^{25} \mathrm{~J}$. Calculate its
wavelength .

- Watch Video Solution

22. Which of the following are isoelectronic
species, i.e., those having the same number of electrons:

$$
N a^{\oplus}, K^{\oplus}, M g^{2+}, C a^{2+}, S^{2-}, A r
$$

D Watch Video Solution

23. i. Write the electronic configurations of the following ions:
a. H^{Θ}, b. $N a^{\oplus}$, c. O^{2-}, d. F^{Θ}
ii. What are the atomic numbers of elements
whose outermost electrons are represented by
a. $3 s^{1}$, b. $2 p^{3}$, c. $3 p^{5}$?
iii. Which atoms are indicated by the following configurations?
a. $[H e] 2 s^{1}$, b. $[N e] 3 s^{2} 3 p^{3}$, c. $[A r] 4 s^{2} 3 d^{1}$
24. What is the lowest value of n that allows g orbitals to exist?

D Watch Video Solution

25. An electron is in one of the $3 d$ orbitals.

Give the possible values of n, l, and m for this electron.

D Watch Video Solution
26. An atom of an element contains 29 electrons and 35 neutrons. Deduce
a. The number of protons and
b. The electronic configuration of the element.

D Watch Video Solution

27. Give the number of electrons in the species
$\mathrm{H}_{2}^{+}, \mathrm{H}_{2}$ and O_{2}^{\oplus}

D Watch Video Solution
28. a. An atomic orbital has $n=3$. What are the possible values of l and m ?
b. List the quantum numbers (m and l) of electrons for $3 d$ orbital.
c. Which of the following orbitals are possible"
$1 p, 2 s, 2 p$, and $3 f ?$

D Watch Video Solution

29. Using s, p, d notations, describe the orbital with the following quantum numbers.
a. $n=1, l=0$, b. $n=3, l=1$
c. $n=4, l=2$, d. $n=4, l=3$

D Watch Video Solution

30. Explain , giving reason, which of the following sets of quantum number are not possible
$a \quad n=0 \quad l=0 \quad m_{1}=0 \quad m_{s}=+1 / 2$
$b \quad n=1 \quad l=0 \quad m_{1}=0 \quad m_{s}=-1 / 2$
c $\quad n=1 \quad l=1 \quad m_{1}=0 \quad m_{s}=+1 / 2$
$d \quad n=2 \quad l=1 \quad m_{1}=0 \quad m_{s}=-1 / 2$
e $n=3 \quad l=3 \quad m_{1}=-3 \quad m_{s}=+1 / 2$
$f \quad n=3 \quad l=1 \quad m_{1}=0 \quad m_{s}=+1 / 2$
31. How many electron in an atom may have the following quantum number ?
a. $n=4, m_{s}=-\frac{1}{2}$
b. $n=3, l=0$

D Watch Video Solution

32. Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wavelength
associated with the electron revolving around the orbit.

D Watch Video Solution

33. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition $n=4$ to $n=2$ of He^{+} spectrum?
34. Calculate the energy required for the process ,
$H e^{+}(g) \rightarrow \mathrm{He}^{2+}(g)+e$
The ionization energy for the H -atom in the grounds state is $2.18 \times 10^{-18} \mathrm{Jatom}^{-1}$.

- Watch Video Solution

35. If the diameter of a carbon atom is 0.15 nm
, calculate the number of carbon atom which
can be placed side by side in a straight line length of scale of length 20 cm long.

D Watch Video Solution

36. 2×10^{8} atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is 2.4 cm .
37. The diameter of zinc atom is $2.6 A$.

Calculate (a) radius of zinc atom in pm and (b) number of atoms present in a length of 1.6 cm if the zinc atoms are arranged side by side lengthwise.

D Watch Video Solution

38. A certain particle carries $2.5 \times 10^{-16} C$ of static electric charge. Calculate the number of electrons present in it.
39. In Milikan's experiment, static electrons charge on the oil drops has been obtained by shining X-rays. If the static electric charge on the oil drop is $-1.282 \times 10^{-18} C$, calculate the number of electrons present on it.

D Watch Video Solution

40. In Rutherford's experiment, generally the thin foil of heavy atoms, such as gold,
platinum, etc. have been used to be bombarded by the α-particles. If the thin foil of light atoms such as aluminium etc. Is used, what difference would be observed form the above results?

D Watch Video Solution

41. Symbols ${ }_{35}^{79} \mathrm{Br}$ and ${ }^{79} \mathrm{Br}$ can be written whereas symbols $-(79)^{35} \mathrm{Br}$ and ${ }^{35} \mathrm{Br}$ are not acceptable. Answer briefly.
42. An element with mass number 81 contains
31.7% more neutrons as compared to protons.

Find the symbol of the atom.

D Watch Video Solution

43. An ion with mass number 37 possesses one unit of negative charge. If the ion contains
11.1 \% more neutrons than the electrons, find symbol of the ion.
44. An ion with mass number 56 contains 3 units of positive charge and 30.4% more neutrons then electrons. Assign the symbol to this ion.

D Watch Video Solution

45. Arrange the following type of radiations in
increasing order of frequency: (a) radiation
from microwave oven (b) amber light from
traffic signal (c). radiation from FM radio (d) cosmic rays from outer space and (e) X-rays

D Watch Video Solution

46. Nitrogen laser produces a radiation at a wavelength of 33.71 nm . If the number of photons emitted is 5.6×10^{24}. calculate the power of this laser.
47. Neon gas is generally used in the sign boards. If it emits strongly at 616 nm , calculate
a. The frequency of emission,
b. The distance traveled by this radiation in $30 s$
c. The energy of quantum and
d. The number of quanta present if it produces
$2 J$ of energy.

Watch Video Solution

48. In astronomical observations, signals
observed from the distant stars are generally
weak. If the photon detector receives a total of
$3.15 \times 10^{-18} \mathrm{~J}$ from the radiations of 600 nm,
calculate the number of photons received by the detector.

D Watch Video Solution

49. Lifetimes of the molecules in the excited
states are often measured by using pulsed
radiation source of duration nearly in the nano second range. If the radiation source has
the duration of 2 ns and the number of photons emitted during the pulse is 2.5×10^{15}, calculate the energy of the source.

D Watch Video Solution

50. The longest wavelength doublet absorption is observed at 589 and 589.6 nm .

Calculate the frequency of each transition and energy difference between two excited states.

Watch Video Solution

51. The work function for caesium atom is
1.9 eV . Calculate (a) the threshold wavelength
and (b) the threshold frequency of the radiation. If the caesium element is irradiated with a wavelength 500 nm , calculate the kinetic energy and the velocity of the ejected photoelectron.
52. Following results are observed when sodium metal is irradiated with different wavelengths. Calculate (a) threshold wavelength and (b) Planck's constant.
$\lambda(n m)$
$5000 \quad 450 \quad 400$
$v \times 10^{-5}\left(\mathrm{cms}^{-1}\right) \quad 2.55 \quad 4.35 \quad 5.35$

D View Text Solution

53. The ejection of the photoelectron from the silver metal in the photoelectric effect experiment can be stopped by applying the
voltage of 0.35 V when the radiation 256.7 nm
is used. Calculate the work function for silver metal.

D Watch Video Solution

54. If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of $1.5 \times 10^{7} \mathrm{~ms}^{-1}$, calculate the energy with which it is bound to the nucleus.
55. Emission transitions in the Paschen series end at orbit $n=3$ and start from orbit n and can be represented as
$v=3.29 \times 10^{15}(H z)\left[1 / 3^{2}-1 / n^{2}\right]$
Calculate the value of n if the transition is observed at 1285 nm . Find the region of the spectrum.

D Watch Video Solution

56. Calculate the wavelength for the emission
transition if it starts from the orbit having
radius 1.3225 nm ends at 211.6 pm . Name the series to which this transition belongs and the region of the spectrum.

- Watch Video Solution

57. Dual behaviour of matter proposed by de Broglie led to the discovery of electron microscope often used for the highly
magnified images of biological molecules and other type of material. If the velocity of the electron in this microscope is $1.6 \times 10^{6} \mathrm{~ms}^{-1}$. Calculate de Broglie wavelength associated with this electron.

D Watch Video Solution

58. Similar to electron diffraction, neutron diffraction microscope is also used for the determination of the structure of molecules. If the wavelength used here is 800 pm , calculate
the characteristic velocity associated with the neutron.

D Watch Video Solution

59. If the velocity of the electron in Bohr's first orbit is $2.19 \times 10^{6} \mathrm{~ms}^{-1}$, calculate the de Broglie wavelength associated with it.

D Watch Video Solution
60. If the position of the electron is measured within an accuracy of $\pm 0.002 \mathrm{~nm}$. Calculate the uncertainty in the momentum of the electron. Suppose the momentum of the electron is $h / 4 \pi_{m} \times 0.05 n m$, is there any problem in defining this value.

- Watch Video Solution

61. The quantum numbers of six electrons are given below. Arrange them in order of
increasing energies. If any of these combination(s) has/have the same energy
lists:
62. $n=4, l=2, m_{i}=-2, m_{s}=-1 / 2$
63. $n=3, l=2, m_{l}=1, m_{s}=+1 / 2$
64. $n=4, l=2, m_{l}=-2, m_{s}=-1 / 2$
65. $n=3, l=2, m_{i}=-1, m_{s}=+1 / 2$
66. $n=3, l=1, m_{l}=-1, m_{s}=+1 / 2$
67. $n=4, l=1, m_{l}=0, m_{s}=+1 / 2$
68. The bromine atom possesses $3 s$ electrons.

It contains six electrons in $2 p$ orbitals, six electrons in $3 p$ orbitals and five electrons in $4 p$ orbitals. Which of these electrons experience the lower effective nuclear charge?

- Watch Video Solution

63. Among the following pairs of orbital which orbital will experience the larger effective
nuclear charge?
a. $2 s$ and $3 s$, b. $4 d$ and $4 f$, c. $3 d$ and $3 p$

D Watch Video Solution

64. The unpaired electrons in $A l$ and $S i$ are present in $3 p$ orbital. Which electrons will experience more effective nuclear charge from the nucleus?
65. Indicate the number of unpaired electrons
in:
a. $P, b . S i, c . C r$,
d. $F e, e . K r$

- Watch Video Solution

66. a. How many sub-shell are associated with
$n=4 ?$
b. How many electron will be present in the
sub-shell having m_{s} value of $-1 / 2$ for $n=4$?
67. a. How many sub-shell are associated with
$n=4 ?$
b. How many electron will be present in the
sub-shell having m_{s} value of $-1 / 2$ for $n=4$?

- Watch Video Solution

