

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

AREA OF BOUNDED REGIONS

1. Mark the region represtented by $3x + 4y \leq 12$.

2. Sketch the curve
$$y = x^3$$
.

3. Sketch the curve $y = x^3 - 4x$.

4. Sketch the curve
$$y = (x - 1)(x - 2)(x - 3)$$
.

Watch Video Solution

5. Sketch the graph for $y = x^2 - x$.

Watch Video Solution

6. Sketch the curve $y = \sin 2x$.

Watch Video Solution

7. Sketch the curve $y = \sin^2 x$.

8. Construct the graph for
$$f(x) = rac{x^2-1}{x^2+1}.$$

Watch Video Solution

9. Construct the graph for
$$f(x) = x + rac{1}{x}$$
.

Watch Video Solution

10. Construct the graph for
$$f(x) = rac{1}{1+e^{1/x}}.$$

Watch Video Solution

11. Sketch the graph y=|x+1|. Evaluate $\int_{-4}^2 |x+1| dx$. What does the

value of the integral represents on the graph.

13. The area bounded by the hyperbola $x^2 - y^2 = a^2$ between the straight-lines x = a and x = 2a is given by

Watch Video Solution

14. The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^3 - y + 9 = 0$ is

Watch Video Solution

15. The area enclosed by y = x(x-1)(x-2) and x-axis, is given by

16. The area between the curve $y = 2x^4 - x^2$, the x-axis, and the ordinates of the two minima of the curve is

17. Sketch the curves and identify the region bounded by the curves $x = \frac{1}{2}, x = 2, y = \log x any = 2^x$. Find the area of this region.

Watch Video Solution

18. Find the area given by $x+y \leq 6$, $x^2+y^2 \leq 6y$ and $y^2 \leq 8x$

20. The area common to the region determined by $y \geq \sqrt{x}$ and $x^2 + y^2 < 2$ has the value

A. π sq units

B. $(2\pi-1)$ sq units

C.
$$\left(\frac{\pi}{4} - \frac{1}{6}\right)$$
sq units

D. None of these

Answer: C

Watch Video Solution

21. Find the area of the figure enclosed by the curve $5x^2 + 6xy + 2y^2 + 7x + 6y + 6 = 0.$

22. If $f(x) = \begin{cases} \sqrt{\{x\}} & x \notin Z \\ 1 & x \in Z \end{cases}$ and $g(x) = \{x\}^2$ then area bounded by

f(x) and g(x) for $x \in [0, 10]$ is

A.
$$\frac{5}{3}$$
 sq units

B. 5 sq units

C.
$$\frac{10}{3}$$
 sq units

D. None of these

Answer: C

Watch Video Solution

23. Find the area of the region bounded by the curves $y = x^2, y = |2 - x^2|, and yl = 2$, which lies to the right of the line x = 1.

24. The area enclosed by the curve $|y| = \sin 2x$, where $x \in [0, 2\pi]$. is

A.1 sq unit

B. 2 sq unit

C. 3 sq unit

D. 4 sq unit

Answer: D

Watch Video Solution

25. Let $f(x) = x^2$, $g(x) = \cos x$ and α , $\beta(\alpha < \beta)$ be the roots of the equation $18x^2 - 19\pi x + \pi^2 = 0$. Then the area bounded by the curves $u = \log(x)$, the ordinates $x = \alpha$, $x = \beta$ and the X-asis is

A.
$$\frac{1}{2}(\pi - 3)$$
 sq units
B. $\frac{\pi}{3}$ sq units
C. $\frac{\pi}{4}$ sq units

D. None of these

Answer: D

26. Find the area bounded by the curves $x^2 + y^2 = 25, 4y = \left|4 - x^2\right|,$

and x=0 above the x-axis.

Watch Video Solution

27. Find area enclosed by |x| + |y| = 1.

Watch Video Solution

28. Let $f(x) = \max\left\{\sin x, \cos x, \frac{1}{2}\right\}$, then determine the area of region

bounded by the curves y = f(x), X-axis, Y-axis and $x = 2\pi$.

29. If A denotes the area bounded by $f(x) = \left| rac{\sin x + \cos x}{x}
ight|$, X-axis, $x = \pi$ and $x = 3\pi$,then

A. 1 < A < 2

 ${\rm B.}\, 0 < A < 2$

 $\mathsf{C.}\, 2 < A < 2$

D. None of these

Answer: B

View Text Solution

30. If y = f(x) makes positive intercepts of 2 and 1 unit on x and ycoordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_0^2 x f'(x) \, dx$, is A. $\frac{3}{4}$ B. 1

C.
$$\frac{5}{4}$$

D. $-\frac{3}{4}$

Answer: D

Watch Video Solution

31. The area of the region included between the regions satisfying $\min \; (|x|, |y|) \geq 1$ and $x^2 + y^2 \leq 5$ is

A.
$$\frac{5}{2} \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(q)}{\sqrt{5}} \right) - 4$$

B. $10 \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(q)}{\sqrt{5}} \right) - 4$
C. $\frac{2}{5} \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(q)}{\sqrt{5}} \right) - 4$
D. $15 \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(q)}{\sqrt{5}} \right) - 4$

Answer: B

32. The area of the region bounded by the curves $y = \sqrt{rac{1+\sin x}{\cos x}}$ and

$$y = \sqrt{\frac{1 - \sin x}{\cos x}} \text{ bounded by the lines x=0 and } x = \frac{\pi}{4} \text{ is}$$
A. $\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$
B. $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$
C. $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$
D. $\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$

Answer: B

Watch Video Solution

33. Let T be the triangle with vertices (0, 0), $(0, c^2)$ and (c, c^2) and let R be the region between y = cx and $y = x^2$ where c > 0 then

A. Area
$$(R)=rac{c^3}{6}$$

B. Area of
$$R=rac{c^3}{3}$$

C. $c o 0^+rac{Area(T)}{Area(R)}=3$
D. $c o 0^+rac{Area(T)}{Area(R)}=rac{3}{2}$

Answer: A::C

Watch Video Solution

34. Suppose fis defined from R o [-1,1] as $f(x) = rac{x^2-1}{x^2+1}$ where R is

the set of real number .then the statement which does not hold is

A. f is many-one onto

B. f increases for x>0 and decreases for x<0

C. minimum value is not attained even though f is bounded

D. the area included by the curve y-f(x) and the line y=1 is π sq

units

Answer: A::C::D

35. Consider $f(x)= egin{cases} \cos x & 0\leq x<rac{\pi}{2} \ \left(rac{\pi}{2}-x
ight)^2 & rac{\pi}{2}\leq x<\pi \end{cases}$ such that f is periodic

with period π . Then which of the following is not true?

A. the range of f is
$$\left[0,\,rac{\pi^2}{4}
ight)$$

B. f is continuous for all real x, but not defferentiable for some real x

C. f is continuous fo all real x

D. the area bounded by y=f(x) and the X-axis for $x=n\pi$ to

$$x=n\pi$$
 is $2nigg(1+rac{\pi^2}{24}igg)$ for a given $n\in N$

Answer: A::D

36. Consider the functions f(x) and g(x), both defined from R o R and

are defined as $f(x)=2x-x^2 \, ext{ and } \, g(x)=x^n$ where $n\in N.$ If the area

between f(x) and g(x) is 1/2, then the value of n is

A. 12

B. 15

C. 20

D. 30

Answer: B::C::D

Watch Video Solution

37. The area of the region bounded by the curve $y=e^x$ and lines x=0 and

y=e is

A.
$$e-1$$

B. $\int_{1}^{e} In(e+1-y)dy$
C. $e-\int_{0}^{1}e^{x}dx$
D. $\int_{0}^{e} Inydy$

Answer: B::C::D

38.	Number	of	positive	integers	x	for	which		
$f(x)=x^3-8x^2+20x-13$ is a prime number is									
A. ⁻	1								
В.:	2								
C . 3	3								
D. 4	4								
Answe	r: C								
Watch Video Solution									

39. Consider the function
$$f(x) = x^3 - 8x^2 + 20x - 13$$

The function f(x) defined for R o R

A. is one-one onto

B. is many-one onto

C. has 3 real roots

D. is such that $f(x_1) \cdot f(x_2) < 0$ where x_1 and x_2 are the roots of

f'(x) = 0

Answer: B

Watch Video Solution

40. Consider the function $f(x) = x^3 - 8x^2 + 20x - 13$

Area enclosed by y = f(x) and the coordinate axes is

A. 65/12

B. 13/12

C. 71/12

D. None of these

Answer: A

41. Let h(x) - f(x) - g(x) where $f(x) = \sin^4 \pi x$ and g(x) = Inx. Let $x_0, x_1, x_2, \dots, x_{n-1}$ be the roots of f(x) = g(x) in increasing oder. Then the absolute area enclosed by y = f(x) and y = g(x) is given by

A.
$$\sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^r h(x) dx$$

B. $\sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^{r+1} h(x) dx$
C. $2 \sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^r h(x) dx$
D. $\frac{1}{2} \sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^{r+1} h(x) dx$

Answer: A

42. Let $h(x) = f(x) = f_x - g_x$, where $f_x = \sin^4 \pi x$ and g(x) = Inx. Let $x_0, x_1, x_2, ..., x_{n+1}$ be the roots of $f_x = g_x$ in increasing order. In the above question, the value of n is

Answer: B

View Text Solution

43. Let h(x) - f(x) - g(x) where $f(x) = \sin^4 \pi x$ and g(x) = Inx. Let $x_0, x_1, x_2, \dots, x_{n-1}$ be the roots of f(x) = g(x) in increasing oder. Then the absolute area enclosed by y = f(x) and y = g(x) is given by

A.
$$\frac{11}{8}$$

B. $\frac{8}{3}$
C. 2
D. $\frac{13}{3}$

Answer: A

Watch Video Solution

44. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$. If $f(-10\sqrt{2}) = 2\sqrt{2}$, then $f''(-10\sqrt{2})$ is equal to

A.
$$\frac{4\sqrt{2}}{7^3 3^2}$$

B. $-\frac{4\sqrt{2}}{7^3 3^2}$

C.
$$\frac{4\sqrt{2}}{7^3 3}$$

D. $-\frac{4\sqrt{2}}{7^3 3}$

Answer: B

Watch Video Solution

45. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

The area of the region bounded by the curve y = f(x), the X-axis and the line x = a and x = b, where $-\infty < a < b < -2$ is

$$\begin{array}{l} \mathsf{A}.\int_{a}^{b} \frac{x}{3\Big[\{f(x)\}^{2}-1\Big]} dx + by(b) - af(a) \\ \mathsf{B}.-\int_{a}^{b} \frac{x}{3\Big[\{f(x)\}^{2}-1\Big]} dx - by(b) + af(a) \end{array}$$

$$\mathsf{C}. \int_{a}^{b} rac{x}{3ig[\{f(x)\}^2-1ig]} dx - by(b) + af(a) \ \mathsf{D}. - \int_{a}^{b} rac{x}{3ig[\{f(x)\}^2-1ig]} dx + by(b) = af(a)$$

Answer: A

View Text Solution

46. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

If
$$fig(-10\sqrt{2}ig)=2\sqrt{2}$$
, then $fig(-10\sqrt{2}ig)$ is equal to

A. 2g(-1)

B. 0

C. - 2g(1)

D. 2g(1)

Answer: D

47. Find the total area bounded by the curve $y = \cos x - \cos^2 x$ and

$$y=x^2igg(x^2-rac{\pi^2}{4}igg)$$

Watch Video Solution

48. A curve y = f(x) passes through point P(1, 1). The normal to the curve at P is a (y-1) + (x-1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation the of is (a) curve $(b)(c)y = (d)e^{(\,e\,)\,(\,f\,)\,K(\,(\,g\,)\,(\,h\,)\,x\,-\,1\,(\,i\,)\,)\,(\,j\,)}(k)(l)$ (m) (b) $(n)(o)y = (p)e^{\,(\,q\,)\,(\,r\,)\,Ke\,(\,s\,)}\,(t)(u)$ (v) (c) $(d)(e)y = (f)e^{\,(\,g\,)\,(\,h\,)\,K(\,(\,i\,)\,(\,j\,)\,x\,-\,2\,(\,k\,)\,)\,(\,l\,)}\,(m)(n)$ (o) (d) None of these

Watch Video Solution

49. Sketch the region bounded by the curves $y = x^2 andy = rac{2}{1+x^2}$. Find the area.

51. Find the area of the region bounded by the curve $C: y = \tan x, \tan \ge ntdrawn \rightarrow C$ at $x = \frac{\pi}{4}$, and the x-axis.

52. Find all the possible values of b > 0, so that the area of the bounded region enclosed between the parabolas $y = x - bx^2 andy = \frac{x^2}{b}$ is maximum.

Watch Video Solution

53. Let C_1 and C_2 , be the graph of the functions $y = x^2$ and y = 2x, $0 \le x \le 1$ respectively. Let C_3 , be the graph of a function y - (fx), $0 \le x \le 1$, f(0) = 0. For a point Pand C_2 , let the lines through P, parallel to the axes, meet C_2 and C_3 , at Q and R respectively. If for every position of P (on C_1), the areas of the shaded regions OPQ and ORP are equal, determine the function f(x).

Watch Video Solution

54. The area of the region bounded by the curves $y = ex \log x$ and $y = \frac{\log x}{ex}$ is

55. Let A_n be the area bounded by the curve $y = (\tan x)^n$ and the lines

x=0, y=0, and $x=rac{\pi}{4}.$ Prove that for $n>2, A_n+A_{n-2}=rac{1}{n-1}$ and deduce `1/(2n+2)

Watch Video Solution

56. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1), and (1, -1). Set S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

Watch Video Solution

57. The area of the region included between the curves $x^2+y^2=a^2$ and $\sqrt{|x|}+\sqrt{|y|}=\sqrt{a}(a>0)$ is

58. Show that the area included between the parabolas
$$y^2 = 4a(x+a)$$
 and $y^2 = 4b(b-x)$ is $\frac{8}{3}\sqrt{ab}(a+b)$.

Watch Video Solution

59. Determine the area of the figure bounded by two branches of the curve $(y - x)^2 = x^3$ and the straight line x = 1.

Watch Video Solution

60. Prove that the areas S_0, S_1, S_2 ...bounded by the X-axis and half-waves

of the curve $y=e^{-ax}\sineta x,x\mid 0.$ from a geometric progression with

the common ratio $g = e^{-\pi \alpha / \beta}$.

61. Let $b \neq 0$ and for j = 0, 1, 2, ..., n. Let S_j be the area of the region bounded by Y_axis and the curve $x \cdot e^{ay} = \sin by$, $\frac{j\pi}{b} \leq y \leq \frac{(j+1)\pi}{b}$. Show that $S_0, S_1, S_2, ...S_n$ are in geometric progression. Also, find their sum for a=-1 and $b = \pi$.

Watch Video Solution

62. For any real $t, x = \frac{1}{2}(e^t + e^{-t}), y = \frac{1}{2}(e^t - e^{-t})$ is a point on the hyperbola $x^2 - y^2 = 1$ Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to $t_1and - t_1$ is t_1 .

Watch Video Solution

63. Find the area enclosed by circle $x^2 + y^2 = 4$, parabola $y = x^2 + x + 1$, the curve $y = \left[\frac{\sin^2 x}{4} + \frac{\cos x}{4}\right]$ and X-axis (where,[.] is

the greatest integer function.

64. Let
$$f(x)=Ma\xi\mu m\Big\{x^2,\left(1-x
ight)^2,2x(1-x)\Big\},$$
 where $0\leq x\leq 1.$

Determine the area of the region bounded by the curves $y=f(x), x-a\xi s, x=0,$ and x=1.

Watch Video Solution

65. Find the ratio in which the curve, $y=\left[-0.01x^4-0.02x^2
ight]$ [where, [.] denotes the greatest integer function) divides the ellipse ($3x^2+4y^2
ight)=12.$

View Text Solution

66. Let
$$f(x) = \begin{cases} -2 & -3 \le x \le 0 \\ x-2 & 0 < x \le 3 \end{cases}$$
, where $g(x) = \min \{f(|x|) + |f(x)|, f(|x|) - |f(x)|\}$. Find the area bounded by the curve $g(x)$ and the X-axis between the ordinates at $x = 3$ and $x = -3$.

67. Let ABC be a triangle with vertices $A \equiv (6, 2\sqrt{3} + 1)), B \equiv (4, 2)$ and $C \equiv (8, 2)$. Let R be the region consisting of all those points P inside ΔABC which satisfyd $(P, BC) \geq \max \{d(P, AB); d(P, AC)\}$, where d(P, L) denotes the distance of the point from the line L, then

Watch Video Solution

68. Let $O(0, 0), A(2, 0), and B\left(1\frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside OAB which satisfy $d(P, OA) \leq \min [d(p, OB), d(P, AB)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R

and find its area.

69. A curve y = f(x) passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the co-ordinate axes. If the curve divides the area formed by these lines and co-ordinates axes in the ratio m:n, find the curve.

O Watch Video Solution	
-------------------------------	--

70. Find the ratio of the areas in which the curve $y = \left[\frac{x^3}{100} + \frac{x}{35}\right]$ divides the circle $x^2 + Y^2 - 4x + 2y + 1 = 0$. (where, [.] denotes the greated integer function).

View Text Solution

71. Area bounded by the line y=x, curve $y = f(x), (f(x) > x, \forall x > 1)$ and the lines x=1,x=t is $\left(t - \sqrt{1 + t^2} - (1 + \sqrt{2})\right)$ for all t > 1. Find f(x). 72. The area bounded by the curve y=f(x), X-axis and ordinates x=1 and x=b is $(b-1){
m sin}(3b+4)$, find f(x).

73. Find the area of region enclosed by the curve
$$\frac{(x-y)^2}{a^2} + \frac{(x+y)^2}{b^2} = 2(a > b), \text{ the line y=x and the positive X-axis.}$$

View Text Solution

74. Let f(x) be a function which satisfy the equation f(xy) = f(x) + f(y)for all x > 0, y > 0 such that f'(1) = 2. Find the area of the region bounded by the curves $y = f(x), y = |x^3 - 6x^2 + 11x - 6|$ and x = 0.

View Text Solution

75. Find the area of the region which is inside the parabola satisfying the condition $|x-2y|+|x+2y|\leq 8$ and $xy\geq 2.$

Watch Video Solution

76. Consider the function $f(x) = \begin{cases} x - [x] - \frac{1}{2} & x \notin \\ 0 & x \in I \end{cases}$ where [.] denotes the fractional integral function and I is the set of integers. Then find $g(x) \max . [x^2, f(x), |x|\}, -2 \le x \le 2.$

Watch Video Solution

77. Find the area of the region bounded by y = f(x), y = |g(x)| and the lines x = 0, x = 2, where f,g are continuous function satisfying $f(x + y) = f(x) + f(y) - 8xy, \forall x, y \in R$ and $g(x + y) = g(x) + g(y) + 3xy(x + y), \forall x, y \in R$ also , f'(0) = 8 and g'(0) = -4. **78.** Find the area of the region bounded by the curves $y = x^2$ and $y = \sec^{-1} \left[-\sin^2 x \right]$, where [.] denotes G.I.F.

Watch Video Solution

79. Draw a graph of the function $f(x) = \cos^{-1}(4x^3 - 3x), x \in [-1, 1]$ and find the ara enclosed between the graph of the function and the xaxis varies from 0 to 1.

Watch Video Solution

80. Consider two curves $y^2=4a(x-\lambda)$ and $x^2=4a(y-\lambda)$, where a>0 and λ is a parameter. Show that

(i) there is a single positive value of λ for which the two curves have exactly one point of intersection in the 1st quadrant find it.

(ii) there are infinitely many nagetive values of λ for which the two curves have exactly one points of intersection in the 1st quadrant. (iii) if $\lambda = -a$, then find the area of the bounded by the two curves and the axes in the 1st quadrant.

81. Let f(x) be continuous function given by $f(x) = \{2x, |x| \le 1x^2 + ax + b, |x| > 1\}$. Find the area of the region in the third quadrant bounded by the curves $x = -2y^2 andy = f(x)$ lying on the left of the line 8x + 1 = 0.

Watch Video Solution

82. Let [x] denotes the greatest integer function. Draw a rough sketch of the portions of the curves $x^2 = 4[\sqrt{x}]y$ and $y^2 = 4[\sqrt{y}]x$ that lie within the square $\{(x, y) \mid 1 \le x \le 4, 1 \le y \le 4\}$. Find the area of the part of the square that is enclosed by the two curves and the line x + y = 3.

83. The value of the parameter $a(a \ge 1)$ for which the area of the figure bounded by the pair of staight lines $y^2 - 3y + 2 = 0$ and the curves $y = [a]x^2, y = \frac{1}{2}[a]x^2$ is greatest is (Here [.] denotes the greatest integer function). (A) [0, 1) (B) [1, 2) (C) [2, 3) (D) [3, 4)

Watch Video Solution

84. Find the area in the 1* quadrant bounded by [x] + [y] = n, where $n \in N$ and y = k(where $k \in n \forall k \le n + 1$), where [.] denotes the greatest integer less than or equal to x.

Watch Video Solution

Exercise For Session 1

1. Draw a rough sketch of $y = \sin 2x$ and determine the area enclosed by

the curve. X-axis and the lines $x=\pi/4$ and $x=3\pi/4$.
2. Find the area under the curve $y = \left(x^2 + 2\right)^2 + 2x$ between the ordinates x =0 and x=2`

A.
$$\frac{236}{14}$$
 sq units
B. $\frac{136}{14}$ sq units
C. $\frac{430}{14}$ sq units
D. $\frac{436}{14}$ sq units

Answer: $\frac{436}{14}$ sq units

Watch Video Solution

3. Find by integration the area of the region bounded by the curve $y = 2x - x^2$ and the x-axis.

A.
$$\frac{1}{3}$$
 sq units

B.
$$\frac{2}{3}$$
 sq units
C. $\frac{4}{3}$ sq units
D. $\frac{5}{3}$ sq units

Answer:
$$\frac{4}{3}$$
 sq units

Watch Video Solution

4. Examples: Find the area of the region bounded by the curve

$$y^2=2y-x$$
 and the y-axis.

Watch Video Solution

5. Find the area bounded by the curve $y=4-x^2$ and the line y=0 and

y = 3.

10. The area of the region bounded by the curve xy - 3 - 2y - 10 = 0,

X-axis and the lines x=3, x=4, is

Exercise For Session 2

1. The area of the region bounded by $y^2=2x+1 \, ext{ and } \, x-y-1=0$ is

- A. 2/3
- B.4/3
- C.8/3
- D. 16/3

Answer: D

2. The area of the region bounded by the curve $y = 2x - x^2$ and the line y = x is A. 9/2 B. 43/6 C. 35/6 D. None of these

Answer: A

Watch Video Solution

3. The area bounded by the curve y = x|x|, x-axis and the ordinates x=1,x=-1 is given by

A. 0

B. 1/3

C. 2/3

D. None of these

Answer: C

Answer: D

5. What is the area bounded by the curves $y = e^x$, $y = e^{-x}$ and the straight line x = 1?

A.
$$e + rac{1}{e}$$

B. $e - rac{1}{e}$
C. $e + \left(rac{1}{e}\right) - 2$

D. None of these

Answer: A

6. Area (in square units) of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 , is

A. 2

$$\mathsf{B.}\,\frac{9}{4}$$

C. $6\sqrt{3}$

D. None of these

Answer: B

7. The area of the region bounded by $y = \sin x$, $y = \cos x$ in the first quadrant is

A. $2\left(\sqrt{2-1}
ight)$ B. $\sqrt{3}+1$ C. $2\left(\sqrt{3}-1
ight)$

D. None of these

Answer: A

8. The area bounded by the curves
$$y = xe^x$$
, $y = xe^{-x}$ and the line
 $x = 1$ is $\frac{2}{e}squaret inits$ (b) $1 - \frac{2}{e}squaret inits$ $\frac{1}{e}squaret inits$ (d) $1 - \frac{1}{e}squaret inits$
A. $\frac{2}{e}$
B. $1 - \frac{2}{e}$
C. $\frac{1}{e}$
D. $1 - \frac{1}{e}$

Answer: A

Watch Video Solution

9. The figure into which the curve $y^2 = 6x$ divides the circle $x^2 + y^2 = 16$ are in the ratio

A.
$$\frac{2}{3}$$

B. $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$
C. $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$

D. None of these

Answer: C

Answer: B

11. The area bounded by the curve $y=rac{3}{|x|}$ and y+|2-x|=2 is

- A. $\frac{4 \log 27}{3}$ B. $2 - \log^3$
- $\mathsf{C.2} + \log^3$
- D. None of these

Answer: D

Watch Video Solution

12. The area bounded by the curves $y = -x^2 + 2$ and y = 2|x| - x is

- A. 2/3
- B. 8/3
- C.4/3

D. None of these

Answer: D

13. The are bounded by the curve $y^2=4x$ and the circle $x^2 + y^2 - 2x - 3 = 0$ is A. $2\pi + \frac{8}{3}$ B. $4\pi + \frac{8}{3}$ C. $\pi + \frac{8}{3}$ $\mathsf{D}.\,\pi-rac{8}{3}$ Answer: A Watch Video Solution

14. A point P moves inside a triangle formed by
$$A(0,0), B\left(1,\frac{1}{\sqrt{3}}\right), C(2,0)$$
 such that min $\{PA, PB, PC\} = 1$, then

the area bounded by the curve traced by P, is

A.
$$3\sqrt{3} - \frac{3\pi}{2}$$

B. $\sqrt{3} + \frac{\pi}{2}$
C. $\sqrt{3} - \frac{\pi}{2}$
D. $3\sqrt{3} + \frac{3\pi}{2}$

Answer: C

View Text Solution

15. The graph of $y^2 + 2xy + 40|x| = 400$ divides the plane into regions. Then the area of the bounded region is 200squnits (b) 400squnits800squnits (d) 500squnits

A. 400

B. 800

C. 600

D. None of these

Answer: B

16. The aera of the region defined by $||x|-|y| ~|~ \leq 1~~{
m and}~~x^2+y^2\leq 1$ in the xy plane is

A. π

 $\mathrm{B.}\,2\pi$

C. 3π

D. 1

Answer: A

View Text Solution

17. The area of the region defined by $1 \le |x-2|+|y+1| \le 2$ is (a) 2 (b) 4 (c) 6 (d) non of these

 $(b) \neq (c) = (d)$ from of the

A. 2

B.4

C. 6

D. None of these

Answer: C

Watch Video Solution

18. The area of the region enclosed by the curve $\left|y
ight|=\ -\left(1-\left|x
ight|
ight)^{2}+5,$

is

A.
$$\frac{8}{3}(7+5\sqrt{5})$$
 sq units
B. $\frac{2}{3}(7+5\sqrt{5})$ sq units
C. $\frac{2}{3}(5\sqrt{5}-7)$ sq units

D. None of these

Answer: A

20. If $f(x) = \max\left\{\sin x, \cos x, \frac{1}{2}\right\}$, then the area of the region bounded by the curves y = f(x), x-axis, Y-axis and $x = \frac{5\pi}{3}$ is

A.
$$\left(\sqrt{2} - \sqrt{3} + \frac{5\pi}{12}\right)$$
sq units
B. $\left(\sqrt{2} + \frac{\sqrt{3}}{2} + \frac{5\pi}{2}\right)$ sq units
C. $\left(\sqrt{2} + \sqrt{3} + \frac{5\pi}{2}\right)$ sq units

D. None of these

Answer: B

Watch Video Solution

Exercise Single Option Correct Type Questions

1. A point P(x, y) moves such that [x + y + 1] = [x]. Where [.] denotes greatest integer function and $x \in (0, 2)$, then the area represented by all the possible position of P, is

A.
$$\sqrt{2}$$

 $\mathsf{B.}\,2\sqrt{2}$

 $\mathsf{C.}\,4\sqrt{2}$

D. 2

Answer: D

Watch Video Solution

2. If
$$f: [-1,1] \rightarrow \left[-\frac{1}{2}, \frac{1}{2}\right], f(x) = \frac{x}{1+x^2}$$
, then find the area bounded by $y = f^{-1}(x), x$ axis and lines $x = \frac{1}{2}, x = -\frac{1}{2}$.

A.
$$\frac{1}{2}\log e$$

B. $\log\left(\frac{e}{2}\right)$
C. $\frac{1}{2}\frac{\log e}{3}$
D. $\frac{1}{2}\log\left(\frac{e}{2}\right)$

Answer: B

3. If the length of latusrectum of ellipse

$$E_1: 4(x + y + 1)^2 + 2(x - y + 3)^2 = 8$$
 and
 $E_2 = \frac{x^2}{p} + \frac{y^2}{p^2} = 1, (0 are equal, then area of ellipse E_2 , is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{\sqrt{2}}$
C. $\frac{\pi}{2\sqrt{2}}$$

D. None of these

Answer: B

B. 50

C. 40

D. 30

Answer: C

Watch Video Solution

5. If the area bounded by the corve $y = x^2 + 1$, y = x and the pair of lines $x^2 + y^2 + 2xy - 4x - 4y + 3 = 0$ is K units, then the area of the region bounded by the curve $y = x^2 + 1$, $y = \sqrt{x - 1}$ and the pair of lines (x + y - 1)(x + y - 3) = 0 is

A. K

B. 2K

C.
$$\frac{K}{2}$$

D. None of these

Answer: B

6. Suppose y = f(x) and y = g(x) are two continuous functiond whose graphs intersect at the three points (0, 4), (2, 2) and (4, 0) with f(x) > g(x) for 0 < x < 2 and f(x) < g(x) for 2 < x < 4. If $\int_0^4 [f(x) - g(x)] dx = 10$ and $\int_2^4 [g(x) - f(x)] dx = 5$ the area between two curves for 0 < x < 2, is (A) 5 (B) 10 (C) 15 (D) 20

A. 5

B. 10

C. 15

D. 20

Answer: C

7. Let 'a' be a positive constant number. Consider two curves $C_1: y = e^x, C_2: y = e^{a-x}$. Let S be the area of the part surrounding by C_1, C_2 and the y axis, then $\lim_{a \to 0} \frac{s}{a^2}$ equals (A) 4 (B) $\frac{1}{2}$ (C) 0 (D) $\frac{1}{4}$

B.
$$\frac{1}{2}$$

C. 0

۸

D. 1.4

Answer: D

8. 3 point O(0,0), $P(a,a^2)$, $Q(-b,b^2)(a > 0, b > 0)$ are on the parabola $y = x^2$. Let S_1 be the area bounded by the line PQ and parabola let S_2 be the area of the ΔOPQ , the minimum value of S_1/S_2 is

A.
$$2/3$$

B. 5/3

C. 2

D. 73

Answer: A

Watch Video Solution

9. Area enclosed by the graph of the function $y=In^2x-1$ lying in the

 4^{th} `quadrant is

A.
$$\frac{2}{e}$$

B. $\frac{4}{e}$
C. $2\left(e + \frac{1}{e}\right)$
D. $4\left(e - \frac{1}{e}\right)$

Answer: B

10. The area bounded by
$$y=2-|2-x|~~{
m and}~~y=rac{3}{|x|}$$
 is

A.
$$\frac{4 - 3\ln 3}{2}$$

B. $\frac{4 + 3\ln 3}{2}$
C. $\frac{3}{2} + In3$
D. $\frac{1}{2} + In3$

Answer: A

Watch Video Solution

11. Suppose g(x) = 2x + 1 and $h(x) = 4x^2 + 4x + 5$ and h(x) = (fog)(x). The area enclosed by the graph of the function y = f(x) and the pair of tangents drawn to it from the origin, is

A. 8/3

B. 16/3

C. 32/3

D. None of these

Answer: B

Watch Video Solution

12. The area bounded by the curves $y=-\sqrt{-x}$ and $x=-\sqrt{-y}$ where $x,y\leq 0$

A. cannot be determined

B. is
$$\frac{1}{3}$$

C. is $\frac{2}{3}$

D. is same as that of the figure bounded by the curves

$$y=\sqrt{-x}, x\leq 0 \, ext{ and } \, x=\sqrt{-y}, y\leq 0$$

Answer: B

13. y = f(x) is a function which satisfies f(0) = 0, f''(x) = f'(x) and f'(0) = 1 then the area bounded by the graph of y = f(x), the lines x = 0, x - 1 = 0 and y + 1 = 0 is

A. e

B. e-2

C. e-1

D. e+1

Answer: C

Watch Video Solution

14. Aea of the region nclosed between the curves $x=y^2-1$ and $x=|y|\sqrt{1-y^2}$ is

B. 4/3

C. 2/3

 $\mathsf{D.}\,2$

Answer: D

Watch Video Solution

15. The area bounded by the curve $y = xe^{-x}$; xy = 0and x = c where c

is the x-coordinate of the curve's inflection point, is

A. $1 - 3e^{-2}$ B. $1 - 2e^{-2}$ C. $1 - e^{-2}$

D. 1

Answer: A

16. If (a, 0), agt 0, is the point where the curve $y = \sin 2x - \sqrt{3} \sin x$ cuts the x-axis first, A is the area bounded by this part of the curve, the origin and the positive x-axis. Then

A. $4A + 8\cos a = 7$

 $\mathsf{B.}\,4A+8\sin a=7$

 $C.4A - 8\sin a = 7$

D. $4A - 8\cos a = 7$

Answer: A

Watch Video Solution

17. The curve $y = ax^2 + bx + c$ passes through the point (1, 2) and its tangent at origin is the line y = x. The area bounded by the curve, the ordinate of the curve at minima and the tangent line is

A.
$$\frac{1}{24}$$

B. $\frac{1}{12}$
C. $\frac{1}{8}$
D. $\frac{1}{6}$

Answer: A

18. A function y = f(x) satisfies the differential equation $\frac{dy}{dx} - y = \cos x - \sin x$ with initial condition that y is bounded when $x_{>}\infty$. The area enclosed by $y = f(x), y = \cos x$ and the y-axis is

A. $\sqrt{2}-1$

B. $\sqrt{2}$

C. 1

D. $1/\sqrt{2}$

Answer: A

19. If the area bounded between X-axis and the graph of $y = 6x - 3x^2$ between the ordinates x = 1 and x=a` is 10sq units, then 'a' can take the value

A. 4 or -2

B. two values are in (2,3) and one in (-1,0)

C. two values are in (3,4) and one in (-2,-1)

D. None of the above

Answer: C

20. Area bounded by $y = f^{-1}(x)$ and tangent and normal drawn to it at

points with abscissae π and 2π , where $f(x) = \sin x - x$ is

A.
$$\frac{\pi^2}{2} - 1$$

B. $\frac{\pi^2}{2} - 2$
C. $\frac{\pi^2}{2} - 4$
D. $\frac{\pi^2}{2}$

Answer: B

View Text Solution

21. If f(x) = x - 1 and g(x) = |f|(x)| - 2|, then the area bounded by y = g(x) and the curve $x^2 = 4y + 8 = 0$ is equal to

A.
$$\frac{4}{3}(4\sqrt{2}-5)$$

B. $\frac{4}{3}(4\sqrt{2}-3)$
C. $\frac{8}{3}(4\sqrt{2}-3)$

D.
$$\frac{8}{3} \left(4\sqrt{2}-5\right)$$

Answer: A

Watch Video Solution

22.	Let
$S = igg\{(x,y)\!:\!rac{y(3x-1)}{x(3x-2)} < 0igg\}, S' = \{(x,y)\in A imes B\colon -1\leq A\leq 0\}$	$\leq 1, \; -$
SnnS'` is	
A. 1	
B. 2	
C. 3	
D. 4	
Answer: B	

23. The area of the region bounded between the curves y = e||x|In|x||, $x^2 + y^2 - 2(|x| + |y|) + 1 \ge 0$ and X-axis where $|x| \le 1$, if α is the x-coordinate of the point of intersection of curves in 1st quadrant, is

$$\begin{array}{l} \mathsf{A.4} \left[\int_{0}^{\alpha} exInxdx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right] \\ \mathsf{B.4} \left[\int_{0}^{\alpha} exInxdx + \int_{1}^{\alpha} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right] \\ \mathsf{C.4} \left[- \int_{0}^{\alpha} exInxdx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right] \\ \mathsf{D.2} \left[\int_{0}^{\alpha} exInxdx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right] \end{array}$$

Answer: D

Watch Video Solution

24. A point P lying inside the curve $y = \sqrt{2ax - x^2}$ is moving such that its shortest distance from the curve at any position is greater than its distance from X-axis. The point P enclose a region whose area is equal to

A.
$$rac{\pi a^2}{2}$$

B.
$$rac{a^2}{3}$$

C. $rac{2a^2}{3}$
D. $\left(rac{3\pi-4}{6}
ight)a^2$

Answer: C

Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The triangle formed by the normal to the curve $f(x) = x^2 - ax + 2a$ at the point (2,4) and the coordinate axes lies in second quadrant, if its area is 2 sq units, then a can be

A. 2

B. 17/4

C. 5

D. None of these

Answer: B::C

2. Let f and g be continuous function on $a \le x \le b$ and set $p(x) = \max \{f(x), g(x)\}$ and $q(x) = \min\{f(x), g(x)\}$, then the area bounded by the curves y = p(x), y = q(x) and the ordinates x = a and x = b is given by

A.
$$\int_a^b |f(x) - g(x)| dx$$

B. $\int_a^b |p(x) - q(x)| dx$
C. $\int_a^b \{f(x) - g(x)\} dx$
D. $\int_a^b \{p(x) - a(x)\} dx$

Answer: A::B::D

View Text Solution

3. The area bounded by the parabola $y=x^2-7x+10$ and X-axis

A. 9/2 sq units

B. 1/6 sq units

C. 5/6 sq units

D. None of these

Answer: A

Watch Video Solution

4. Area bounded by the ellipse $rac{x^2}{4}+rac{y^2}{9}=1$ is equal to

A. 6π sq units

B. 3π sq units

C. 12π sq units

D. area bounded by the ellipse $\displaystyle rac{x^2}{9} + \displaystyle rac{y^2}{4} = 1$
Answer: A::D

5. There is curve in which the length of the perpendicular from the orgin to tangent at any point is equal to abscissa of that point. Then,

A. $x^2 + y^2 = 2$ is one such curve

B. $y^2 = 4x$ is one such curve

C. $x^2 + y^2 = 2cx$ (c parameters) are such curve

D. there are no such curves

Answer: A::C

Exercise Statement I And Ii Type Questions

1. Statement I- The area of the curve $y = \sin^2 x {
m from} 0 {
m to} \pi$ will be more than that of the curve $y = \sin x {
m from} 0 {
m to} \pi.$

Statement II - $x^2 > x$, if x > 1.

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: D

Watch Video Solution

2. Statement I- The area of bounded by the curves $y=x^2-3$ and

$$y = kx + 2$$
 is least if $k = 0$.

Statement II- The area bounded by the curves $y=x^2-3$ and $y=kx+2is\sqrt{k^2+20}.$

A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: C

Watch Video Solution

3. Statement I- The area of region bounded parabola $y^2 = 4x$ and $x^2 = 4y$ is $\frac{32}{3}$ sq units. Statement II- The area of region bounded by parabola $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16}{3}ab$. A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false , Statement II is true

Answer: D

Watch Video Solution

4. Statement I- The area by region $|x+y|+|x-y| \le 2is4$ sq units. Statement II- Area enclosed by region $|x+y|+|x-y| \le 2$ is symmetric about X-axis.

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: B

Watch Video Solution

5. Statement I- Area bounded by y = x(x-1) and $y = x(1-x)is\frac{1}{3}$. Statement II- Area bounded by y = f(x) and y = g(x) "is" $\left| \int_{a}^{b} (f(x) - g(x)) dx \right|$ is true when f(x) and g(x) lies above X-axis.

(Where a and b are intersection of y = f(x) and y = g(x)).

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: C

Watch Video Solution

Exercise Passage Based Questions

1. Let $f(x) = \frac{ax^2 + bx + c}{x^2 + 1}$ such that y=-2 is an asymptote of the curve y = f(x). The curve y = f(x) is symmetric about Y-axis and its maximum values is 4. Let h(x) = f(x) - g(x), where $f(x) = \sin^4 \pi x$ and $g(x) = \log_e x$. Let $x_0, x_1, x_2...x_{n+1}$ be the roots of f(x) = g(x) in increasing order

Then, the absolute area enclosed by y = f(x) and y = g(x) is given by

A.
$$\sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}} (-1)^{r} \cdot h(x) dx$$

B. $\sum_{r=0}^{n} \int_{x_{1}}^{x_{r+1}} (-1)^{r+1} \cdot h(x) dx$

$$\begin{array}{l} \mathsf{C.}\, 2 \sum_{r=0}^n \int_{x_r}^{x_{r_r+1}} (\,-1)^r \cdot h(x) dx \\ \mathsf{D.}\, \frac{1}{2} \cdot \sum_{r=0}^n \int_{x_1}^{x_{r+1}} (\,-1)^{r+1} \cdot h(x) dx \end{array}$$

Answer: A

View Text Solution

2. Let $f(x) = \frac{ax^2 + bx + c}{x^2 + 1}$ such that y=-2 is an asymptote of the curve y = f(x). The curve y = f(x) is symmetric about Y-axis and its maximum values is 4. Let h(x) = f(x) - g(x), where $f(x) = \sin^4 \pi x$ and $g(x) = \log_e x$. Let $x_0, x_1, x_2...x_{n+1}$ be the roots of f(x) = g(x) in increasing order

In above inquestion the value of n, is

A. 1

B. 2

C. 3

D. 4

View Text Solution

3. Let $f(x) = \frac{ax^2 + bx + c}{x^2 + 1}$ such that y=-2 is an asymptote of the curve y = f(x). The curve y = f(x) is symmetric about Y-axis and its maximum values is 4. Let h(x) = f(x) - g(x), where $f(x) = \sin^4 \pi x$ and $g(x) = \log_e x$. Let $x_0, x_1, x_2...x_{n+1}$ be the roots of f(x) = g(x) in increasing order

The whole area bounded by y=f(x), y=g(x)x=0 is

A.
$$\frac{11}{8}$$

B. $\frac{8}{3}$
C. 2
D. $\frac{13}{3}$

Answer: A

4. Consider the function
$$f: (-\infty, \infty) \to (-\infty, \infty)$$
 defined by
 $f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}; 0 < a < 2$. which of the following is true ?
A. $(2 - a)^2 f(1) + (2 - a)^2 f(-1) = 0$
B. $(2 - a)^2 f(1) - (2 - a)^2 (2) f(-1) = 0$
C. $f'(1) f'(-1) = (2 - a)^2$
D. $f'(1) f'(-1) = -(2 + a)^2$

Answer: A

Watch Video Solution

5. Consider the function $f\colon (-\infty,\infty) o (-\infty,\infty)$ defined by $f(x)=rac{x^2-ax+1}{x^2+ax+1}; 0< a< 2.$ which of the following is true ?

A. f(x) is decreasing on $(\,-1,1)$ and has a local minimum at x=1

B. f(x) is increasing on (-1,1) and has maximum at x=1

C. f(x) is increasing on (-1,1) but has neither a local maximum nor a

local minimum at x=1`

D. f(x) is decreasing on (-1,1) but has neither a local maximum nor a

local minimum at x=1.

Answer: A

Watch Video Solution

6. Consider the function $f:(-\infty,\infty) \to (-\infty,\infty)$ defined by $f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}, 0 < a < 2$, and let $g(x) = \int_0^{e^x} \frac{f'(t)dt}{1 + t^2}$. Which of the following is true? (A) g'(x) is positive on $(-\infty, 0)$ and negative on $(0,\infty)$ (B) g'(x) is negative on $(-\infty, 0)$ and positive on $(0,\infty)$ (C) g'(x) changes sign on both $(-\infty, 0)$ and $(0,\infty)$ (D) g'(x) does not change sign on $(-\infty,\infty)$

A. g'(x) is positive on $(-\infty,0)$ and negative on $(0,\infty)$

B. g'(x) is negative on $(-\infty,0)$ and positive on $(0,\infty)$

C. g'(x) change sign on both $(-\infty, 0)$ and $(0, \infty)$

D. g'(x) does not change sign on $(-\infty,\infty)$.

Answer: B

Watch Video Solution

7. Computing area with parametrically represented boundaries

If the boundary of a figure is represented by parametric equations x = x (t)

, y = y(t) , then the area of the figure is evaluated by one of the three formulae

$$S= -\int\limits_{lpha}^{eta} y(t)x\,{}^{\prime}(t)dt, S= \int\limits_{lpha}^{eta} x(t)y\,{}^{\prime}(t)dt \ S= rac{1}{2} \int\limits_{lpha}^{eta} (xy\,{}^{\prime}-yx\,{}^{\prime})dt$$

where α and β are the values of the parameter t corresponding respectively to the beginning and the end of traversal of the contour .

The area enclosed by the astroid $\left(rac{x}{a}
ight)^{rac{2}{3}}+\left(rac{y}{a}
ight)^{rac{2}{3}}$ = 1 is

A.
$$rac{3}{4}a^2\pi$$

B.
$$\frac{3}{18}\pi a^{2}$$

C. $\frac{3}{8}\pi a^{2}$
D. $\frac{3}{4}a\pi$

Answer: C

Watch Video Solution

8. Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x = x(t), y = (t), then the area of the figure is evaluated by one of the three formulas :

$$S= \ -\int\limits_{lpha}^{eta} y(t)x^{\,\prime}(t)dt,
onumber \ S= \ \int\limits_{lpha}^{eta} x(t)y^{\,\prime}(t)dt,
onumber \ S= \ rac{1}{2} \int\limits_{lpha}^{eta} (xy^{\,\prime}-yx^{\,\prime})dt,$$

Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t.

The area of the region bounded by an are of the cycloid $x = a(t - \sin t), y = a(1 - \cos t)$ and the x-axis is

A. $6\pi a^2$

B. $3\pi a^2$

 $\mathsf{C.}\,4\pi a^2$

D. None of these

Answer: B

Watch Video Solution

9. Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x = x(t), y = (t), then the area of the figure is evaluated by one of the three formulae

three formulas :

$$S= \ -\int\limits_{lpha}^{eta} y(t)x\,{}^{\prime}(t)dt,$$

$$S = \int\limits_lpha^eta x(t) y'(t) dt,
onumber \ S = rac{1}{2} \int\limits_lpha^eta (xy'-yx\,') dt,$$

Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t.

is

The area of the loop described as

$$x = \frac{t}{3}(6-t), y = \frac{t^2}{8}(6-t)$$
A. $\frac{27}{5}$
B. $\frac{24}{5}$
C. $\frac{27}{6}$
D. $\frac{21}{5}$

Answer: A

Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Consider $f(x)=x^2-3x+2$ The area bounded by $|y|=|f(|x|)|, x\geq 1$ is A, then find the value of 3A+2.

View Text Solution

2. If S is the sum of cubes of possible value of c for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, then straight lines x = 1 and x = c and the abscissa axis is equal to $\frac{16}{3}$, then the value of [S], where [.] denotest the greatest integer function, is ____

Watch Video Solution

3. The area bounded by $y=2-|2-x|, y=rac{3}{|x|}israc{k-3In3}{2}$,then k is

equal to

View Text Solution

4. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B(4, 5) and C(6, 3).

5. A point 'P' moves in xy plane in such a way that [|x|] + [|y|] = 1 where [.] denotes the greatest integer function. Area of the region representing all possible positions of the point 'P' is equal to:

Watch Video Solution

6. Let $f: [0, 1] \rightarrow \left[0, \frac{1}{2}\right]$ be a function such that f(x) is a polynomial of 2nd degree, satisfy the following condition :

(a) f(0) = 0

(b) has a maximum value of $rac{1}{2}atx=1.$

If A is the area bounded by $y=f(x)=f^{-1}(x)$ and the line

2x+2y-3=0 in 1st quadrant, then the value of 24A is equal to \ldots

7. Let
$$f(x) = \min\left\{\sin^{-1}x, \cos^{-1}x, \frac{\pi}{6}\right\}, x \in [0, 1]$$
. If area bounded
by $y = f(x)$ and X-axis, between the lines $x = 0$ and
 $x = 1is \frac{a - X}{b\left(\sqrt{3} + 1\right)}$. Then , (a-b) is

View Text Solution

8. Let f(x) be a real valued function satisfying the relation $f\left(\frac{x}{y}\right) = f(x) - f(y)$ and $\lim_{x \to 0} \frac{f(1+x)}{x} = 3$. The area bounded by the curve y = f(x), y-axis and the line y = 3 is equal to

Watch Video Solution

Exercise Subjective Type Questions

1. Find the continuous function f where $(x^4 - 4x^2) \leq f(x) \leq (2x^2 - x^3)$ such that the area bounded by $y = f(x), y = x^4 - 4x^2$. then y-axis, and the line x = t, where $(0 \leq t \leq 2)$ is k times the area bounded by $y = f(x), y = 2x^2 - x^3, y - a\xi s$, and line $x = t(where 0 \leq t \leq 2)$.

Watch Video Solution

2. Let
$$f(t) = |t-1| - |t| + |t+1|$$
, $\forall t \in R$. Find $g(x) = \max \{f(t): x+1 \le t \le x+2\}$, $\forall x \in R$. Find $g(x)$ and the area bounded by the curve $y = g(x)$, the X-axis and the lines $x = -3/2$ and $x = 5$.

View Text Solution

3. Let f(x)= minimum $ig\{e^x,3/2,1+e^{-x}ig\}, 0\leq x\leq 1$. Find the area bounded by y=f(x), X-axis and the line x=1.

4. Find t5he area bounded by y = f(x) and the curve $y = rac{2}{1+x^2}$ satisfying the condition

$$f(x),\,f(y)=f(xy)\,orall x,\,y\in R\,\, ext{and}\,\,f'(1)=2,\,f(1)=1,$$

Watch Video Solution

5. The value of

$$\int\limits_{0}^{\sin^2x}\sin^{-1}\sqrt{t}dt+\int\limits_{0}^{\cos^2x}\cos^{-1}\sqrt{t}dt$$
, is

Watch Video Solution

6. Let T be an acute triangle Inscribe a pair R,S of rectangle in T as shown: Let A(x) denote the area of polygon X find the maximum value (or show that no maximum exists), of $\frac{A(R) + A(S)}{A(T)}$, where T ranges over all triangles and R,S over all rectangle as above.

7. Find the maximum area of the ellipse that can be inscribed in an isoceles triangles of area A and having one axis lying along the perpendicular from the vertex of the triangles to its base.

8. In the adjacent figure the graph of two function y = f(x) and $y = \sin x$ are given y=sin x intersects, y=f(x) at A(a,f(a)), $B(\pi, 0)$ and $C(2\pi, 0)$.

 $A_i(i = 1, 2, 3)$ is the area bounded by the curves y = f(x) and $y = \sin x$ between x=0 and x=a,i=1 between x=a and $x = \pi, i = 2$ between $x = \pi$ and $x = 2\pi, i = 3$. If $A_1 = 1 - \sin a + (a - 1)$ cos a, determine the function f(x). Hence, determine a and A_1 . Also, calculate A_2 and A_3 .

9. Find the area of the region bounded by curve $y = 25^x + 16$ and the curve $y = b.5^x + 4$, whose tangent at the point x=1 make an angle \tan^{-1} (40 In 5) with the X-axis.

10. If the circles of the maximum area inscriabed in the region bounded by the curves $y=x^2-2x-3$ and $y=3+2x-x^2$, then the area of region $y-x^2+2x+3\leq 0, y+x^2-2x-3\leq 0$ and $s\leq 0.$

View Text Solution

11. Find limit of the ratio of the area of the triangle formed by the orgin and intersection points of the parabola $y - 4x^2$ and the line $y = a^2$,to the area between the parabola and the line as a approaches to zero.

15. Sketch the region and find the area bounded by the curves $|y+x| \leq 1, |y-x| \leq 1$ and $2x^2+2y^2 \geq 1.$

Watch Video Solution

16. Find the area of the region bounded by the curve $2^{|x|}|y| + 2^{|x|-1} \le 1$, with in the square formed by the lines $|x| \le 1/2, |y| \le 1/2.$

17. The value of the parameter $a(a \ge 1)$ for which the area of the figure bounded by the pair of staight lines $y^2 - 3y + 2 = 0$ and the curves $y = [a]x^2, y = \frac{1}{2}[a]x^2$ is greatest is (Here [.] denotes the greatest integer function). (A) [0, 1) (B) [1, 2) (C) [2, 3) (D) [3, 4)

Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. Area of region

$$\left\{(x,y)\in R^2\colon\! y\geq \sqrt{|x+3|,}\,5y\leq x+9\leq 15
ight\}$$

A.
$$\frac{1}{6}$$

B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

Answer: C

2. Let
$$F(x) = \int_{x}^{x^2 + \frac{\pi}{6}} \left[2\cos^2 t. dt \right]$$
 for all $x \in R$ and $f: \left[0, \frac{1}{2}\right] \to [0, \infty)$ be a continuous function.For $a \in \left[0, \frac{1}{2}\right]$, if F'(a)+2

is the area of the region bounded by x=0,y=0,y=f(x) and x=a, then f(0) is

Watch Video Solution

3. The common tangents to the circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ touch the circle at P, Q and the parabola at R, S. Then area of quadrilateral PQRS is

A. 3

B. 6

C. 9

Answer: D

4.	The	area	enclosed	by	the	curves
<i>y</i> =	$=\sin x + \cos x$	and $y =$	$ {\cos x} - {\sin x} $ o	ver the	interval $\left[0, \frac{\pi}{2}\right]$	- -
	A. $4ig(\sqrt{2}-1ig)$					
	B. $2\sqrt{2}(\sqrt{2}-1)$	1)				
	$C.2\big(\sqrt{2}+1\big)$					
	D. $2\sqrt{2}(\sqrt{2}+1)$	1)				

Answer: B

Watch Video Solution

5. Let
$$S$$
 be the area of the region enclosed by
 $y = e^{-x} \hat{2}, y = 0, x = 0, andx = 1$. Then $S \ge \frac{1}{e}$ (b) $S \ge 1 = \frac{1}{e}$
 $S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$ (d) $S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1 - \frac{1}{\sqrt{2}} \right)$
A. $S \ge \frac{1}{e}$
B. $S \ge 1 - \frac{1}{e}$
C. $S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$
D. $S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1 - \frac{1}{\sqrt{2}} \right)$

Answer: B::D

Watch Video Solution

6. Let $f:[-1,2]\overrightarrow{0,\infty}$ be a continuous function such that f(x)=f(1-x)f or $allx\in[-1,2]$. Let $R_1=\int_{-1}^2 xf(x)dx$, and R_2 be the area of the region bounded by y=f(x), x=-1, x=2, and the $x-a\xi s$. Then $R_1=2R_2$ (b) $R_1=3R_2$ $2R_1$ (d) $3R_1=R_2$

A. $R_1=2R_2$ B. $R_1=3R_2$ C. $2R_1=R_2$ D. $3R_1=R_2$

Answer: C

Watch Video Solution

7. Let the straight line x= b divide the area enclosed by $y = (1-x)^2, y = 0$, and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then b

equals

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

8. Area of the region bounded by the curve $y=e^x$ and linesx=0 and

y = e is

A.
$$e-1$$

B. $\int_{1}^{e} In(e+1-y)dy$
C. $e-\int_{0}^{1}e^{x}dx$
D. $\int_{0}^{e} Inydy$

Watch Video Solution

Answer: B::C

$$\begin{aligned} \mathsf{A}. & \int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{B}. & \int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{C}. & \int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{D}. & \int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt \end{aligned}$$

Watch Video Solution

10. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

If $fig(-10\sqrt{2}ig)=2\sqrt{2}$, then $fig(-10\sqrt{2}ig)$ is equal to

A.
$$\frac{4\sqrt{2}}{7^3 3^2}$$

B.
$$-\frac{4\sqrt{2}}{7^3 3^2}$$

C. $\frac{4\sqrt{2}}{7^3 3}$
D. $-\frac{4\sqrt{2}}{7^3 3}$

Watch Video Solution

11. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

The area of the region bounded by the curve y=f(x), the X-axis and the line x=a and x=b, where $-\infty < a < b < -2$ is

A.
$$\int_a^b rac{x}{3ig[\{f(x)\}^2-1ig]}dx+by(b)-af(a)$$

$$egin{aligned} & \mathsf{B}. - \int_a^b rac{x}{3 \Big[\{f(x)\}^2 - 1 \Big]} dx - by(b) + af(a) \ & \mathsf{C}. \int_a^b rac{x}{3 \Big[\{f(x)\}^2 - 1 \Big]} dx - by(b) + af(a) \ & \mathsf{D}. - \int_a^b rac{x}{3 \Big[\{f(x)\}^2 - 1 \Big]} dx + by(b) = af(a) \end{aligned}$$

Answer: A

12. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

$$\int_{-1}^{1}g'(x)dx$$
 is equal to

A. 2g(-1)

B. 0

C. - 2g(1)

D. 2g(1)

Answer: D

Answer: A

Watch Video Solution

14. The area (in sq units) of the region $ig\{(x,y): y^2\geq 2x ext{ and } x^2+y^2\leq 4x, x\geq 0, y\geq 0ig\}$ is

A.
$$\pi - \frac{4}{3}$$

B. $\pi - \frac{8}{3}$
C. $\pi - \frac{4\sqrt{2}}{3}$
D. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$

Answer: B

15. The area (in sq units) of the region described by $ig\{(x,y): y^2 \leq 2x ext{ and } y \geq 4x-1ig\}$ is

A.
$$\frac{7}{32}$$

B. $\frac{5}{64}$
C. $\frac{15}{64}$

$$\mathsf{D.} \ \frac{9}{32}$$

Answer: D

Watch Video Solution

16. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is: (1) $\frac{27}{4}$ (2) 18 (3) $\frac{27}{2}$ (4) 27 A. $\frac{27}{4}$ B. 18 C. $\frac{27}{2}$ D. 27

Answer: D

Watch Video Solution

17. The area of the region described by $A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is A. $\frac{\pi}{2} + \frac{4}{3}$ B. $\frac{\pi}{2} - \frac{4}{3}$ C. $\frac{\pi}{2} - \frac{2}{3}$ D. $\frac{\pi}{2} + \frac{2}{3}$

Answer: A

Watch Video Solution

18. The area (in square units) bounded by the curves $y = \sqrt{x}, 2y - x + 3 = 0$, x-axis, and lying in the first quadrant is

A. 9

B. 36

C. 1
D.
$$\frac{27}{4}$$

Answer: A

19. The area bounded between the parabola $x^2=rac{y}{4}$ and $x^2=9y$ and the straight line y=2 is

A. $20\sqrt{2}$

B.
$$\frac{10\sqrt{2}}{3}$$

C. $\frac{20\sqrt{2}}{3}$

D. $10\sqrt{2}$

Answer: C

Watch Video Solution

20. The area of the region enclosed by the curves $y = x, x = e, y = \frac{1}{x}$

and the positive x-axis is

A.1 sq unit

B.
$$\frac{3}{2}$$
 sq units
C. $\frac{5}{2}$ sq units
D. $\frac{1}{2}$ sq unit

Answer: B

> Watch Video Solution

21. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the

ordinates
$$x=0$$
 and $x=rac{3\pi}{2}$ is

A.
$$ig(4\sqrt{2}-2ig)$$
sq units

B. $\left(4\sqrt{2}+2
ight)$ sq units

C. $\left(4\sqrt{2}-1
ight)$ sq units

D.
$$\left(4\sqrt{2}+1
ight)$$
sq units

Answer: A

22. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x-axis is

A. 6 sq units

B. 9 sq units

C. 12 sq units

D. 3 sq units

Answer: B

Watch Video Solution

23. The area of the plane region bounded by the curves $x+2y^2=0$ and $x+3y^2=1$ is equal to (1) $rac{5}{3}$ (2) $rac{1}{3}$ (3) $rac{2}{3}$ (4) $rac{4}{3}$

A.
$$\frac{1}{3}$$
 sq units
B. $\frac{1}{3}$ sq unit
C. $\frac{2}{3}$ sq unit
D. $\frac{4}{3}$ sq units

Answer: D

Watch Video Solution