© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

CIRCLE

Examples

1. Find the centre and radius of the circle $2 x^{2}+2 y^{2}=3 x-5 y+7$

- Watch Video Solution

2. Prove that the radii of the circles
$x^{2}+y^{2}=1, x^{2}+y^{2}-2 x-6 y=6$ and $x^{2}+y^{2}-4 x-12 y=9$ are in AP.
3. Find the equation of the circle whose centre is the point of intersection of the lines $2 x-3 y+4=0$ and $3 x+4 y-5=0$ and passes through the origin.

- Watch Video Solution

4. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-8 x+6 y-5=0$ and passing through the point $(-2,-7)$,

(Watch Video Solution

5. A circle has radius 3 units and its centre lies on the line $y=x-1$. Find the equation of the circle if it passes through (7,3).

- Watch Video Solution

6. Find the area of equilateral triangle inscribed in a circle $x^{2}+y^{2}+2 g x+2 f y+c=0$

- Watch Video Solution

7. Find the parametric form of the equation of the circle $x^{2}+y^{2}+p x+p y=0$.

- Watch Video Solution

8. If the parametric of form of a circle is given by
(a) $x=-4+5 \cos \theta$ and $y=-3+5 \sin \theta$
(b) $x=a \cos \alpha+b \sin \alpha$ and $y=a \sin \alpha-b \cos \alpha$ find its cartesian form.

- Watch Video Solution

9. The equation of the locus of the mid-points of chords of the circle $4 x^{2}+4 y^{2}-12 x+4 y+1=0$ that substend an angle $\frac{2 \pi}{3}$ at its centre, is

- Watch Video Solution

10. Find the equation of the circle the end points of whose diameters are the centres of the circles $x^{2}+y^{2}+16 x-14 y=1 \quad$ and $x^{2}+y^{2}-4 x+10 y=2$

- Watch Video Solution

11. The sides of a square are $x=2, x=3, y=1$ and $y=2$. Find the equation of the circle drawn on the diagonals of the square as its diameter.

- Watch Video Solution

12. The abscissa of the two points A and B are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of the equation $x^{2}+2 p x-q^{2}=0$. Find the equation of the circle with AB as diameter. Also, find its radius.

- Watch Video Solution

13. find the equation circle which is passes through the points $(4,1),(6,5)$ and centre lies on $4 x+y=16$ is

- Watch Video Solution

14. Find the equation of the circle passing through the three noncollinear points (1, 1), (2, -1) and (3, 2).

- Watch Video Solution

15. Show that the points $A(1,0), B(2,-7), C(8,1)$ and $D(9,-6)$ all lie on the same circle. Find the equation of this circle, its centre and radius.

- Watch Video Solution

16. Find the equation of the circle whose diameter is the joining the points $(-4,3)$ and ($12,-1)$. Find also intercept made by it on Y-axis.

- Watch Video Solution

17. Find the equation of the a circle which touches y-axis at a distance of 4 units from the origin and cuts an intercept of 6 units along the positive direction of x -axis.

- Watch Video Solution

18. Find the equation of the circle which passes through the origin and cuts off intercepts a and b respectively from x and y - axes.

- Watch Video Solution

19. Find the equation of the circle which touches the coordinate axes and whose centre lies on the line $x-2 y=3$.

- Watch Video Solution

20. A circle of radius 2 lies in the first quadrant and touches both the axes of coordinates. Find the equation of the circle with centre at $(6,5)$ and touching the above circle externally.

- Watch Video Solution

21. A circle of radius 5units touches the coordinate axes in the first quadrant. If het circle makes one complete roll on $x-a \xi s$ along he positive direction of $x-a \xi s$, find its equation in new position.

- Watch Video Solution

22. Discuss the position of the points $(1,2)$ and $(6,0)$ with respect to the circle $x^{2}+y^{2}-4 x+2 y-11=0$

- Watch Video Solution

23. The circle $x^{2}+y^{2}-6 x-10 y+\lambda=0$ does not touch or intersect the coordinate axes and the point $(1,4)$ is inside the circle. Find the range of values of λ.

- Watch Video Solution

24. Find the shortes and largest distance from the point (2,7) to the circle

- View Text Solution

25. Find the points on the circle $x^{2}+y^{2}-2 x+4 y-20=0$ which are farthest and nearests to point ($-5,6$).

- Watch Video Solution

26. Find the points of intersection of the line $2 x+3 y=18$ and the cricle $x^{2}+y^{2}=25$.

- Watch Video Solution

27. Find the length of the intercept on the straight line $4 x-3 y-10=0$ by the circle $x^{2}+y^{2}-2 x+4 y-20=0$.

- Watch Video Solution

28. Find the coordinates of the middle point of the chord which the circle $x^{2}+y^{2}+4 x-2 y-3=0$ cuts-off the line $x-y+2=0$.

- Watch Video Solution

29. For what value of λ will the line $y=2 x+\lambda$ be tangent to the circle $x^{2}+y^{2}=5 ?$

- Watch Video Solution

30. Prove that the tangents to the circle $x^{2}+y^{2}=25$ at $(3,4)$ and $(4,-3)$ are perpendicular to each other.

- Watch Video Solution

31. Find the equation of tangent to the circle $x^{2}+y^{2}-2 a x=0$ at the point $[a(1+\cos \alpha), a \sin \alpha]$

- Watch Video Solution

- Watch Video Solution

33. The angle between a pair of tangents from a point P to the circle $x^{2}+y^{2}=25$ is $\frac{\pi}{3}$. Find the equation of the locus of the point P .

- Watch Video Solution

34. The angle between a pair of tangents from a point P to the circle $x^{2}+y^{2}-6 x-8 y+9=0$ is $\frac{\pi}{3}$. Find the equation of the locus of the point P.

- Watch Video Solution

35. Find the equations of the tangents to the circle $x^{2}+y^{2}=9$, which
(i) are parallel to the line $3 x+4 y-5=0$
(ii) are perpendicular to the line $2 x+3 y+7=0$
(iii) make on angle of 60° with the X -axis

- Watch Video Solution

36. Prove that the line $\mid x+m y+n=0$ toches the circle $(x-a)^{2}+(y-b)^{2}=r^{2}$ if $(a l+b m+n)^{2}=r^{2}\left(l^{2}+m^{2}\right)$

- Watch Video Solution

37. Show that the line $3 x-4 y=1$ touches the circle $x^{2}+y^{2}-2 x+4 y+1=0$. Find the coordinates of the point of contact.

- Watch Video Solution

38. If $\mathrm{Ix}+\mathrm{my}=1$ touches the circle $x^{2}+y^{2}=a^{2}$, prove that the point (l, m) lies on the circle $x^{2}+y^{2}=a^{-2}$

Watch Video Solution

39. Show that the line $(x-2) \cos \theta+(y-2) \sin \theta=1$ touches a circle for all values of θ. Find the circle.

- Watch Video Solution

40. Find the equation of the normal to the circle $x^{2}+y^{2}-2 x=0$ parallel to the line $x+2 y=3$.
41. Find the equation of the normal to the circle $x^{2}+y^{2}-5 x+2 y-48=0$ at the point $(5,6)$.

- Watch Video Solution

42. Find the equatios of the tangents to the circle $x^{2}+y^{2}=16$ drawn from the piont $(1,4)$.

- View Text Solution

43. The angle between a pair of tangents from a point P to the circe $x^{2}+y^{2}+4 x-6 y+9 \sin 2 \alpha+13 \cos ^{2} \alpha=0$ is 2α. Find the equation of the locus of the point P.

- Watch Video Solution

44. Find the length of the tangents drawn from the point $(3,-4)$ to the circle
$2 x^{2}+2 y^{2}-7 x-9 y-13=0$.

- Watch Video Solution

45. If the length of the tangent drawn from (f, g) to the circle $x^{2}+y^{2}=6$ be twice the length of the tangent drawn from the same point to the circle $x^{2}+y^{2}+3(x+y)=0$ then show that $g^{2}+f^{2}+4 g+4 f+2=0$.

- Watch Video Solution

46. Find the area of the triangle formed by the tangents from the point
$(4,3)$ to the circle $x^{2}+y^{2}=9$ and the line joining their points of contact.
47. Show that the length of the tangent from anypoint on the circle : $x^{2}+y^{2}+2 g x+2 f y+c=0$ to the circle $x^{2}+y^{2}+2 g x+2 f y+c_{1}=0$ is $\sqrt{c_{1}-c}$.

- Watch Video Solution

48. Find the power of point $(2,4)$ with respect to the circle $x^{2}+y^{2}-6 x+4 y-8=0$

- Watch Video Solution

49. Show that the locus of the point, the powers of which with respect to two given circles are equal, is a staight line.

- Watch Video Solution

50. If the pair of tangents are drawn from the point $(4,5)$ to the circle $x^{2}+y^{2}-4 x-2 y-11=0$, then
(i) Find the length of chord of contact.
(ii) Find the area of the triangle fromed by a pair of tangents and their chord of contact.
(iii) Find the angle between the pair of tangents.

- Watch Video Solution

51. Tangents PQ, PR are drawn to the circle $x^{2}+y^{2}=36$ from the point $\mathrm{p}(-8,2)$ touching the circle at Q, R respectively. Find the equation of the circumcircle of $\triangle P Q R$.

- Watch Video Solution

52. Find the condition that the chord of contact of tangents from the point (α, β) to the circle $x^{2}+y^{2}=a^{2}$ should subtend a right angle at the centre. Hence find the locus of (α, β).

- Watch Video Solution

53. If the chord of contact of the tangents drawn from a point on the circle $x^{2}+y^{2}+y^{2}=a^{2}$ to the circle $x^{2}+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$, then prove that a, b and c are in GP.

D Watch Video Solution

54. Find the equation of the chord of $x^{2}+y^{2}-6 x+10 y-9=0$ which is bisected at $(-2,4)$

- Watch Video Solution

55. Find the middle point of the chord intercepted on line $l x+m y+n=0$ by circle $x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

56. Through a fixed point (h, k), secant are drawn to the circle $x^{2}+y^{2}=r^{2}$. Show that the locus of the midpoints of the secants by the circle is $x^{2}+y^{2}=h x+k y$.

- Watch Video Solution

57. Find the locus of the midpoint of the chords of the circle $x^{2}+y^{2}=a^{2}$ which subtend a right angle at the point $(c, 0)$.

- Watch Video Solution

58. Find the equation of the chord of the circle $x^{2}+y^{2}=a^{2}$ passing through the point $(2,3)$ farthest from the center.

- Watch Video Solution

59. Find the equations of the tangents from the point $A(3,2)$ to the circle $x^{2}+y^{2}+4 x+6 y+8=0$.

- Watch Video Solution

60. The angle between the tangents drawn from a point on the director circle $x^{2}+y^{2}=50$ to the circle $x^{2}+y^{2}=25$, is

- Watch Video Solution

61. The equation of the diameter of the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ which corresponds to the chord $a x+b y+d=0$ is $\lambda x-a y+\mu g+k=0$ then $\lambda+\mu$ is

- Watch Video Solution

62. Two circles $x^{2}+y^{2}+2 x-4 y=0$ and $x^{2}+y^{2}-8 y-4=0$ (A) touch each other externally (B) intersect each other (C) touch each other internally (D) none of these
63. if $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$.

(D) Watch Video Solution

64. Find the equations to the common tangents of the circles $x^{2}+y^{2}-2 x-6 y+9=0$ and $x^{2}+y^{2}+6 x-2 y+1=0$

- Watch Video Solution

65. The common tangents to the circles $x^{2}+y^{2}+2 x=0$ and $x^{2}+y^{2}-6 x=0$ form a triangle which is

(Watch Video Solution

66. Find the number of common tangents to the circles $x^{2}+y^{2}-8 x+2 y+8=0$ and $x^{2}+y^{2}-2 x-6 y-15=0$.

- Watch Video Solution

67. Find the lengths of external and internal common tangents and also find the angle between external common tangents and internal common tangents of the circles

- View Text Solution

68. The length of the common chord of the circles $(x-a)^{2}+(y-b)^{2}=c^{2}$ and $(x-b)^{2}+(y-a)^{2}=c^{2}$, is

- Watch Video Solution

69. Find the equation of the circle passing throught $(1,1)$ and the points of intersection of the circles $x^{2}+y^{2}+13 x-3 y=0$ and $2 x^{2}+2 y^{2}+4 x-7 y-25=0$

- Watch Video Solution

70. Find the equation of the circle passing through the point of intersection of the circles $x^{2}+y^{2}-6 x+2 y+4=0, x^{2}+y^{2}+2 x-4 y-6=0$ and with its centre on the line $y=x$.

- Watch Video Solution

71. Find the equation of the circle passing through the points of intersection of the circles $x^{2}+y^{2}-2 x-4 y-4=0 \quad$ and $x^{2}+y^{2}-10 x-12 y+40=0$ and whose radius is 4.
72. Find the equation of the circle through points of intersection of the circle $x^{2}+y^{2}-2 x-4 y+4=0$ and the line $x+2 y=4$ which touches the line $x+2 y=0$.

- Watch Video Solution

73. Find the equation of the circle whose diameter is the common chord of the circles
$x^{2}+y^{2}+2 x+3 y+1=0$ and $x^{2}+y^{2}+4 x+3 y+2=0$

- Watch Video Solution

74. If two curves whose equations are $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \quad$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x+2 f^{\prime} y+c=0$ intersect in four concyclic point., then
75. Find the angle between the circles $S: x^{2}+y^{2}-4 x+6 y+11=0$ and $S^{\prime}: x^{2}+y^{2}-2 x+8 y+13=0$

Watch Video Solution

76. Show that the circles
$x^{2}+y^{2}-6 x+4 y+4=0$ and $x^{2}+y^{2}+x+4 y+1=0 \quad$ cut orthogonally.

- Watch Video Solution

77. Find the equation of the circle which cuts the circle $x^{2}+y^{2}+5 x+7 y-4=0$ orthogonally, has its centre on the line $\mathrm{x}=2$ and passes through the point (4,-1).

- Watch Video Solution

78. Find the equations of the two circles which intersect the circles
$x^{2}+y^{2}-6 y+1=0$ and $x^{2}+y^{2}-4 y+1=0$
orthogonally and touch the line $3 x+4 y+5=0$ '.

- View Text Solution

79. Two circles which pass through the points $A(0, a), B(0,-a)$ and touch the line $y=m x+c$ wil cut orthogonally if

- Watch Video Solution

80. Equation of the circle cutting orthogonal these circles $x^{2}+y^{2}-2 x-3 y-7=0, x^{2}+y^{2}+5 x-5 y+9=0 \quad$ and $x^{2}+y^{2}+7 x-9 y+29=0$ is:

- Watch Video Solution

$x^{2}+y^{2}+2 g x+2 f y=0$ and $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y=0$ touch each other then $\mathrm{f}^{\prime} \mathrm{g}=\mathrm{fg}$ '.

- Watch Video Solution

82. A and B are two fixed points and P moves so that $P A=n P B$. Show that locus of P is a circle and for different values of n all the circles have a common radical axis.

- Watch Video Solution

83. Shwo that the difference of the squares of the tangents to two coplanar circles from any point P in the plane of the circles varies as the perpendicular from P on their radical axis. Also, prove that the locus of a point such that the difference of the squares of the tangents from it to two given circles is constant is a line parallel to their radical axis.
84. Find the radical centre of circles
$x^{2}+y^{2}+3 x+2 y+1=0, x^{2}+y^{2}-x+6 y+5=0$

Also find the equation of the circle cutting them orthogonally.

- View Text Solution

85. Find the radical centre of three circles described on the three sides $4 x$ $7 y+10=0, x+y-5=a n d 7+4 y-15=0$ of a triangle as diameters.

- Watch Video Solution

86. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0, a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=$ has perpendicular diagonals, then $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$ $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2} a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$ (d) none of these
87. Find the equation of the system of circles co-axial with the circles $x^{2}+y^{2}+4 x+2 y+1=0$ and $x^{2}+y^{2}-2 x+6 y-6=0$ Also, find the equation of that particular circle whose cneter lies on the radical axis.

- Watch Video Solution

88. Prove that the tangents from any point of a fixed circle of co-axial system to two other fixed circles of the system are in a constant ratio.

- Watch Video Solution

89. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$, be the centres of three co-axial circles and t_{1}, t_{2}, t_{3} be the lengths of the tangents of them any piont, prove that $\overline{B C} \cdot t_{1}^{2}+\overline{C A} \cdot t_{2}^{2}+\overline{A B} \cdot t_{3}^{2}=0$

- View Text Solution

90. Find the coordinates of the limiting points of the system of circles determined by the two cricles
$x^{2}+y^{2}+5 x+y+4=0$ and $x^{2}+y^{2}+10 x-4 y-1=0$

(Watch Video Solution

91. If the origin be one limiting point of system of co-axial circles of which $x^{2}+y^{2}+3 x+4 y+25=0$ is a member, find the other limiting point.

- Watch Video Solution

92. The lines joining the origin to the point of intersection of $x^{2}+y^{2}+2 g x+c=0$ and $x^{2}+y^{2}+2 f y-c=0$ are at right angles if
93. Find the radical axis of co-axial system of circles whose limiting points are $(-1,2)$ and $(2,3)$.

Watch Video Solution

94. Find the equation of the circle which passes through the origin and belonges to the co-axial of circles whose limiting points are $(1,2)$ and $(4,3)$.

- Watch Video Solution

95. The equation of the image of the circle $x^{2}+y^{2}+16 x-24 y+183=0$ by the line mirror $4 x+7 y+13=0$ is :

- Watch Video Solution

96. If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y$ (where $p q \neq q$) are bisected by the x -axis, then
A. $|p|=|q|$
B. $p^{2}=8 q^{2}$
C. $p^{2}<8 q^{2}$
D. $p^{2}>8 q^{2}$

Answer: D

- Watch Video Solution

97. The values of λ for which the circle $x^{2}+y^{2}+6 x+5+\lambda\left(x^{2}+y^{2}-8 x+7\right)=0$ dwindles into a point are
A. $1 \pm \frac{\sqrt{2}}{3}$
B. $2 \pm \frac{2 \sqrt{2}}{3}$
C. $2 \pm \frac{4 \sqrt{2}}{3}$
D. $1 \pm \frac{4 \sqrt{2}}{3}$

Answer: C

98. If $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) . \mathrm{f}(\mathrm{y})$ for all x and $\mathrm{y}, \mathrm{f}(1)=2$ and $\alpha_{n}=f(n), n \in N$, then the equaqtion of the circle having (α_{1}, α_{2}) and (α_{3}, α_{4}) as the ends of its one diameter is
A. $(x-2)(x-8)+(y-4)(x-16)=0$
B. $(x-4)(x-8)+(y-2)(x-16)=0$
C. $(x-2)(x-16)+(y-4)(y-8)=0$
D. $(x-6)(x-8)+(y-5)(y-6)=0$

Answer: A

Watch Video Solution

99. Two circles of radii a and b touching each other externally, are inscribed in the area bounded by $y=\sqrt{1-x^{2}}$ and the x-axis. If $b=\frac{1}{2}$, then a is equal to
A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

100. There are two circles whose equation are $x^{2}+y^{2}=9$ and $x^{2}+y^{2}-8 x-6 y+n^{2}=0, n \in Z$. If the two circles have exactly two common tangents, then the number of possible values of n is
A. 2
B. 7
C. 8
D. 9

- Watch Video Solution

101. Suppose $f(x, y)=0$ is the equation of a circle such that $f(x, 1)=0$ has equal roots (each equal to 2) and $f(1, x)=0$ also has equal roots (each equal to zero). The equation of circle is
A. $x^{2}+y^{2}+4 x+3=0$
B. $x^{2}+y^{2}+4 y+3=0$
C. $x^{2}+y^{2}+4 x-3=0$
D. $x^{2}+y^{2}-4 x+3=0$

Answer: $x^{2}+y^{2}-4 x+3=0$
102. A variable circle C has the equation $x^{2}+y^{2}-2\left(t^{2}-3 t+1\right) x-2\left(t^{2}+2 t\right) y+t=0, \quad$ where $\quad \mathrm{t} \quad$ is $\quad \mathrm{a}$ parameter.The locus of the centre of the circle is
A. $\left(\frac{1}{10},-\frac{1}{10}\right)$
B. $\left(\frac{1}{10}, \frac{1}{10}\right)$
C. $\left(-\frac{1}{10}, \frac{1}{10}\right)$
D. $\left(-\frac{1}{10},-\frac{1}{10}\right)$

Answer: Hence, required ordered pair is $\left(-\frac{1}{10}, \frac{1}{10}\right)$

- Watch Video Solution

103. If the radii of the circles $(x-1)^{2}+(y-2)^{2}+(y-2)^{2}=1$ and $(-7)^{2}+(y-10)^{2}=4$ are increasing uniformly w.r.t. time as 0.3 units/s and $0.4 \mathrm{unit} / \mathrm{s}$, respectively, then at what value of t will they touch each other?
A. 45 s
B. 90 s
C. 11s
D. 135 s

Answer: $\Rightarrow \mathbf{t}=10$ or $\mathbf{t}=90$ " " $[\because t>0]$

- Watch Video Solution

104. 18) A light ray gets reflected from the $x=-2$. If the reflected ray touches the circle $x^{2}+y^{2}=4$ and point of incident is $(-2,-4)$, then equation of incident ray is A) $4 y+3 x+22=0$ B) $3 y+4 x+20=0$ C) $4 y+2 x+20=0$ D) $y+x+6-0$
A. $4 y+3 x+22=0$
B. $3 y+4 x+20=0$
C. $4 y+2 x+20=0$
D. $y+x+6=0$

D Watch Video Solution

105. If a circle having centre at (α, β) radius r completely lies with in two lines $\mathrm{x}+\mathrm{y}=2$ and $\mathrm{x}+\mathrm{y}=-2$, then, $\min .(|\alpha+\beta+2|,|\alpha+\beta-2|$ is
A. greater than $\sqrt{2} r$
B. less than $\sqrt{2} r$
C. greater than $2 r$
D. less than $2 r$

Answer: or min. $\{|\alpha+\beta+2|,|\alpha+\beta-2|\}>\sqrt{2} r$

- Watch Video Solution

106. If point $P(x, y)$ is called a lattice point if $x, y \in I$. Then the total number of lattice points in the interior of the circle $x^{2}+y^{2}=a^{2}, a \neq 0$
can not be:
A. 202
B. 203
C. 204
D. 205

Answer: \therefore Number of such points must be of the form $4 n+1$, where $n=0,1,2, \ldots .$.

D Watch Video Solution

107. Let $x a n d y$ be real variables satisfying $x^{2}+y^{2}+8 x-10 y-40=0$.

Let $a=\max \left\{\sqrt{(x+2)^{2}+(y-3)^{2}}\right\} \quad$ and
$b=\min \left\{\sqrt{(x+2)^{2}+(y-3)^{2}}\right\}$. Then $a+b=18$ (b) $a+b=\sqrt{2}$ $a-b=4 \sqrt{2}$ (d) $a \dot{b}=73$
A. $a+b=18$
B. $a-b=4 \sqrt{2}$
C. $a+b=4 \sqrt{2}$
D. $a . b=73$

Answer: $\therefore a+b=18, a-b=4 \sqrt{2}, a b=73$

- Watch Video Solution

108. The equation of tangents drawn from the origin to the circle $x^{2}+y^{2}-2 r x-2 h y+h^{2}=0$
A. $x=0$
B. $y=0$
C. $\left(h^{2}-r^{2}\right) x-2 r h y=0$
D. $\left(h^{2}-r^{2}\right) x+2 r h y=0$

Answer: $\left(h^{2}-r^{2}\right) x-2 r h y=0$
109. Point M moves on the circle $(x-4)^{2}+(y-8)^{2}=20$. Then it brokes away from it and moving along a tangent to the circle, cuts the x axis at the point $(-2,0)$. The co-ordinates of a point on the circle at which the moving point broke away is
A. $\left(\frac{42}{5}, \frac{36}{5}\right)$
B. $\left(-\frac{2}{5}, \frac{44}{5}\right)$
C. $(6,4)$
D. $(2,4)$

Answer: Therefore, the points are (6,4) and $\left(-\frac{2}{5}, \frac{44}{5}\right)$

- Watch Video Solution

110. The equation of four circles are $(x \pm a)^{2}+\left(y \pm a 2=a^{2}\right.$. The radius of a circle touching all the four circles is $(\sqrt{2}+2) a$ (b) $2 \sqrt{2} a$ $(\sqrt{2}+1) a(\mathrm{~d})(2+\sqrt{2}) a$
A. $(\sqrt{2}-1) a$
B. $2 \sqrt{2} a$
C. $(\sqrt{2}+1) a$
D. $(2+\sqrt{2}) a$

Answer: $=a \sqrt{2}+a=a(\sqrt{2}+1)$

- Watch Video Solution

111. Consider the relation $4 l^{2}-5 m^{2}+6 l+1=0$, where $\mathrm{I}, \mathrm{m} \in R$.

The line $1 x+m y+1=0$ touches a fixed circle whose equation is
A. $x^{2}+y^{2}-4 x-5=0$
B. $x^{2}+y^{2}+6 x+6=0$
C. $x^{2}+y^{2}-6 x+4=0$
D. $x^{2}+y^{2}+4 x-4=0$

Answer: $x^{2}+y^{2}-6 x+4=0$
112. Consider the relation $4 l^{2}-5 m^{2}+6 l+1=0$, where l, $m \in R$ The number of tangents which can be drawn from the point $(2,-3)$ to the above fixed circle are
A. $\left(\frac{1}{2}, \frac{5}{2}\right)$
B. $\left(\frac{1}{3}, \frac{4}{3}\right)$
C. $\left(-\frac{1}{2}, \frac{3}{2}\right)$
D. $\left(\frac{1}{2}, \frac{5}{2}\right)$

Answer: \therefore Fixed piont is $\left(\frac{1}{2}, \frac{-5}{2}\right)$

- Watch Video Solution

113. Consider the relation $4 l^{2}-5 m^{2}+6 l+1=0$, where $l, m \in R$

The number of tangents which can be drawn from the point $(2,-3)$ to the
above fixed circle are
A. 0
B. 1
C. 2
D. 1 or 2

Answer: Therefore, point $(2,-3)$ lies outside the circle from which two tangents can drawn.

- Watch Video Solution

114. If α - chord of a circle be that chord which subtends an angle α at the centre of the circle.

If $\mathrm{x}+\mathrm{y}=1$ is α-chord of $x^{2}+y^{2}=1$, then α is equal to
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{3 \pi}{4}$

Answer: $\alpha=\frac{\pi}{2}$

- Watch Video Solution

115. Let α chord of a circle be that chord of the circle which subtends an angle α at the center.

If the slope of a $\pi / 3$ chord of $x^{2}+y^{2}=4$ is 1 , then its equation is
A. $x-y+\sqrt{6}=0$
B. $x-y+\sqrt{3}=0$
C. $x-y-\sqrt{3}=0$
D. $x-y-2 \sqrt{3}=0$

Answer: $x-y \pm \sqrt{6}=0$
116. Let α chord of a circle be that chord of the circle which subtends an angle α at the center.

The distance of $2 \pi / 3$ chord of $x^{2}+y^{2}+2 x+4 y+1=0$ from the center is
A. $\frac{1}{\sqrt{2}}$
B. 1
C. $\sqrt{2}$
D. 2

Answer: $O M=2 \cos \left(\frac{\pi}{3}\right)=1$

- Watch Video Solution

117. A circle with center in the first quadrant is tangent to $y=x+10, y=x-6$ and the Y-axis. Let (p, q) be the centre of the circle. If the value oif $(p+q)=a+b \sqrt{a}$ when $a, b \in Q$, then the value of $|a-b|$ is
118. If the circle $x^{2}+y^{2}+(3+\sin \beta) x+2 \cos \alpha y=0 \quad$ and $x^{2}+y^{2}+2 \cos \alpha x+2 c y=0$ touch each other, then the maximum value of c is

- Watch Video Solution

119. C_{1} is a circle of radius 2 touching X -axis and Y -axis. C_{2} is another circle of radius greater than 2 and touching the axes as well as the circle C_{1}

Statemnet I Radius of Circle $C_{2}=\sqrt{2}(\sqrt{2}+1)(\sqrt{2}+2)$
Statement II Centres of both circles always lie on the line $\mathrm{y}=\mathrm{x}$.
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: \therefore Statements I is true and Statements II is always not true (where circles in II of IV quadrants)

D Watch Video Solution

120. From the point $P(\sqrt{2}, \sqrt{6})$, tangents $P \operatorname{AandP} B$ are drawn to the circle $x^{2}+y^{2}=4$ Statement 1 :The area of quadrilateral $O A P B(O$ being the origin) is 4 . Statement 2 : The area of square is a^{2}, where a is the length of side.
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: \therefore Both statements are true and statement II is correct explanation of statement.I

- Watch Video Solution

121. Find the equation of the circle having the lines $x^{2}+2 x y+3 x+6 y=0$ as its normal and having size just sufficient to contain the circle $x(x-4)+y(y-3)=0$

- Watch Video Solution

122. Let a circle be given by $2 x(x-1)+y(2 y-b)=0,(a \neq 0, b \neq 0)$.

Find the condition on $a a n d b$ if two chords each bisected by the x -axis, can be drawn to the circle from $\left(a, \frac{b}{2}\right)$

- Watch Video Solution

123. Let C_{1} and C_{2} be two circles with C_{2} lying inside C_{1} circle C lying inside C_{1} touches C_{1} internally andexternally. Identify the locus of the centre of C

- Watch Video Solution

124. A circle of constant radius a passes through the origin O and cuts the axes of coordinates at points P and Q. Then the equation of the locus of the foot of perpendicular from O to $P Q$ is $\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2} \quad\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2}$ $\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2}$

(Watch Video Solution

125. The circle $x^{2}+y^{2}-4 x-4 y+4=0$ is inscribed in a triangle which has two of its sides along the coordinate axes. The locus of the circumcenter of the triangle is $x+y-x y+k\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=0$. Find k.
126. P is variable point on the line $y=4$. tangents are drawn to the circle $x^{2}+y^{2}=4$ from the points touch it at A and B . The parallelogram PAQB be completed.If locus of Q is $(y+a)\left(x^{2}+y^{2}\right)=b y^{2}$, the value of $a+b$ Is:

- Watch Video Solution

127. Show that the circumcircle of the triangle formed by the lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ passes through the origin if
$\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)\left(a^{2}+b^{2}\right)=a b c(b+c)(c+a)(a+b)$.

- View Text Solution

128. If four points P, Q, R, S in the plane be taken and the square of the length of the tangents from P to the circle on $Q R$ as diameter be denoted

$$
\{P, R S\}-\{P, Q S\}+\{Q, P R\}-\{Q, R S\}=0
$$

- Watch Video Solution

129. Let T_{1}, T_{2} and be two tangents drawn from $(-2,0)$ onto the circle $C: x^{2}+y^{2}=1$. Determine the circles touching C and having T_{1}, T_{2} as their pair of tangents. Further, find the equations of all possible common tangents to these circles when taken two at a time

- Watch Video Solution

130. Find the equation of the circle of minimum radius which contains the three cricles

$$
x^{2}-y^{2}-4 y-5=0
$$

$x^{2}+y^{2}+12 x+4 y+31=0$ and
$x^{2}+y^{2}+6 x+12 y+36=0$
131. Find the point P on the circle $x^{2}+y^{2}-4 x-6 y+9=0$ such that (i) $\angle P O X$ is minimum (ii) $O P$ is maximum, where O is the origin and $O X$ is the x-axis.

- Watch Video Solution

132. The circle $x^{2}+y^{2}-4 x-8 y+16=0$ rolls up the tangent to it at $(2+\sqrt{3}, 3)$ by 2 units,assuming the x-axis as horizontal, find the equation of the circle in the new position.

- Watch Video Solution

133. Find the intervals of the values of a for which the line $y+x=0$ bisects two chords drawn from the point $\left(\frac{1+\sqrt{2} a}{2}, \frac{1-\sqrt{2} a}{2}\right)$ to the circle $2 x^{2}+2 y^{2}-(1+\sqrt{2} a) x-(1-\sqrt{2} a)=0$
134. A ball moving around the circle $x^{2}+y^{2}-2 x-4 y-20=0$ in anticlockwise direction leaves it tangentially at the point $\mathrm{P}(-2,-2)$. After getting reflected from a straingt line, it passes through the centre of the circle.

Find the equation of the straight line if its perpendicular distance from P is $5 / 2$. You can assume that the angle of incidence is equal to the angle of reflection.

- View Text Solution

135. Find the limiting points of the circles $\left(x^{2}+y^{2}+2 g x+c\right)+\lambda\left(x^{2}+y^{2}+2 f y+d\right)=0$ and show that the square of the distance between them is

$$
\frac{(c-d)^{2}-4 f^{2} g+4 c f^{2}+4 d g^{2}}{f^{2}+g^{2}}
$$

- Watch Video Solution

136. One vertex of a triangle of given species is fixed and another moves along circumference of a fixed circle. Prove that the locus of the remaining vertex is a circle and find its radius.

- View Text Solution

Exercise For Session 1

1. If $x^{2}+y^{2}-2 x+2 a y+a+3=0$ represents the real circle with nonzero radius, then find the values of a.
A. $a \in(-\infty,-1)$
B. $a \in(-1,2)$
C. $a \in(2, \infty)$
D. $a \in(-\infty,-1) \cup(2, \infty)$

Answer: D

2. If the equation $p x^{2}+(2-q) x y+3 y^{2}-6 q x+30 y+6 q=0$ represents a circle, then find the values of $p+q$
A. 5
B. 13
C. 25
D. 41

Answer: A

- Watch Video Solution

3. Find the equation of the circle with centre $(2,2)$ and passing through the point $(4,5)$.
A. $x^{2}+y^{2}+4 x+4 y-5=0$
B. $x^{2}+y^{2}-4 x-4 y-5=0$
C. $x^{2}+y^{2}-4 x-13=0$
D. $x^{2}+y^{2}-4 x-4 y+5=0$

Answer: B

- Watch Video Solution

4. One of the diameters of the circle $x^{2}+y^{2}-12 x+4 y+6=0$ is given by
A. $x+y=0$
B. $x+3 y=0$
C. $x=y$
D. $3 x+2 y=0$

Answer: B

5. If the lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.
A. $\frac{3}{2}$
B. 3
C. $\frac{5}{2}$
D. 5

Answer: A

- Watch Video Solution

6. Area of the circle in which a chord of length $\sqrt{2}$ makes an angle $\frac{\pi}{2}$ at the centre,
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: C

- Watch Video Solution

7. The lines $2 x-3 y-5=0$ and $3 x-4 y=7$ are diameters of a circle of area $154(=49 \pi)$ sq. units, then the equation of the circle is
A. $x^{2}+y^{2}+2 x-2 y-62=0$
B. $x^{2}+y^{2}+2 x-2 y-47=0$
C. $x^{2}+y^{2}+2 x-2 y-62=0$
D. $x^{2}+y^{2}+2 x-2 y-47=0$

Answer: D

- Watch Video Solution

8. If the lines $2 x+3 y+1=0$ and $3 x-y-4=0$ lie along diameters of a circle of circumference 10π, then the equation of the circle is
A. $x^{2}+y^{2}+2 x-2 y-23=0$
B. $x^{2}+y^{2}-2 x-2 y-23=0$
C. $x^{2}+y^{2}+2 x+2 y-23=0$
D. $x^{2}+y^{2}+2 x-2 y-23=0$

Answer: A

- Watch Video Solution

9. An acute triangle PQR is inscribed in the circle $x^{2}+y^{2}=25$. If Q and R have coordinates $(3,4)$ and $(-4,3)$ respectively, then find $\angle Q P R$ in degree
A. 90
B. 60
C. 45
D. 30

Answer: C

- Watch Video Solution

10. If a circle is concentric with the circle $x^{2}+y^{2}-4 x-6 y+9=0$ and passes through the point $(-4,-5)$ then its equation is
A. $x^{2}+y^{2}+4 x+6 y-87=0$
B. $x^{2}+y^{2}+4 x+6 y+87=0$
C. $x^{2}+y^{2}-4 x-6 y-87=0$
D. $x^{2}+y^{2}-4 x-6 y+87=0$

Answer: C

- Watch Video Solution

11. Let $A B$ be a chord of the circle $x^{2}+y^{2}=r^{2}$ subtending a right angle at the center. Then the locus of the centroid of the $\triangle P A B$ as P moves on the circle is (1) A parabola (2) A circle (3) An ellipse (4) A pair of straight lines
A. a parabola
B. a circle
C. an ellipse
D. a pair of straight lines

Answer: B

- Watch Video Solution

12. Let $P Q$ and RS be tangents at the extremities of the diameter $P R$ of a circle of radius r. If $P S$ and $R Q$ intersect at a point X on the circumference of the circle, then $2 r$ equals
A. $\sqrt{P Q \cdot R S}$
B. $\frac{P Q+R S}{2}$
C. $\frac{2 P Q \cdot R S}{P Q+R S}$
D. $\sqrt{\frac{(P Q)^{2}+(R S)^{2}}{2}}$

Answer: A

- Watch Video Solution

13. Find the centre and radius of circle $5 x^{2}+5 y^{2}+4 x-8 y=16$.
A. $\left(\frac{2}{5}, \frac{4}{5}\right)$
B. $\left(-\frac{2}{5}, \frac{4}{5}\right)$
C. 3
D. 2

Answer: B::D

14. Prove that the centres of the circles $x^{2}+y^{2}=1$, $x^{2}+y^{2}+6 x-2 y-1=0$ and $x^{2}+y^{2}-12 x+4 y=1$ are collinear

- Watch Video Solution

15. Find the equation of the circle having $(1,-2)$ as its centre and passing through the intersection of the lines $3 x+y=14 a d n 2 x+5 y=18$.

- Watch Video Solution

16. Equation of circle passing through the centre of the circle $x^{2}+y^{2}-4 x-6 y-8=0$ and being concentric with the circle $x^{2}+y^{2}-2 x-8 y-5=0$ is

- Watch Video Solution

17. Prove that the locus of the centre of the circle $\frac{1}{2}\left(x^{2}+y^{2}\right)+x \cos \theta+y \sin \theta-4=0$ is $x^{2}+y^{2}=1$

- Watch Video Solution

18. Find the equation of the following curves in cartesian form. If the curve is a circle find the centres and radii. $x=-1+2 \cos \alpha, y=3+2 \sin \alpha$.

- Watch Video Solution

Exercise For Session 2

1. If the line $x+2 b y+7=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$, then find the value of b
A. 1
B. 3
C. 5
D. 7

Answer: C

- Watch Video Solution

2. If one end of a diameter of the circle $2 x^{2}+2 y^{2}-4 x-8 y+2=0$ is
$(-1,2)$, then the other end of the diameter is
A. $(2,1)$
B. $(3,2)$
C. $(4,3)$
D. $(5,4)$

Answer: B

3. If a circle passes through the point $(0,0),(a, 0) a n d(0, b)$, then find its center.
A. (a, b)
B. $\left(\frac{a}{2}, \frac{b}{2}\right)$
C. $\left(\frac{a}{2}, \frac{b}{4}\right)$
D. $\left(\frac{a}{4}, \frac{b}{2}\right)$

Answer: B

- Watch Video Solution

4. A circle passes through the points $(-1,3)$ and $(5,11)$ and its radius is 5 .

Then, its centre is
A. $(-5,0)$
B. $(-5,7)$
C. $(2,7)$
D. $(5,0)$

Answer: C

- Watch Video Solution

5. The radius of the circle, having centre at $(2,1)$, whose one of the chord is a diameter of the circle $x^{2}+y^{2}-2 x-6 y+6=0$
A. 3
B. 2
C. 1
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

6. The centre of circle inscribed in a square formed by lines
$x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$ is $(4,7)(7,4)(9,4)(4,9)$
A. $(4,7)$
B. $(7,4)$
C. $(9,4)$
D. $(4,9)$

Answer: A

- Watch Video Solution

7. $A B C D$ is a square in first quadrant whose side is a, taking $A B$ and $A D$ as axes, prove that the equation to the circle circumscribing the square is $x^{2}+y^{2}=a(x+y)$.
A. $x^{2}+y^{2}+a x-a y=0$
B. $x^{2}+y^{2}-a x+a y=0$
C. $x^{2}+y^{2}-a x-a y=0$
D. $x^{2}+y^{2}+a x-a y=0$

Answer: C

- Watch Video Solution

8. The locus of the centre of the circle for which one end of the diameter is $(3,3)$ while the other end lies on the line $x+y=4$ is
A. $x+y=3$
B. $x+y=5$
C. $x+y=7$
D. $x+y=9$

Answer: B

9. The equation of the circle which passes through $(1,0)$ and $(0,1)$ and has its radius as small as possible, is
A. $x^{2}+y^{2}+x+y=0$
B. $x^{2}+y^{2}-x+y=0$
C. $x^{2}+y^{2}+x-y=0$
D. $x^{2}+y^{2}-x-y=0$

Answer: D

- Watch Video Solution

10. find the value of ' c ' if the points $(2,0),(0,1),(4,5)$ and $(0, c)$ are concylic
A. 1
B. -1
C. $\frac{14}{3}$
D. $\frac{-14}{3}$

- Watch Video Solution

11. The point on a circle nearest to the point $P(2,1)$ is at a distance of 4 units and the farthest point is $(6,5)$. Then find the equation of the circle.
A. $(3+\sqrt{2}, 2+\sqrt{2})$
B. $(2+\sqrt{2}, 3+\sqrt{2})$
C. $(4+\sqrt{2}, 3+\sqrt{2})$
D. $(3+\sqrt{2}, 4+\sqrt{2})$

Answer: C

- Watch Video Solution

12. The intercept on line $y=x$ by circle $x^{2}+y^{2}-2 x=0$ is AB. Find equation of circle with $A B$ as a diameter.
A. $x^{2}+y^{2}-x-y=0$
B. $x^{2}+y^{2}-x+y=0$
C. $x^{2}+y^{2}+x+y=0$
D. $x^{2}+y^{2}+x-y=0$

Answer: A

- Watch Video Solution

13. Find the equation of the circle the end point of whose diameter are $(2,3)$ and (2,4). Find its centre and radius.

- Watch Video Solution

14. If $(4,1)$ be an end of a diameter of the circle $x^{2}+y^{2}-2 x+6 y-15=0$, find the coordinates of the other end of the diameter.
15. The sides of a rectangle are given by the equations $x=-2, x=4, y=-2$ andy=5. Find the equation of the circle drawn on the diagonal of this rectangle as its diameter.

- Watch Video Solution

16. Find the equation(s) of circle passing through the points $(1,1),(2,2)$ and whose radius is 1 unit

- Watch Video Solution

17. Find the equation of the circle which passes through the points $(3,4)$, $(3,-6)$ and $(1,2)$.
18. Find the length of intercept, the circle $x^{2}+y^{2}+10 x-6 y+9=0$ makes on the x-axis.
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

2. The circle $x^{2}+y^{2}+4 x-7 y+12=0$ cuts an intercept on y-axis equal to

A. 1

B. 3
C. 5
D. 7

Answer: A

D Watch Video Solution

3. Find the locus of the centre of a circle which passes through the origin and cuts off a length $2 l$ from the line $x=c$.
A. $y^{2}+2 c x=b^{2}+c^{2}$
B. $x^{2}+c x=b^{2}+c^{2}$
C. $y^{2}+2 c y=b^{2}=b^{2}+c^{2}$
D. $x^{2}+c y=b^{2}+c^{2}$

Answer: A

4. If a straight line through $C(\sqrt{-8}, \sqrt{8})$ make an angle 135° with the x axis, cuts the circle $x=5 \cos \theta, y=5 \sin \theta$ in points A and B , find length of segment $A B$.
A. 3
B. 5
C. 8
D. 10

Answer: D

- Watch Video Solution

5. If a circle of constant radius $3 c$ passes through the origin and meets the axes at AandB, prove that the locus of the centroid of $A B C$ is a circle of radius 2 .
A. $x^{2}+y^{2}=k^{2}$
B. $x^{2}+y^{2}=2 k^{2}$
C. $x^{2}+y^{2}=3 k^{2}$
D. $x^{2}+y^{2}=4 k^{2}$

Answer: D

- Watch Video Solution

6. Centre of the circle toucing y-axis at $(0,3)$ and making an intercept 2 units on positive X -axis is
A. $(10, \sqrt{3})$
B. $(\sqrt{3}, 10)$
C. $(\sqrt{10}, 3)$
D. $(3, \sqrt{10})$

Answer: C

7. A circle passes through the points $A(1,0) \operatorname{and} B(5,0)$, and touches the y-axis at $C(0, h)$. If $\angle A C B$ is maximum, then $h=3 \sqrt{5}$ (b) $h=2 \sqrt{5}$ $h=\sqrt{5}(\mathrm{~d}) h=2 \sqrt{10}$
A. $|\lambda|=\sqrt{5}$
B. $|\lambda|=2 \sqrt{5}$
C. $|\lambda|=3 \sqrt{5}$
D. $|\lambda|=4 \sqrt{5}$

Answer: A

Watch Video Solution

8. Equation of circle whose centre is $(3,-1)$ and which cut off an intercept of length 6 unit from the line : $2 x-5 y+18=0$ is:
A. $x^{2}+y^{2}-6 x+2 y-28=0$
B. $x^{2}+y^{2}+6 x-2 y-28=0$
C. $x^{2}+y^{2}+4 x-2 y+24=0$
D. $x^{2}+y^{2}+2 x-2 y-12=0$

Answer: A

- Watch Video Solution

9. The locus of the centre of a circle which touches externally the circle $x^{2}+y^{2}-6 x-6 y+14=0$ and also touches Y -axis, is given by the equation (a) $x 2-6 x-10 y+14=0$ (b) $x 2-10 x-6 y+14=0$ (c) $y r_{-} 6 x-10 y+14-0$ (d) $y, 2-10 x-6 y+14=0$
A. $x^{2}+6 x-10 y+14=0$
B. $x^{2}-10 x-6 y+14=0$
C. $y^{2}-6 x-10 y+14=0$
D. $y^{2}-10 x-6 y+14=0$

- Watch Video Solution

10. Locus of centre of a circle of radius 2 , which rolls on the outside of circle $x^{2}+y^{2}+3 x-6 y-9=0$ is
A. $x^{2}+y^{2}+3 x-6 y-5=0$
B. $x^{2}+y^{2}+3 x-6 y-31=0$
C. $x^{2}+y^{2}+3 x-6 y-11=0$
D. $x^{2}+y^{2}+3 x-6 y-36=0$

Answer: B

- Watch Video Solution

11. The point $\binom{p+1}{p}$ is lying inside the circle $x^{2}+y^{2}-2 x-15=0$. Then the set of all values of p is (where [.] represents the greatest integer
function) $[-2,3)(b)(-2,3)[-2,0) \cup(0,3)$ (d) $[0,3)$
A. $[-2,3]$
B. $(-2,3)$
C. $[-2,3) \cup(0,3)$
D. $[0,3)$

Answer: A

- Watch Video Solution

12. Find the greatest distance of the point $P(10,7)$ from the circle $x^{2}+y^{2}-4 x-2 y-20=0$
A. 5
B. 10
C. 15
D. 20

Answer: C

- Watch Video Solution

13. Find the equations of the circles touching y-axis at $(0,3)$ and making an intercept of 8 units on the x-axis.

- Watch Video Solution

14. Show that the circle $x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$ touches both the coordinate axes.

- Watch Video Solution

15. If the points $(\lambda,-\lambda)$ lies inside the circle $x^{2}+y^{2}-4 x+2 y-8=0$, then find the range of λ.
16. Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the circle concentric with the circle $x^{2}+y^{2}-6 x+12 y+15=0$ and double of its area.

- Watch Video Solution

Exercise For Session 4

1. Find the length of the chord cut-off by $y=2 x+1$ from the circle $x^{2}+y^{2}=2$
A. $\frac{5}{6}$
B. $\frac{6}{5}$
C. $\frac{6}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{6}$

Answer: C

2. The line $3 x-4 y=k$ will cut the circle $x^{2}+y^{2}-4 x-8 y-5=0$ at distinct points if
A. $-10<\lambda<5$
B. $9<\lambda<20$
C. $-35<\lambda<15$
D. $-16<\lambda<30$

Answer: C

- Watch Video Solution

3. If the line $3 x-4 y-\lambda=0$ touches the circle $x^{2}+y^{2}-4 x-8 y-5=0$ at (a, b) then which of the following is not the possible value of $\lambda+a+b$?
A. -22
B. -20
C. 20
D. 22

Answer: C

- Watch Video Solution

4. Locus of mid points of chords to the circle $x^{2}+y^{2}-8 x+6 y+20=0$ which are parallel to the line $3 x+4 y+5=0$ is
A. (1,-2)
B. (-1,2)
C. $(3,4)$
D. $(3,-4)$
5. If a circle, whose centre is $(-1,1)$ touches the straight line $x+2 y=12$, then the co-ordinates of the point of contact are
A. $\left(-\frac{7}{2},-4\right)$
B. $\left(\frac{6}{5}, \frac{27}{5}\right)$
C. $(2,7)$
D. $(-2,-5)$

Answer: B

- Watch Video Solution

6. The area of the triangle formed by the tangent at the point (a, b) to the circle $x^{2}+y^{2}=r^{2}$ and the coordinate axes, is
A. $\frac{r^{4}}{2 a b}$
B. $\frac{r^{2}}{2|a b|}$
C. $\frac{r^{2}}{a b}$
D. $\frac{r^{4}}{|a b|}$

Answer: B

- Watch Video Solution

7. The equation of the tangent of the circle $x^{2}+y^{2}+4 x-4 y+4=0$ which make equal intercepts on the positive coordinate axes, is$x+y=2 x+y=2 \sqrt{2} x+y=4 x+y=8$
A. $x+y=2$
B. $x+y=2 \sqrt{2}$
C. $x+y=4$
D. $x+y=8$

Answer: B

8. If $a>2 b>0$, then find the positive value of m for which $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$.
A. $\frac{2 b}{\sqrt{\left(a^{2}-4 b^{2}\right)}}$
B. $\frac{\sqrt{\left(a^{2}-4 b^{2}\right)}}{2 b}$
C. $\frac{2 b}{a-2 b}$
D. $\frac{b}{a-2 b}$

Answer: A

- Watch Video Solution

9. The angle between a pair of tangents from a point P to the circle $x^{2}+y^{2}-6 x-8 y+9=0$ is $\frac{\pi}{3}$. Find the equation of the locus of the point P.
A. 5
B. 6
C. 7
D. 8

Answer: D

- Watch Video Solution

10. The normal at the point $(3,4)$ on a circle cuts the circle at the point $(-1,-2)$. Then the equation of the circle is
A. $x^{2}+y^{2}+2 x-2 y-13=0$
B. $x^{2}+y^{2}-2 x-2 y-11=0$
C. $x^{2}+y^{2}-2 x+2 y+12=0$
D. $x^{2}+y^{2}+2 x-2 y+14=0$
11. The line $a x+b y+c=0$ is an normal to the circle $x^{2}+y^{2}=r^{2}$. The portion of the line $a x+b y+c=0$ intercepted by this circle is of length
A. \sqrt{r}
B. r
C. r^{2}
D. $2 r$

Answer: D

- Watch Video Solution

12. If the straight line $a x+b y=2 ; a, b \neq 0$, touches the circle $x^{2}+y^{2}-2 x=3$ and is normal to the circle $x^{2}+y^{2}-4 y=6$, then the values of 'a' and 'b' are ?
A. $(1,3)$
B. $(3,1)$
C. $(1,2)$
D. $(2,1)$

Answer: A

- Watch Video Solution

13. Show that the for all values of $\theta, x \sin \theta-y=\cos \theta=a$ touches the circle $x^{2}+y^{2}=a^{2}$

- Watch Video Solution

14. Find the equation of the tangents to the circle $x^{2}+y^{2}-2 x-4=0$ which are (i) parallel (ii) perpendicular to the line $3 x-4 y-1=0$
15. Find the equation of the family of circles touching the lines $x^{2}-y^{2}+2 y-1=0$.

- Watch Video Solution

16. The line $4 y-3 x+\lambda=0$ touches the circle $x^{2}+y^{2}-4 x-8 y-5=0$ then $\lambda=$

- Watch Video Solution

17. Show that the area of the triangle formed by the pósitive x-axis and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is $2 \sqrt{3}$

- Watch Video Solution

1. If the tangent at the point on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight ine $5 x-2 y+6=0$ at a point Q on the y-axis then the length of $P Q$ is
A. 4
B. $2 \sqrt{5}$
C. 5
D. $3 \sqrt{5}$

Answer: C

- Watch Video Solution

2. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is touched by $y=x$ at P such that $O P=6 \sqrt{2}$, then the value of c is 36 (b) 144 (c) 72 (d) none of these
A. 36
B. 72
C. 144
D. 288

Answer: B

- Watch Video Solution

3. The chord of contact of tangents from a point P to a circle passes through Q. If $l_{1} a n d l_{2}$ are the length of the tangents from $\operatorname{Pand} Q$ to the circle, then $P Q$ is equal to $\frac{l_{1}+l_{2}}{2}$ (b) $\frac{l_{1}-l_{2}}{2} \sqrt{l 12+l 22}$ $2 \sqrt{l 12+l 22}$
A. $\frac{l_{1}+l_{2}}{2}$
B. $\frac{l_{1}-l_{2}}{2}$
C. $\sqrt{\left(l_{1}^{2}+l_{2}^{2}\right)}$
D. $\sqrt{\left(l_{1}^{2}-l_{2}^{2}\right)}$

Answer: C

- Watch Video Solution

4. If the chord of contact of tangents from a point $\left(x_{1}, y_{1}\right)$ to the circle $x^{2}+y^{2}=a^{2}$ touches the circle $(x-a)^{2}+y^{2}=a^{2}$, then the locus of $\left(x_{1}, y_{1}\right)$ is
A. a circle
B. a parabola
C. an ellipse
D. hyperbola

Answer: D

5. The locus of the mid point of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origin is
A. $x+y=1$
B. $x^{2}+y^{2}=1$
C. $x+y=2$
D. $x^{2}+y^{2}=2$

Answer: D

- Watch Video Solution

6. The length of tangents from $P(1,-1)$ and $Q(3,3)$ to a circle are $\sqrt{2}$ and $\sqrt{6}$ respectively, then the length of tangent from $R(-2,7)$ to the same circle is
A. $\sqrt{41}$
B. $\sqrt{51}$
C. $\sqrt{61}$
D. $\sqrt{71}$

Answer: D

- Watch Video Solution

7. If the angle between the tangents drawn to $x^{2}+y^{2}+2 g x+2 f y+c=0$ from $(0,0)$ is $\frac{\pi}{2}$, then $g^{2}+f^{2}=3 c$ $g^{2}+f^{2}=2 c g^{2}+f^{2}=5 c g^{2}+f^{2}=4 c$
A. $g^{2}+f^{2}=3 c$
B. $g^{2}+f^{2}=2 c$
C. $g^{2}+g^{2}=5 c$
D. $g^{2}+f^{2}=4 c$

Answer: B

8. The chords of contact of the pair of tangents drawn from each point on the line $2 x+y=4$ to the circle $x^{2}+y^{2}=1$ pass through the point (a, b) then (a, b) is
A. $(2,4)$
B. $\left(-\frac{1}{2},-\frac{1}{4}\right)$
C. $\left(\frac{1}{2}, \frac{1}{4}\right)$
D. $(-2,-4)$

Answer: C

- Watch Video Solution

9. The length of the tangent from $(0,0)$ to the circle $2\left(x^{2}+y^{2}\right)+x-y+5=0$, is
A. $\sqrt{5}$
B. $\sqrt{\left(\frac{5}{2}\right)}$
C. $\frac{\sqrt{5}}{2}$
D. $\sqrt{2}$

Answer: B

Watch Video Solution

10. Two perpendicular tangents to the circle $x^{2}+y^{2}=a^{2}$ meet at P . Then the locus of P has the equation
A. $x^{2}+y^{2}=2 a^{2}$
B. $x^{2}+y^{2}=3 a^{2}$
C. $x^{2}+y^{2}=4 a^{2}$
D. $x^{2}+y^{2}=5 a^{2}$

Answer: A

11. The tangents to $x^{2}+y^{2}=a^{2}$ having inclinations α and β intersect at P. If $\cot \alpha \cot \beta=0$, then find the locus of P.
A. $x+y=0$
B. $x-y=0$
C. $x y=0$
D. $x y=1$

Answer: C

- Watch Video Solution

12. The exhaustive range of value of a such that the angle between the pair of tangents drawn from (a, a) to the circle $x^{2}+y^{2}-2 x-2 y-6=0$ lies in the range $\left(\frac{\pi}{3}, \pi\right)$ is
A. $(-1,3)$
B. $(-5,-3) \cup(3,5)$
C. $(-3,5)$
D. $(-3,-1) \cup(3,5)$

Answer: D

- Watch Video Solution

13. If the distances from the origin of the centers of three circles $x^{2}+y^{2}+2 \lambda x-c^{2}=0,(i=1,2,3)$, are in GP, then prove that the lengths of the tangents drawn to them from any point on the circle $x^{2}+y^{2}=c^{2}$ are in GP.

- Watch Video Solution

14. find the area of the quadrilateral formed by a pair of tangents from the point $(4,5)$ to the circle $x^{2}+y^{2}-4 x-2 y-11=0$ and pair of its radii.
15. If the length of the tangent from a point (f, g) to the circle $x^{2}+y^{2}=4$ be four times the length of the tangent from it to the circle $x^{2}+y^{2}=4 x$, show that $15 f^{2}+15 g^{2}-64 f+4=0$

- Watch Video Solution

16. Find the equation of that chord of the circle $x^{2}+y^{2}=15$, which is bisected at the point $(3,2)$

- Watch Video Solution

17. The chrods of contact of the pair of tangents to the circle $x^{2}+y^{2}=1$ dravwm from any point on the line $2 \mathrm{x}+\mathrm{y}=4$ paas through the point (α, β) then find $\alpha^{2}+\beta^{2}$.
18. The point of tangency of the circles
$x^{2}+y^{2}-2 x-4 y=0$ and $x^{2}+y^{2}-8 y-4=0$, is
A. touch each other intermally
B. touch each other externally
C. cuts each other at two points
D. None of these

Answer: A

- Watch Video Solution

2. Find the number of common tangents that can be drawn to the circles
$x^{2}+y^{2}-4 x-6 y-3=0$ and $x^{2}+y^{2}+2 x+2 y+1=0$
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

3. If one of the circles $x^{2}+y^{2}+2 a x+c=0$ and $x^{2}+y^{2}+2 b x+c=0$ lies within the other, then
A. $a b>0, c>0$
B. $a b>0, c<0$
C. $a b<0, c>0$
D. $a b<0, c<0$

Answer: A

4. Find the condition that the circle $(x-3)^{2}+(y-4)^{2}=r^{2}$ lies entirely within the circle $x^{2}+y^{2}=R^{2}$.
A. $R+r \leq 7$
B. $R^{2}+r^{2}<49$
C. $R^{2}-r^{2}<25$
D. $R-r>5$

Answer: D

- Watch Video Solution

5. Find the condition if the circle whose equations are $x^{2}+y^{2}+c^{2}=2 a x$ and $x^{2}+y^{2}+c^{2}-2 b y=0$ touch one another externally.
A. $\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{2}}$
B. $\frac{1}{c^{2}}+\frac{1}{a^{2}}=\frac{1}{b^{2}}$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
D. $\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{2}{a^{2}}$

Answer: C

- Watch Video Solution

6. Two circles of radii r_{1} and $r_{2}, r_{1}>r_{2} \geq 2$ touch each other externally. If θ be the angle between the direct common tangents, then,
A. $\theta=\sin ^{-1}\left(\frac{r_{1}+r_{2}}{r_{1}-r_{2}}\right)$
B. $\theta=2 \sin ^{-1}\left(\frac{r_{1}-r_{2}}{r_{1}+r_{2}}\right)$
C. $\theta=\sin ^{-1}\left(\frac{r_{1}-r_{2}}{r_{1}+r_{2}}\right)$
D. None of these

Answer: B

7. The two circles $x^{2}+y^{2}=r^{2}$ and $x^{2}+y^{2}-10 x+16=0$ intersect at two distinct points. Then
A. $r<2$
B. $r>8$
C. $2<r<8$
D. $2 \leq r \leq 8$

Answer: C

- Watch Video Solution

8. If the circle $x^{2}+y^{2}+4 x+22 y+c=0$ bisects the circumference of the circle $x^{2}+y^{2}-2 x+8 y-d=0$,then $(c+d)$ is equal to
A. 40
B. 50
C. 60
D. 70

Answer: B

- Watch Video Solution

9. Two circle $x^{2}+y^{2}=6$ and $x^{2}+y^{2}-6 x+8=0$ are given. Then the equation of the circle through their points of intersection and the point (1, 1) is $\quad x^{2}+y^{2}-6 x+4=0 \quad x^{2}+y^{2}-3 x+1=0$ $x^{2}+y^{2}-4 y+2=0$ none of these
A. $x^{2}+y^{2}-6 x+4=0$
B. $x^{2}+y^{2}-3 x+1=0$
C. $x^{2}+y^{2}-4 x+2=0$
D. $x^{2}+y^{2}-2 x+1=0$

Answer: B

10. The equation of the circle described on the common chord of the circles $x^{2}+y^{2}+2 x=0$ and $x^{2}+y^{2}+2 y=0$ as diameter, is
A. $x^{2}+y^{2}+x-y=0$
B. $x^{2}+y^{2}-x+y=0$
C. $x^{2}+y^{2}-x-y=0$
D. $x^{2}+y^{2}+x+y=0$

Answer: D

- Watch Video Solution

11. The equation of the diameter of the circle $3\left(x^{2}+y^{2}\right)-2 x+6 x-9-0$ which is perpendicular to the line $2 x+3 y=12$ is
B. $3 x-2 y-3=0$
C. $3 x-2 y+1=0$
D. $3 x-2 y-1=0$

Answer: B

- Watch Video Solution

12. consider two curves $a x^{2}+4 x y+2 y^{2}+x+y+5=0$ and $a x^{2}+6 x y+5 y^{2}+2 x+3 y+8=0$ these two curves intersect at four cocyclic points then find out a
A. -6
B. -4
C. 4
D. 6
13. Find the equation of the circle passing throught $(1,1)$ and the points of intersection of the circles $x^{2}+y^{2}+13 x-3 y=0$ and $2 x^{2}+2 y^{2}+4 x-7 y-25=0$

- Watch Video Solution

14. Show that the common chord of the circles $x^{2}+y^{2}-6 x-4 y+9=0$ and $x^{2}+y^{2}-8 x-6 y+23=0 \quad$ paas through the centre of the second circle and find its length.

- Watch Video Solution

15. Prove that
$x^{2}+y^{2}+2 a x+2 a x+2 b y=0$ and $x^{2}+y^{2}+2 a_{1} x+2 b_{1} y=0$
touch each other if, $a b_{1}, a_{1} b$.
16. The point of intersection of common transverse tangents of two circles

$$
x^{2}+y^{2}-24 x+2 y+120=0 \quad \text { and }
$$

$x^{2}+y^{2}+20 x-6 y-116=0$ is

- Watch Video Solution

Exercise For Session 7

1. Find the angle at which the circles $x^{2}+y^{2}+x+y=0$ and $x^{2}+y^{2}+x-y=0$ intersect.
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: D

2. If the circles of same radius a and centers at $(2,3)$ and 5,6$)$ cut orthogonally, then find a.
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

3. If the circles $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$ intersect orthogonally then k equals
A. 2 or $-\frac{3}{2}$
B. -2 or $-\frac{3}{2}$
C. 2 or $\frac{3}{2}$
D. -2 or $\frac{3}{2}$

Answer: A

- Watch Video Solution

4. If a circle passes through the point (a, b) and cuts the circle $x^{2}+y^{2}=4$ orthogonally, then the locus of its centre is
A. $2 a x+2 b y+\left(a^{2}+b^{2}+4\right)=0$
B. $2 a x+2 b y-\left(a^{2}+b^{2}+4\right)=0$
C. $2 a x-2 b y+\left(a^{2}+b^{2}+4\right)=0$
D. $2 a x-2 b y-\left(a^{2}+b^{2}+4\right)=0$

Answer: D

5. The loucs of the centre of the circle which cuts orthogonally the circle $x^{2}+y^{2}-20 x+4=0$ and which touches $\mathrm{x}=2$ is
A. $x^{2}=16 y$
B. $x^{2}=16 y+4$
C. $y^{2}=16 x$
D. $y^{2}=16 x+4$

Answer: C

- Watch Video Solution

6. The equation of a circle which cuts the three circles $x^{2}+y^{2}+2 x+4 y+1=0, x^{2}+y^{2}-x-4 y+8=0$ and $x^{2}+y^{2}+2 x-6 y+9=0$ orthogonlly is

$$
\text { A. } x^{2}+y^{2}-2 x-4 y+1=0
$$

B. $x^{2}+y^{2}+2 x+4 y+1=0$
C. $x^{2}+y^{2}-2 x+4 y+1=0$
D. $x^{2}+y^{2}-2 x-4 y-1=0$

Answer: A

- Watch Video Solution

7. Find the equation of the radical axis of circles $x^{2}+y^{2}+x-y+2=0$ and $3 x^{2}+3 y^{2}-4 x-12=0$
A. $2 x^{2}+2 y^{2}-5 x+y-14=0$
B. $7 x-3 y+18=0$
C. $5 x-y+14=0$
D. None of these

Answer: B

8. The radius centre of the circles
$x^{2}+y^{2}=1, x^{2}+y^{2}+10 y+24=0$ and $x^{2}+y^{2}-8 x+15=0$ is
A. $(2,5 / 2)$
B. $(-2,5 / 2)$
C. $(-2,-5 / 2)$
D. $(2,-5 / 2)$

Answer: D

- Watch Video Solution

9. If $(1,2)$ is a limiting point of a coaxial system of circles containing the circle $x^{2}+y^{2}+x-5 y+9=0$, then the equation of the radical axis, is
A. $x-9 y+4=0$
B. $3 x-y+4=0$
C. $x+3 y-4=0$
D. $9 x+y-4=0$

Answer: B

- Watch Video Solution

10. The limiting points of the system of circles represented by the equation $2\left(x^{2}+y^{2}\right)+\lambda x+\frac{9}{2}=0$, are
A. $\left(\pm \frac{3}{2}, 0\right)$
B. $(0,0)$ and $\left(\frac{9}{2}, 0\right)$
C. $\left(\pm \frac{9}{2}, 0\right)$
D. $(\pm 3,0)$

Answer: A

11. One of the limiting points of the co-axial system of circles containing the circles $x^{2}+y^{2}-4=0$ and $x^{2}+y^{2}-x-y=0$ is
A. $(\sqrt{2}, \sqrt{2})$
B. $(-\sqrt{2}, \sqrt{2})$
C. $(-\sqrt{2}-\sqrt{2})$
D. None of these

Answer: D

- Watch Video Solution

12. The point $(2,3)$ is a limiting point of a co-axial system of circles of which $x^{2}+y^{2}=9$ is a member. The coordinates of the other limiting point is given by
A. $\left(\frac{18}{13}, \frac{27}{13}\right)$
B. $\left(\frac{9}{13}, \frac{6}{13}\right)$
C. $\left(\frac{18}{13}-\frac{27}{13}\right)$
D. $\left(-\frac{18}{13}-\frac{9}{13}\right)$

Answer: A

- Watch Video Solution

13. Two circles are drawn through the points $(a, 5 a)$ and $(4 a, a)$ to touch the y -axis. Prove that they intersect at angle $\tan ^{-1}\left(\frac{40}{9}\right)$.

- Watch Video Solution

14. Find the equation of the circle which cuts orthogonally the circle $x^{2}+y^{2}-6 x+4 y-3=0$,passes through $(3,0)$ and touches the axis of y .

- Watch Video Solution

15. Tangents are drawn to the circles $x^{2}+y^{2}+4 x+6 y-19=0, x^{2}+y^{2}=9$ from any point on the $2 x+3 y=5$. Prove that their lengths are equal.

- Watch Video Solution

16. Find the coordinates of the point from which the lengths of the tangents to the following three circles be equal $3 x^{2}+3 y^{2}+4 x-6 y-1=0,2 x^{2}+2 y^{2}-3 x-2 y-4=0$ and $2 x^{2}+2 y$

- Watch Video Solution

17. Find the equation of a circle which is co-axial with the circles $x^{2}+y^{2}+4 x+2 y+1=0$ and $x^{2}+y^{2}-x+3 y-\frac{3}{2}=0 \quad$ and having its centre on the radical axis of these circles.

- Watch Video Solution

18. Find the radical axis of a co-axial system of circles whose limiting points are (1,2) and (3,4).

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. The sum of the square of length of the chord intercepted by the line $\mathrm{x}+\mathrm{y}=\mathrm{n}, n \in N$ on the circle $x^{2}+y^{2}=4$ is p then $\mathrm{p} / 11$
A. 11
B. 22
C. 33
D. None of these

Answer: B

2. Tangents are drawn to the circle $x^{2}+y^{2}=50$ from a point " P lying on the x -axis. These tangents meet the y -axis at points ' P_{1},' and ' P_{2}. Possible co-ordinates of ' P ' so that area of triangle $P P_{1} P_{2}$ is minimum is/are -
A. $(10,0)$
B. $(10 \sqrt{2}, 0)$
C. $(-10 \sqrt{2}, 0)$
D. $(10 \sqrt{3}, 0)$

Answer: A

- Watch Video Solution

3. Equation of chord AB of the circle $x^{2}+y^{2}=2$ passing through $P(2,2)$ such that $\frac{P B}{P A}=3$, is given by
A. $x=3 y$
B. $x=y$
C. $y-2=\sqrt{3}(x-2)$
D. $y-3=\sqrt{3}(x-1)$

Answer: B

- Watch Video Solution

4. If $r_{1} a n d r_{2}$ are the radii of the smallest and the largest circles, respectively, which pass though $(5,6)$ and touch the circle $(x-2)^{2}+y^{2}=4$, then $r_{1} r_{2}$ is $\frac{4}{41}$ (b) $\frac{41}{4} \frac{5}{41}$ (d) $\frac{41}{6}$
A. $\frac{4}{41}$
B. $\frac{41}{4}$
C. $\frac{5}{41}$
D. $\frac{41}{5}$
5. Equation of a circle $S(x, y)=0$, $(S(2,3)=16)$ which touches the line $3 x+4 y-$ $7=0$ at $(1,1)$ is given by
A. $x^{2}+y^{2}+x+2 y-5=0$
B. $x^{2}+y^{2}+2 x+2 y-7=0$
C. $x^{2}+y^{2}+4 x-6 y+13=0$
D. $x^{2}+y^{2}-4 x+6 y-7=0$

Answer: A

- Watch Video Solution

6. If $\mathrm{P}(2,8)$ is an interior point of a circle $x^{2}+y^{2}-2 x+4 y-\lambda=0$ which neither touches nor intersects the axes, then set for λ is
A. $(-\infty,-1)$
B. $(-\infty,-4)$
C. $(96, \infty)$
D. ϕ

Answer: D

- Watch Video Solution

7. The difference between the radii of the largest and smallest circles which have their centres on the circumference of the circle $x^{2}+y^{2}+2 x+4 y-4=0$ and passes through point (a, b) lying outside the circle is :
A. 6
B. $\sqrt{(a+1)^{2}+(b+2)^{2}}$
C. 3
D. $\sqrt{(a+1)^{2}+(b+2)^{2}}-3$

Answer: A

- Watch Video Solution

8. The number of rational point(s) [a point (a, b) is called rational, if aandb both are rational numbers] on the circumference of a circle having center (π, e) is at most one (b) at least two exactly two (d) infinite
A. atmost one
B. atleast two
C. exactly two
D. infinite

Answer: A

9. Three sided of a triangle have equations
$L_{1} \equiv y-m_{i} x=o ; i=1,2 a n d 3$. Then $L_{1} L_{2}+\lambda L_{2} L_{3}+\mu L_{3} L_{1}=0$
where $\lambda \neq 0, \mu \neq 0$, is the equation of the circumcircle of the triangle if
$1+\lambda+\mu=m_{1} m_{2}+\lambda m_{2} m_{3}+\lambda m_{3} m_{1}$
$m_{1}(1+\mu)+m_{2}(1+\lambda)+m_{3}(\mu+\lambda)=0$
$\frac{1}{m_{3}}+\frac{1}{m_{1}}+\frac{1}{m_{1}}=1+\lambda+\mu$ none of these
A. $\lambda\left(m_{2}+m_{3}\right)+\mu\left(m_{3}+m_{1}\right)+v\left(m_{1}+m_{2}\right)=0$
B. $\lambda\left(m_{2} m_{3}-1\right)+\mu\left(m_{3} m_{1}-1\right)+v\left(m_{1} m_{2}-1\right)=0$
C. Both (a) and (b)
D. None of the above

Answer: C

- Watch Video Solution

10. $f(x, y)=x^{2}+y^{2}+2 a x+2 b y+c=0$ represents a circle. If $f(x, 0)=0$ has equal roots, each being 2 , and $f(0, y)=0$ has 2 and 3
as its roots, then the center of the circle is $\left(2, \frac{5}{2}\right)$
(b) Data are not sufficient $\left(-2,-\frac{5}{2}\right)$ (d) Data are inconsistent
A. $\left(2, \frac{5}{2}\right)$
B. Data are not consistent
C. $\left(-2,-\frac{5}{2}\right)$
D. Data are inconsistent

Answer: B

- Watch Video Solution

11. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$ and a line through (a, n) cuts the circle $x^{2}+y^{2}=4$ in A and B, then $P A \cdot P B=$. (A) 4 (B) 16 (C) 8
(D) none of these
A. 4
B. 8
C. 16
D. 32

Answer: C

- Watch Video Solution

12. A region in the $x-y$ plane is bounded by the curve $y=\sqrt{25-x^{2}}$ and the line $y=0$. If the point $(a, a+1)$ lies in the interior of the region, then $a \in(-4,3)$ (b) $a \in(-\infty,-1) \in(3, \infty) a \in(-1,3)$
(d) none of these
A. $a \in(-4,3)$
B. $a \in(-\infty,-1) \cup(3, \infty)$
C. $a \in(-1,3)$
D. None of these

Answer: C

13. $\mathrm{S}(\mathrm{x}, \mathrm{y})=0$ represents a circle. The equation $\mathrm{S}(\mathrm{x}, 2)=0$ gives two identical solutions $\mathrm{x}=1$ and the equation $\mathrm{S}(1, \mathrm{y})=0$ gives two distinct solutions $\mathrm{y}=0,2$ then the equatino of the circle is
A. $x^{2}+y^{2}+2 x-2 y+1=0$
B. $x^{2}+y^{2}-2 x+2 y+1=0$
C. $x^{2}+y^{2}-2 x-2 y-1=0$
D. $x^{2}+y^{2}-2 x-2 y+1=0$

Answer: D

- Watch Video Solution

14. Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle . If $p=(\cos \theta, \sin \theta)$ and $Q(\cos (\alpha-\theta))$, then Q is obtained from P by A. clockwise rotation around origin through an angle α
B. anit-clockwise rotation around origin through an angle α
C. reflection in the line through origin with slope $\tan \alpha$
D. reflection in the line through origin which slope $\tan \left(\frac{\alpha}{2}\right)$

Answer: D

- Watch Video Solution

15. Find the number of point (x, y) having integral coordinates satisfying the condition $x^{2}+y^{2}<25$
A. 69
B. 80
C. 81
D. 77

Answer: A

16. The point $\binom{P+1}{P}$ (where [.] denotes the greatest integer function), lyinginside the region bounded by the circle $x^{2}+y^{2}-2 x-15=0$ and $x^{2}+y^{2}-2 x-7=0$, then :
A. $P \in[-1,0) \cup[0,1) \cup[1,2)$
B. $P \in[-1,2)-\{0,-1\}$
C. $P \in(-1,2)$
D. None of these

Answer: D

- Watch Video Solution

17.

A point
Plies inside
the
circles
$x^{2}+y^{2}-4=0$ and $x^{2}+y^{2}-8 x+7=0$. The poirt P starts moving such that it is always inside the circles, its path enclosus greatest
possible area and it is at a fixeddistance from an arbitrarily chosen point in its region. The locus of P is.
A. $4 x^{2}+4 y^{2}-12 x+1=0$
B. $4 x^{2}+4 y^{2}+12 x+1=0$
C. $4 x^{2}+4 y^{2}-3 x-2=0$
D. $4 x^{2}+4 y^{2}-3 x+2=0$

Answer: D

- Watch Video Solution

18. The set of values of 'c' so that the equations $y=|x|+c$ and $x^{2}+y^{2}-8|x|-9=0$ have no solution is
A. $(-\infty,-3) \cup(3, \infty)$
B. $(-3,3)$
C. $(-\infty,-5 \sqrt{2}) \cup(5 \sqrt{2}, \infty)$
D. $(-\infty,-4-5 \sqrt{2}) \cup(5 \sqrt{2}-4, \infty)$

Answer: D

- Watch Video Solution

19. If a line segement $A M=a$ moves in the plane $X O Y$ remaining parallel to $O X$ so that the left endpoint A slides along the circle $x^{2}+y^{2}=a^{2}$, then the locus of M.
A. $x^{2}+y^{2}=4 a^{2}$
B. $x^{2}+y^{2}=2 a x$
C. $x^{2}+y^{2}=2 a y$
D. $x^{2}+y^{2}-2 a x-2 a y=0$

Answer: B

- Watch Video Solution

20. Show that the four points of intersection of the lines : $(2 x-y+1)$ $(x-2 y+3)=0$, with the axes lie on a circle and find its centre.
A. $\left(-\frac{7}{4}, \frac{5}{4}\right)$
B. $\left(\frac{3}{4}, \frac{5}{4}\right)$
C. $\left(\frac{9}{4}, \frac{5}{4}\right)$
D. $\left(0, \frac{5}{4}\right)$

Answer: A

- Watch Video Solution

21. Find the number of integral values of λ for which $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0$ is the equation of a circle whose radius does not exceed 5 .
A. 14
B. 18
C. 16
D. None of these

Answer: C

- Watch Video Solution

22. Let $\phi(x, y)=0$ be the equation of a circle. If $\phi(0, \lambda)=0$ has equal roots $\lambda=2,2 f$ and $\phi(\lambda, 0)=0$ has roots $\lambda=\frac{4}{5}, 5$ then the centre of the circle is
A. $\left(2, \frac{29}{10}\right)$
B. $\left(\frac{29}{10}, 2\right)$
C. $\left(-2, \frac{29}{10}\right)$
D. None of these

Answer: B

23. Find the locus of the point of intersection of tangents to the circle $x=a \cos \theta, y=a \sin \theta$ at the points whose parametric angles differ by (i) $\frac{\pi}{3}$,
A. $x^{2}+y^{2}=4(2-\sqrt{3}) r^{2}$
B. $3\left(x^{2}+y^{2}\right)=1$
C. $x^{2}+y^{2}=(2-\sqrt{3}) r^{2}$
D. $3\left(x^{2}+y^{2}\right)=4 r^{2}$

Answer: D

- Watch Video Solution

24. One of the diameter of a circle circumscribing the rectangle $A B C D$ is $4 y=x+7$, If A and B are the points $(-3,4)$ and $(5,4)$ respectively, then the area of rectangle is
A. 16 sq units
B. 24 sq units
C. 32 sq units
D. None of these

Answer: C

- Watch Video Solution

25. A, B C and D are the points of intersection with the coordinate axes of the lines $a x+b y=a b$ and $b x+a y=a b$, then
A. A, B, C, D are concyclic
B. A, B, C, D form a parallelogram
C. A, B, C, D form a rhombus
D. None of the above

Answer: A

26. α, β and γ are parametric angles of three points P, Q and R respectively, on the circle $x^{2}+y^{2}=1$ and A is the point $(-1,0)$. If the lengths of the chords $A P, A Q$ and $A R$ are in $G P$, then $\frac{\cos \alpha}{2}, \frac{\cos \beta}{2}$ and $\frac{\cos \gamma}{2}$ are in
A. AP
B. GP
C. HP
D. None of these

Answer: B

- Watch Video Solution

27. The equation of the circle passing through $(2,0)$ and $(0,4)$ and having minimum radius is
A. $x^{2}+y^{2}=20$
B. $x^{2}+y^{2}-2 x-4 y=0$
C. $\left(x^{2}+y^{2}-4\right)+\lambda\left(x^{2}+y^{2}-16\right)=0$
D. None of the above

Answer: B

- Watch Video Solution

28. A circle of radius unity is centered at thet origin. Two particles tart moving at the same time from the point $(1,0)$ and move around the circle in opposite direction. One of the particle moves anticlockwise with constant speed v and the other moves clockwise with constant speed $3 v$.

After leaving $(1,0)$, the two particles meet first at a point P, and continue until they meet next at point Q. The coordinates of the point Q are
A. $(1,0)$
B. $(0,1)$
C. $(-1,0)$
D. (0,-1)

Answer: C

- Watch Video Solution

29. The circle $x^{2}+y^{2}=4$ cuts the line joining the points $A(1,0)$ and $B(3,4)$ in two points P and Q. Let $B P / P A=\alpha$ and $B Q / Q A=\beta$. Then α and β are roots of the quadratic equation
A. $x^{2}+2 x+7=0$
B. $3 x^{2}-16 x+21=0$
C. $2 x^{2}+3 x-27=0$
D. None of these

Answer: B

30. The locus of the mid points of the chords of the circle $x^{2}+y^{2}+4 x-6 y-12=0$ which subtend an angle of $\frac{\pi}{3}$ radians at its circumference is:
A. $(x+2)^{2}+(y+3)^{2}=6.25$
B. $(x-2)^{2}+(y+3)^{2}=6.25$
C. $(x+2)^{2}+(y-3)^{2}=18.75$
D. $(x+2)^{2}+(y+3)^{2}=18.75$

Answer: A

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. If $O A$ and $O B$ are two perpendicular chords of the circle $r=a \cos \theta+b \sin \theta$ epassing through origin, then the locus of the mid point of $A B$ is :
A. $x^{2}+y^{2}=a+b$
B. $x=\frac{a}{2}$
C. $x^{2}-y^{2}=a^{2}-b^{2}$
D. $y=\frac{b}{2}$

Answer: B::D

- Watch Video Solution

2. If P and Q are two points on the circle $x^{2}+y^{2}-4 x+6 y-3=0$ which are farthest and nearest respectively from the point $(7,2)$ then.
A. $P \equiv(2-2 \sqrt{2},-3-2 \sqrt{2})$
B. $Q \equiv(2+2 \sqrt{2},-3+2 \sqrt{2})$
C. $P \equiv(2+2 \sqrt{2},-3+2 \sqrt{2})$
D. $Q \equiv(2-2 \sqrt{2},-3+2 \sqrt{2})$

Answer: C

- Watch Video Solution

3. Find the equation of the circle which cuts each of the circles
$x^{2}+y^{2}=4, \quad x^{2}+y^{2}-6 x-8 y .+10=0$
$x^{2}+y^{2}+2 x-4 y-2=0$ at the extremities of a diameter
A. $c=-4$
B. $g+f=c=-1$
C. $g^{2}+f^{2}-c=17$
D. $g f=6$

Answer: A::B::C::D

4. The possible value of $\lambda(\lambda>0)$ such that the angle between the pair of tangents from point $(\lambda, 0)$ to the circle $x^{2}+y^{2}=4$ lies in interval $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ is
A. $\left(\frac{4}{\sqrt{3}}, 2 \sqrt{2}\right)$
B. $(0, \sqrt{2})$
C. $(1,2)$
D. $\left(-\frac{4}{\sqrt{3}}, \frac{4}{\sqrt{3}}\right)$

Answer: A

- Watch Video Solution

5. If a chord of the circle $x^{2}+y^{2}-4 x-2 y-c=0$ is trisected at the points $\left(\frac{1}{3}, \frac{1}{3}\right) \&\left(\frac{8}{3}, \frac{8}{3}\right)$, then ' c ' equal to: 10 (b) 20 (c) 40 (d) none of these
A. $c=10$
B.
C. $c=20$
D. $c=15$

Answer: B::D

- Watch Video Solution

6. From the point $\mathrm{A}(0,3)$ on the circle $x^{2}+4 x+(y-3)^{2}=0$ a chord AB is drawn to a point such that $A M=2 A B$. The equation of the locus of M is :-
A. $x^{2}+6 x+(y-2)^{2}=0$
B. $x^{2}+8 x+(y-3)^{2}=0$
C. $x^{2}+y^{2}+8 x-6 y+9=0$
D. $x^{2}+y^{2}+6 x-4 y+4=0$

- Watch Video Solution

7. An equation of a circle touching the axes of coordinates and the line $x \cos \alpha+y \sin \alpha=2$ can be

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 g x-2 g y+g^{2}=0, \text { where } g=\frac{2}{(\cos \alpha+\sin \alpha+1)} \\
& \text { B. } x^{2}+y^{2}-2 g x-2 g y+g^{2}=0, \quad \text { where } g=\frac{2}{(\cos \alpha+\sin \alpha-1)} \\
& \text { C. } x^{2}+y^{2}-2 g x-2 g y+g^{2}=0, \text { where } g=\frac{2}{(\cos \alpha-\sin \alpha+1)} \\
& \text { D. } x^{2}+y^{2}-2 g x-2 g y+g^{2}=0, \quad \text { where } g=\frac{2}{(\cos \alpha-\sin \alpha-1)}
\end{aligned}
$$

Answer: A::B::C::D

- Watch Video Solution

8. If α is the angle subtended at $P\left(x_{1}, y_{1}\right)$ by the circle $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ then
A. $\cot \alpha=\frac{\sqrt{S}_{1}}{\sqrt{\left(g^{2}+f^{2}-c\right)}}$
B. $\cot \frac{\alpha}{2}=\frac{\sqrt{S}_{1}}{\sqrt{\left(g^{2}+f^{2}-c\right)}}$
C. $\tan \alpha=\frac{2 \sqrt{\left(g^{2}+f^{2}-c\right)}}{\sqrt{S}_{1}}$
D. $\alpha=2 \tan ^{-1}\left(\frac{\sqrt{\left(g^{2}+f^{2}-c\right)}}{\sqrt{S_{1}}}\right)$

Answer: B::D

Watch Video Solution

9. The equation of the circle which touches the axes of coordinates and the line $\frac{x}{3}+\frac{y}{4}+=1$ and whose centres lie in the first quadrant is $x^{2}+y^{2}-2 c x-2 c y+c^{2}=0$, where c is equal to 4 (b) 2 (c) 3 (d) 6
A. 1
B. 2
C. 3
D. 6

- Watch Video Solution

10. P is a point on the circle $x^{2}+y^{2}=9 \mathrm{Q}$ is a point on the line $7 x+y+3=0$. The perpendicular bisector of PQ is $x-y+1=0$. Then the coordinates of P are:
A. $(3,0)$
B. $\left(\frac{72}{25},-\frac{21}{25}\right)$
C. $(0,3)$
D. $\left(-\frac{72}{25}, \frac{21}{25}\right)$

Answer: A: D

11. A circle passes through point $\left(3, \sqrt{\frac{7}{2}}\right)$ and touches the line-pair $x^{2}-y^{2}-2 x+1=0$. Centre of circle lies inside the circle $x^{2}+y^{2}-8 x+10 y+15=0$. Coordinates of centre of circle are given by (A) $(4,0)$ (B) $(5,0)$ (C) $(6,0)$ (D) $(0,4)$
A. $(4,0)$
B. $(4,2)$
C. $(6,0)$
D. $(7,9)$

Answer: A::C

- Watch Video Solution

12. The equation of a circle C_{1} is $x^{2}+y^{2}=4$. The locus of the intersection of orthogonal tangents to the circle is the curve C_{2} and the locus of the intersection of perpendicular tangents to the curve C_{2} is the curve C_{3}, Then
A. C_{3} is a circle
B. the area enclosed by the curver C_{3} is 8π
C. C_{2} and C_{3} are circles with the same centre
D. None of the above

Answer: A::C

D Watch Video Solution

13. The equation of a tangent to the circle $x^{2}+y^{2}=25$ passing through $(-2,11)$ is
A. $4 x+3 y=25$
B. $3 x+4 y=38$
C. $24 x-7 y+125=0$
D. $7 x+24 y=230$

Answer: A::C

14. Consider the circles $C_{1} \equiv x^{2}+y^{2}-2 x-4 y-4=0$ and $C_{2} \equiv x^{2}+y^{2}+2 x+4 y+4=0$ and the line $L \equiv x+2 y+2=0$ then
A. Lis the radical axis of C_{1} and C_{2}
B. L is the common tangent of C_{1} and C_{2}
C. L is the common chord of C_{1} and C_{2}
D. L is perpendicular to the line joining centres of C_{1} and C_{2}

Answer: A::C::D

- Watch Video Solution

15. a square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y+30=0$. One side of the square is parallel to $y=x+3$, then one vertex of the square is :

Exercise Passage Based Questions

1. Consider with circle $S: x^{2}+y^{2}-4 x-1=0$ and the line $L: y=3 x-1$. If the line L cuts the circle at A and B then Length of the chord $A B$ equal
A. $\sqrt{5}$
B. $\sqrt{10}$
C. $2 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: B

- Watch Video Solution

2. Consider the circle $S: x^{2}+y^{2}-4 x-1=0$ and the line $L: y=3 x-1$. If the line L cuts the circle at $\mathrm{A} \& \mathrm{~B}$. (i) Length of the chord $A B$ equal (i) The angle subtended by the chord $A B$ in the minor arc of S is (iii). Acute angle between the line L and the circle S is
A. $\frac{\pi}{4}$
B. $\frac{2 \pi}{3}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{6}$

Answer: C

- Watch Video Solution

3. Consider the circle $S: x^{2}+y^{2}-4 x-1=0$ and the line $L: y=3 x-1$. If the line L cuts the circle at A \& B. (i) Length of the chord $A B$ equal (i) The angle subtended by the chord $A B$ in the minor arc of S is (iii). Acute angle between the line L and the circle S is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

4. P is a variable point of the line $L=0$. Tangents are drawn to the circle $x^{2}+y^{2}=4$ from P to touch it at Q and R . The parallelogram PQSR is completed. If $L=2 x+y-6=0$, then the locus of circumcetre of $\triangle P Q R$ is -
A. $2 x-y=4$
B. $2 x+y=3$
C. $x-2 y=4$
D. $x+2 y=3$

Answer: B

- Watch Video Solution

5. P is a variable point on the line $L=0$. Tangents are drawn to the circle $x^{2}+y^{2}=4$ from P to touch it at Q and R . The parallelogran PQSR is completed.

If $\mathrm{P}-=(6,8)$ then area of $\Delta Q R S$ is $\frac{192}{25} \sqrt{\lambda}$ sq units. The value of λ is
A. 2
B. 3
C. 5
D. 6

Answer: D

6. P is a variable point on the line $\mathrm{L}=0$. Tangents are drawn to the circle $x^{2}+y^{2}=4$ from P to touch it at Q and R . The parallelogran PQSR is completed.

If $p=(3,4)$, then the coordinates of S are
A. $\left(-\frac{46}{25}, \frac{63}{25}\right)$
B. $\left(-\frac{51}{25},-\frac{68}{25}\right)$
C. $\left(-\frac{46}{25}, \frac{68}{25}\right)$
D. $\left(-\frac{68}{25}, \frac{51}{25}\right)$

Answer: B

Watch Video Solution

7. Equation of the circumcircle of a triangle formed by the lines
$L_{1}=0, L_{2}=0$ and $L_{3}=0$ can be written as
$L_{1} L_{2}+\lambda L_{2} L_{3}+\mu L_{3} L_{1}=0$, where λ and μ are such that coefficient of
$x^{2}=$ coefficient of y^{2} and coefficient of $\mathrm{xy}=0$.
$L_{1} L_{2}^{2}+\lambda L_{2} L_{3}^{2}+\mu L_{1}^{2}=0$ represents
A.a curve passing through point of interesection of

$$
L_{1}=0, L_{2}=0 \text { and } L_{3}=0
$$

B. a circle is coefficient of $x^{2}=$ coefficient of y^{2} and coefficient of $x y=0$
C. a parabola
D. pair of straight lines

Answer: A

- Watch Video Solution

8. Equation of the circumcircle of a triangle formed by the lines $L_{1}=0, L_{2}=0$ and $L_{3}=0$ can be written as $L_{1} L_{2}+\lambda L_{2} L_{3}+\mu L_{3} L_{1}=0$, where λ and μ are such that coefficient of
$x^{2}=$ coefficient of y^{2} and coefficient of $\mathrm{xy}=0$.
$L_{1} L_{2}^{2}+\lambda L_{2} L_{3}^{2}+\mu L_{1}^{2}=0$ represents
A. $\lambda L_{1} L_{4}+\mu L_{2} L_{3}=0$
B. $\lambda L_{1} L_{3}+\mu L_{2} L_{4}=0$
C. $\lambda L_{1} L_{2}+\mu L_{3} L_{4}=0$
D. $\lambda L_{1}^{2} L_{3}+\mu L_{2}^{2} L_{4}=0$

Answer: C

- Watch Video Solution

9. Equation of the circumcircle of a triangle formed by the lines $L_{1}=0, L_{2}=0$ and $L_{3}=0$ can be written as $L_{1} L_{2}+\lambda L_{2} L_{3}+\mu L_{3} L_{1}=0$, where λ and μ are such that coefficient of $x^{2}=$ coefficient of y^{2} and coefficient of $\mathrm{xy}=0$.

If $L_{1} L_{2}+\lambda L_{2} L_{3}+\mu L_{3} L_{1}=0$ is such that $\mu=0$ and λ is non-zero, then it represents
A. a parabola
B. a pair of straight lines
C. a circle
D. an ellipse

Answer: B

D Watch Video Solution

10. Give two circles intersecting orthogonally having the length of common chord $24 / 5$ units. The radius of one of the circles is 3 units.

The angle between direct common tangents is
A. 2
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

11. Give two circles intersecting orthogonally having the length of common chord $24 / 5$ units. The radius of one of the circles is 3 units.

The angle between direct common tangents is
A. $\frac{4}{5}$
B. $\frac{4 \sqrt{6}}{25}$
C. $\frac{12}{25}$
D. $\frac{24}{25}$

Answer: B

12. Given two circles intersecting orthogonally having the length of common chord $\frac{24}{5}$ unit. The radius of one of the circles is 3 units. If length of direct common tangent is λ units, then λ^{2} is
A. 12
B. 24
C. 36
D. 48

Answer: B

- Watch Video Solution

13.

Consider
the
two
circles
$C_{1}: x^{2}+y^{2}=a^{2}$ and $C_{2}: x^{2}+y^{2}=b^{2}(a>b)$ Let A be a fixed point on the circle C_{1}, say $\mathrm{A}(\mathrm{a}, 0)$ and B be a variable point on the circle C_{2}. The line BA meets the circle C_{2} again at C. 'O' being the origin.

If $(O A)^{2}+(O B)^{2}+(B C)^{2}=\lambda, \quad$ then $\lambda \in$
A. $\left(b^{2}+a^{2}, 5 b^{2}+a^{2}\right]$
B. $\left[4 b^{2}, 4 b^{2}+a^{2}\right]$
C. $\left[4 a^{2}, 4 b^{2}\right]$
D. $\left[5 b^{2}-3 a^{2}, 5 b^{2}+3 a^{2}\right]$

Answer: A

- Watch Video Solution

14. on the circle C_{1}, say $\mathrm{A}(\mathrm{a}, \mathrm{O})$ and B be a variable point on the circle C_{2}. The line BA meets the circle C_{2} again at C. 'O' being the origin.

The locus of the mid-point of $A B$ is
A. $\left(x-\frac{a}{2}\right)^{2}+y^{2}=\frac{b^{2}}{4}$
B. $\left(x-\frac{a}{2}\right)^{2}+y^{2}=\frac{a^{2}}{4}$
C. $\left(x-\frac{b}{2}\right)^{2}+y^{2}=\frac{a^{2}}{4}$
D. $\left(x-\frac{b}{2}\right)^{2}+y^{2}=\frac{b^{2}}{4}$

Answer: A

- View Text Solution

15.

two
circles
$C_{1}: x^{2}+y^{2}=a^{2}$ and $C_{2}: x^{2}+y^{2}=b^{2}(a>b)$ Let A be a fixed point on the circle C_{1}, say $\mathrm{A}(\mathrm{a}, \mathrm{0})$ and B be a variable point on the circle C_{2}. The line BA meets the circle C_{2} again at C. 'O' being the origin.

If $(B C)^{2}$ is maximum, then the locus of the mid-piont of $A B$ is
A. $x^{2}+y^{2}=b^{2}$
B. $x^{2}+y^{2}=(a+b)^{2}$
C. $x^{2}+y^{2}=(a-b)^{2}$
D. None of these

Answer: D

16. Two variable chords $A B$ and $B C$ of a circle $x^{2}+y^{2}=a^{2}$ are such that $A B=B C=a . \mathrm{M}$ and N are the midpoints of AB and BC , respectively, such that the line joining MN intersects the circles at P and Q, where P is closer to $A B$ and O is the center of the circle.
$\angle O A B$ is
A. 15°
B. 30°
C. 45°
D. 60°

Answer: D

- Watch Video Solution

17. Two variable chords AB and BC of a circle $x^{2}+y^{2}=a^{2}$ are such that $A B=B C=a . \mathrm{M}$ and N are the midpoints of AB and BC , respectively,
such that the line joining MN intersects the circles at P and Q, where P is closer to $A B$ and O is the center of the circle.

The locus of the points of intersection of tangents at A and C is
A. 60°
B. 90°
C. 120°
D. 150°

Answer: A

- Watch Video Solution

18. Two variable chords $A B$ and $B C$ of a circle $x^{2}+y^{2}=a^{2}$ are such that $A B=B C=a . \mathrm{M}$ and N are the midpoints of AB and BC , respectively, such that the line joining $M N$ intersects the circles at P and Q, where P is closer to $A B$ and O is the center of the circle.

The locus of the points of intersection of tangents at A and C is
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}+y^{2}=2 a^{2}$
C. $x^{2}+y^{2}=4 a^{2}$
D. $x^{2}+y^{2}=8 a^{2}$

Answer: C

- Watch Video Solution

19. t_{1}, t_{2}, t_{3} are lengths of tangents drawn from a point (h, k) to the circles $x^{2}+y^{2}=4, x^{2}+y^{2}-4=0$ and $x^{2}+y^{2}-4 y=0 \quad$ respectively further, $t_{1}^{4}=t_{2}^{2} \quad t_{3}^{2}+16$. Locus of the point (h, k) consist of a straight line L_{1} and a circle C_{1} passing through origin. A circle C_{2}, which is equal to circle C_{1} is drawn touching the line L_{1} and the circle C_{1} externally.

Equation of L_{1} is
A. $x+y=0$
B. $x-y=0$
C. $2 x+y=0$
D. $x+2 y=0$

Answer: A

- Watch Video Solution

20. t_{1}, t_{2}, t_{3} are lengths of tangents drawn from a point (h, k) to the circles

$$
x^{2}+y^{2}=4, x^{2}+y^{2}-4=0 \text { and } x^{2}+y^{2}-4 y=0
$$

respectively further, $t_{1}^{4}=t_{2}^{2} \quad t_{3}^{2}+16$. Locus of the point (h, k) consist of a straight line L_{1} and a circle C_{1} passing through origin. A circle C_{2}, which is equal to circle C_{1} is drawn touching the line L_{1} and the circle C_{1} externally.

Equation of C_{1} is
A. $x^{2}+y^{2}-x-y=0$
B. $x^{2}+y^{2}-2 x+y=0$
C. $x^{2}+y^{2}-x+2 y=0$
D. $x^{2}+y^{2}-2 x-2 y=0$

Answer: D

- Watch Video Solution

21. t_{1}, t_{2}, t_{3} are lengths of tangents drawn from a point (h, k) to the circles $x^{2}+y^{2}=4, x^{2}+y^{2}-4=0$ and $x^{2}+y^{2}-4 y=0 \quad$ respectively further, $t_{1}^{4}=t_{2}^{2} \quad t_{3}^{2}+16$. Locus of the point (h, k) consist of a straight line L_{1} and a circle C_{1} passing through origin. A circle C_{2}, which is equal to circle C_{1} is drawn touching the line L_{1} and the circle C_{1} externally. The distance between the centres of C_{1} and C_{2} is
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: C

(D) Watch Video Solution

Exercise Single Integer Answer Type Questions

1. The point $(1,4)$ are inside the circle $S: x^{2}+y^{2}-6 x-10 y+k=0$.

What are the possible values of k if the circle S neither touches the axes nor cut them

- Watch Video Solution

2. Consider the family of circles $x^{2}+y^{2}-2 x-2 \lambda-8=0$ passing through two fixed points $A a n d B$. Then the distance between the points AandB is \qquad

- Watch Video Solution

3. If $C_{1}: x^{2}+y^{2}=(3+2 \sqrt{2})^{2}$ be a circle. PA and PB are pair of tangents on C_{1} where P is any point on the director circle of C_{1}, then the radius of the smallest circle which touches C_{1} externally and also the two tangents $P A$ and $P B$ is

- Watch Video Solution

4. If a circle $S(x, y)=0$ touches the point $(2,3)$ of the line $x+y=5$ and $S(1,2)=0$, then radius of such circle is $\frac{1}{\sqrt{\lambda}}$ units then the value of λ is.

- Watch Video Solution

5. If real numbers x and y satisfy $(x+5)^{2}+(y-12)^{2}=196$, then the maximum value of $\left(x^{2}+y^{2}\right)^{\frac{1}{3}}$ is

- Watch Video Solution

6. If the equation of circle circumscribing the quadrilateral formed by the lines in order are
$2 x+3 y=2,3 x-2 y=3, x+2 y=3$ and $2 x-y=1$ is given by $x^{2}+y^{2}+\lambda x+\mu y+v=0$. Then the value of $|\lambda+2 \mu+v|$ is

- Watch Video Solution

7. A circle $x^{2}+y^{2}+4 x-2 \sqrt{2} y+c=0$ is the director circle of the circle S_{1} and S_{1} is the director circle of circle S_{2}, and so on. If the sum of radii of all these circles is 2 , then the value of c is $k \sqrt{2}$, where the value of k is \qquad

- Watch Video Solution

8. The area bounded by circles $x^{2}+y^{2}=r^{2}, r=1,2$ and rays given by $2 x^{2}-3 x y-2 y^{2}=0$,is
9. The length of a common internal tangent to two circles is 5 and that of a common external tangent is 13 . If the product of the radii of two circles is λ, then the value of $\frac{\lambda}{4}$ is

- Watch Video Solution

10. Consider a circles S with centre at the origin and radius 4 . Four circles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and Deach with radiusunity and centres $(-3,0),(-1,0),(1,0)$ and $(3,0)$ respectively are drawn. A chord $P Q$ of the circle Sne circle B and passes through the centre of the circle C. If the length of this chord can beexpressed as \sqrt{x}, find x.

- Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement I Only one tangent can be drawn from the point $(1,3)$ to the circle $x^{2}+y^{2}=1$
Statement II Solving $\frac{|3-m|}{\sqrt{\left(1+m^{2}\right)}}=1$ we get only one real value of m
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: D

- Watch Video Solution

2. Statement I Tangents cannot be drawn from the point $(1, \lambda)$ to the circle $x^{2}+y^{2}+2 x-4 y=0$

Statement II $(1+1)^{2}+(\lambda-2)^{2}<1^{2}+2^{2}$
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: A

- Watch Video Solution

3. Statement 1 : The number of circles passing through (1,2), (4,8) and (0 ,

0) is one. Statement 2 : Every triangle has one circumcircle
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: D

- Watch Video Solution

4. Statement I Two tangents are drawn from a point on the circle $x^{2}+y^{2}=50$ to the circle $x^{2}+y^{2}=25$, then angle between tangents is $\frac{\pi}{3}$

Statement II $x^{2}+y^{2}=50$ is the director circle of $x^{2}+y^{2}=25$.
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: D

- Watch Video Solution

5. Statement I Circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-6 x+5=0$ intersect each other at two distinct points

Statement II Circles with centres C_{1}, C_{2} and radii r_{1}, r_{2} intersect at two distinct points if $\left|C_{1} C_{2}\right|<r_{1}+r_{2}$
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: C

- Watch Video Solution

6. Statement I The line $3 x-4 y=7$ is a diameter of the circle $x^{2}+y^{2}-2 x+2 y-47=0$

Statement II Normal of a circle always pass through centre of circle
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: B

7. Statement I A ray of light incident at the point $(-3,-1)$ gets reflected from the tangent at $(0,-1)$ to the circle $x^{2}+y^{2}=1$. If the reflected ray touches the circle, then equation of the reflected ray is $4 y-3 x=5$

Statement II The angle of incidence $=$ angle of reflection i.e. $\angle i=\angle r$,
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: B

- Watch Video Solution

8. Statement 1 : The chord of contact of the circle $x^{2}+y^{2}=1$ w.r.t. the points $(2,3),(3,5)$, and $(1,1)$ are concurrent. Statement 2 : Points (1,1), (2, $3)$, and $(3,5)$ are collinear.
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: A

- Watch Video Solution

Exercise Subjective Type Questions

1. Find the equation of the circle passing through $(1,0) \operatorname{and}(0,1)$ and having the smallest possible radius.

- Watch Video Solution

2. The equation of the circle which touches the circle $x^{2}+y^{2}-6 x+6 y+17=0$ externally and to which the lines $x^{2}-3 x y-3 x+9 y=0$ are normals, is

- Watch Video Solution

3. A line meets the coordinate axes at A and B. A circle is circumscribed obout the triangle OAB. If the distance of the points A and B from the tangent at O , the origin, to the circle are m and n respectively, find the diameter of the circle.
A. $\frac{2 m+n}{2}$
B. $(m+n)$
C. $\frac{m n}{m+n}$
D. $\frac{m+2 n}{2}$

Answer: B

- Watch Video Solution

4. Equation of a circle which passes through the point $(2,0)$ and whose centre is the limit of the point of intersection of the lines $3 x+5 y=1$ and $(2+\alpha) x+5 \alpha^{2} y=1$ as α tends to 1 is

- Watch Video Solution

5. Tangents are drawn from external poinl $P(6,8)$ to the circle $x^{2}+y^{2}=r^{2}$ find the radius r of the circle such that area of triangle formed by the tangents and chord of contact is maximum is (A) 25 (B) 15
(C) 5 (D) none

- Watch Video Solution

6. $2 x-y+4=0$ is a diameter of a circle which circumscribes a rectangle $A B C D$. If the coordinates of A, B are $(4,6)$ and $(1,9)$ respectively, find the area of this rectangle $A B C D$.

- Watch Video Solution

7. Find the radius of the smalles circle which touches the straight line $3 x-y=6$ at $(-,-3)$ and also touches the line $y=x$. Compute up to one place of decimal only.

- Watch Video Solution

8. If the circle $C_{1}: x^{2}+y^{2}=16$ intersects another circle C_{2} of radius 5 in such a manner that,the common chord is of maximum length and has a slope equal to $\frac{3}{4}$, then the co-ordinates of the centre of C_{2} are:
9. Let $2 x^{2}+y^{2}-3 x y=0$ be the equation of a pair of tangents drawn from the origin O to a circle of radius 3 with centre in the first quadrant. If A is one of the points of contact, then the length of $O A$ is

- Watch Video Solution

10. The circle $x^{2}+y^{2}=1$ cuts the x-axis at PandQ. Another circle with center at Q and variable radius intersects the first circle at R above the x axis and the line segment $P Q$ at S . Find the maximum area of triangle QSR.

- Watch Video Solution

11. If the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinae axes at concyclic points, then prove that $\left|a_{1} a_{2}\right|=\left|b_{1} b_{2}\right|$

- Watch Video Solution

12. The centre of the circle $S=0$ lie on the line $2 x-2 y+9=0 \& S=0$ cuts orthogonally $x^{2}+y^{2}=4$. Show that circle $S=0$ passes through two fixed points \& find their coordinates.

- Watch Video Solution

13. Find the condition on a, b, c such that two chords of the circle $x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}-c^{2}=0$ passing through the point $(a, b+c)$ are bisected by the line $y=x$.

- Watch Video Solution

14. Two straight lines rotate about two fixed points $(-a, 0)$ and $(a, 0)$ in antic clockwise direction. If they start from their position of coincidence such that one rotates at a rate double of the other, then locus of curve is

- Watch Video Solution

15. The base $A B$ of a triangle is fixed and its vertex C moves such that $\sin A$ $=\mathrm{k} \sin \mathrm{B}(k \neq 1)$. Show that the locus of C is a circle whose centre lies on the line $A B$ and whose radius is equal to $\frac{a k}{\left(1-k^{2}\right)}$, a being the length of the base AB.

- Watch Video Solution

16. Consider a curve $a x^{2}+2 h x y+b y^{2}-1=0$ and a point P not on the curve.A line is drawn from the point P intersects the curve at the point Q and R.If the product PQ.PR is independent of the slope of the line, then the curve is:

- Watch Video Solution

17. Tangents drawn from the point $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touch the circle at the points $\mathrm{A} \& \mathrm{~B}$ ifR is the radius of circum circle of triangle PAB then [R]-
A. $x^{2}+y^{2}+4 x-6 y+19=0$
B. $x^{2}+y^{2}-4 x-10 y+19=0$
C. $x^{2}+y^{2}-2 x+6 y-29=0$
D. $x^{2}+y^{2}-6 x-4 y+19=0$

Answer: B

- Watch Video Solution

18. The centres of two circles C_{1} and C_{2} each of unit radius are at a distance of 6 unit from each other. Let P be the mid-point of the line segment joining the centres of C_{1} and C_{2} and C be a circle touching circles C_{1} and C_{2} externally. If a common tangent to C_{1} and C passing through P is also a common tangent to C_{2} and C , then the radius of the circle C , is

- Watch Video Solution

19. If P and Q are the points of intersection of the circles $x^{2}+y^{2}+3 x+7 y+2 p 5=0$ and $x^{2}+y^{2}+2 x+2 y p^{2}=0$, then there is a circle passing through P, Q and $(1,1)$ for (1) all values of $p(2)$ all except one value of p (3) all except two values of p (4) exactly one value of p
A. all except one value of p
B. all except two values of p
C. exactly one value of p
D. all values of p

Answer: A

- Watch Video Solution

20. If the circle $x^{2}+y^{2}-4 x-8 y-5=0$ intersects the line $3 x-4 y=m$ at two distinct points, then find the values of m.
A. $-35<m<15$
B. $15<m<65$
C. $35<m<85$
D. $-85<m<-35$

Answer: A

- Watch Video Solution

21. The circle passing through the point $(-1,0)$ and touching the y-axis at $(0,2)$ also passes through the point:
A. $\left(-\frac{3}{2}, 0\right)$
B. $\left(-\frac{5}{2}, 2\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $(-4,0)$
22. The straight line $2 x-3 y=1$ divides the circular region $x^{2}+y^{2} \leq 6$ into two parts. If $\mathrm{S}=\left\{\left(2, \frac{3}{4}\right),\left(\frac{5}{2}, \frac{3}{4}\right),\left(\frac{1}{4},-\frac{1}{4}\right),\left(\frac{1}{8}, \frac{1}{4}\right)\right\}$, then the number of point(s) in S lying inside the smaller part is

- Watch Video Solution

23. The two circles $x^{2}+y^{2}=a x$ and $x^{2}+y^{2}=c^{2}(c>0)$ touch each other if: (1) $2|a|=c$ (2) $|a|=c$ (3) $a=2 c$ (4) $|a|=2 c$
A. $|a|=c$
B. $a=2 c$
C. $|a|=2 c$
D. $2|a|=c$

Answer: A

24. The locus of the middle point of the chord of contact of tangents drawn from points lying on the straight line $4 x-5 y=20$ to the circle $x^{2}+y^{2}=9$ is
A. $20\left(x^{2}+y^{2}\right)-36 y+45=0$
B. $20\left(x^{2}+y^{2}\right)+36 x-45 y=0$
C. $36\left(x^{2}+y^{2}\right)-20 x+45 y=0$
D. $36\left(x^{2}+y^{2}\right)+20 x-45 y=0$

Answer: A

- Watch Video Solution

25. A tangent PT is drawn to the circle $x^{2}+y^{2}=4$ at the point $P(\sqrt{3}, 1)$
. A straight line L is perpendicular to PT is a tangent to the circle $(x-3)^{2}+y^{2}=1$ Common tangent of two circle is: (A) $x=4$ (B) $y=2$
(C) $x+(\sqrt{3}) y=4$ (D) $x+2(\sqrt{2}) y=6$
A. $x-\sqrt{3} y=1$
B. $x+\sqrt{3} y=1$
C. $x-\sqrt{3} y=-1$
D. $x+\sqrt{3} y=5$

Answer: A

- Watch Video Solution

26. A tangent PT is drawn to the circle $x^{2}+y^{2}=4$ at the point $P(\sqrt{3}, 1)$
. A straight line L is perpendicular to PT is a tangent to the circle $(x-3)^{2}+y^{2}=1$ Common tangent of two circle is: (A) $x=4$ (B) $y=2$
(C) $x+(\sqrt{3}) y=4$ (D) $x+2(\sqrt{2}) y=6$
A. $x=4$
B. $y=2$
C. $x+\sqrt{3} y=4$
D. $x+2 \sqrt{2} y=6$

- Watch Video Solution

27. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$ is (1) $\frac{10}{3}$ (2) $\frac{3}{5}$ (3) $\frac{6}{5}$ (4) $\frac{5}{3}$
A. $\frac{10}{3}$
B. $\frac{3}{5}$
C. $\frac{6}{5}$
D. $\frac{5}{3}$

Answer: A

28. The circle passing through ($1,-2$) and touching the axis of x at $(3,0)$ also passes through the point $(1)(2,-5)(2)(5,-2)(3)(-2,5)(4)(-5,2)$
A. $(-5,2)$
B. $(2,-5)$
C. (5,-2)
D. $(-2,5)^{\prime}$

Answer: C

- Watch Video Solution

29. Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2 \sqrt{7}$ on y -axis is (are)
A. $x^{2}+y^{2}-6 x+8 y+9=0$
B. $x^{2}+y^{2}-6 x+7 y+9=0$
C. $x^{2}+y^{2}-6 x-8 y+9=0$
D. $x^{2}+y^{2}-6 x-7 y+9=0$

Answer: A:C

- Watch Video Solution

30. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centred at ($0, y$), passing through origin and touching the circle C externally, then the radius of T is equal to (1) $\frac{\sqrt{3}}{\sqrt{2}}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{2}$ (3) $\frac{1}{4}$
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{\sqrt{3}}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer: B

31. A circle S passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and $x^{2}+y^{2}=1$. Then (A) radius of S is 8 (B) radius of S is 7 (C) center of S is ($-7,1$) (D) center of S is $(-8,1)$
A. radius of S is 8
B. radius of S is 7
C. centre of S is $(-7,1)$
D. centre of S is $(-8,1)$

Answer: B::C

- Watch Video Solution

32. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \varepsilon R$, is a : (1) straight line parallel to x-axis. (2) straight line parallel to y-axis (3) circle of radius $\sqrt{2}$ (4) circle of radius $\sqrt{3}$
A. circle of radius $\sqrt{2}$
B. circle of radius $\sqrt{3}$
C. straight line parallel to X -axis
D. straight line parallel to Y-axis

Answer: A

(D) Watch Video Solution

33. The number of common tangents to the circles $x^{2}+y^{2}-4 x-6 y-12=0$ and $x^{2}+y^{2}+6 x+18 y+26=0$, is
A. 3
B. 4
C. 1
D. 2

Answer: A

34. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on :
(1) a circle. (2) an ellipse which is not a circle. (3) a hyperbola. (4) a parabola.
A. a hyperbola
B. a parabola
C. a circle
D. an ellipse which is not a circle

Answer: B

- Watch Video Solution

35. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of a circle S , whose centre is at $(-3,2)$, then the radius of S is: (1) $5 \sqrt{2}$ (2) $5 \sqrt{3}$ (3) 5 (4) 10
A. 5
B. 10
C. $5 \sqrt{2}$
D. $5 \sqrt{3}$

Answer: D

- Watch Video Solution

36. Let RS be the diameter of the circle $x^{2}+y^{2}=1$, where S is the point $(1,0)$ Let P be a variable apoint (other than R and S) on the circle and tangents to the circle at S and P meet at the point Q.The normal to the circle at P intersects a line drawn through Q parallel to $R S$ at point E. then the locus of E passes through the point(s)- (A) $\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)$ (B) $\left(\frac{1}{4}, \frac{1}{2}\right)$
(C) $\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right)$ (D) $\left(\frac{1}{4},-\frac{1}{2}\right)$
A. $\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)$
B. $\left(\frac{1}{4}, \frac{1}{2}\right)$
C. $\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right)$
D. $\left(\frac{1}{4},-\frac{1}{2}\right)$

Answer: A:C

- Watch Video Solution

37. For how many values, of p , the circle $x^{2}+y^{2}+2 x+4 y-p=0$ and the coordinate axes have exactly three common points?

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. A circle is given by $x^{2}+(y-1)^{2}=1$, another circle C touches it externally and also the x-axis, then the locus of center is:
A. $\left\{(x, y): x^{2}=4 y\right\} \cup\{(x, y): y \leq 0\}$
B. $\left\{(x, y): x^{2}+(y-1)^{2}=4\right\} \cup\{(x, y): y \leq 0\}$
C. $\left\{(x, y): x^{2}=y\right\} \cup\{(0, y): y \leq 0\}$
D. $\left\{(x, y): x^{2}=4 y\right\} \cup\{(0, y): y \leq 0\}$

Answer: D

- Watch Video Solution

2. If the circles $x^{2}+y^{2}+2 a x+c y+a=0$ and points PandQ, then find the values of a for which the line $5 x+b y-a=0$ passes through PandQ.
A. exactly one value of a
B. no value of a
C. infinitely many vaues of a
D. exactly two values of a

Answer: B

- Watch Video Solution

3. A circle touches the x-axis and also touches the circle with center $(0,3)$ and radius 2 . The locus of the center
A. an ellipse
B. a circle
C. a hyperbola
D. a parabola

Answer: D

- Watch Video Solution

4. If a circle passes through the point (a, b) and cuts the circlex $x^{2}+y^{2}=p^{2}$ equation of the locus of its centre is
A. $x^{2}+y^{2}-3 a x-4 b y+\left(a^{2}+b^{2}-p^{2}\right)=0$
B. $2 a x+2 b y-\left(a^{2}-b^{2}+p^{2}\right)=0$
C. $x^{2}+y^{2}-2 a x-3 b y+\left(a^{2}-b^{2}-p^{2}\right)=0$
D. $2 a x+2 b y-\left(a^{2}+b^{2}+p^{2}\right)=0$

Answer: D

- Watch Video Solution

5. Let $A B C D$ be a square of side length 2 units. $C 2$ is the circle through vertices A, B, C, D and $C 1$ is the circle touching all the sides of the square $A B C D$. L is a line through A. 27 . If P is a point on $C 1$ and Q in another point on C2, then 22222222 PA PB PC PD QA QB QC QD +++ +++ is equal to (A) 0.75 (B) 1.25 (C) 1 (D) 0.5
A. 0.75
B. 1.25
C. 1
D. 0.5

Answer: A

- Watch Video Solution

6. ABCD is a square of side length 2 units. C_{1} is the circle touching all the sides of the square ABCD and C_{2} is the circumcircle of square ABCD . L is a fixed line in the same plane and R is fixed point. If a circle is such that it touches the line L and the circle C_{1} externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is
A. ellipse
B. hyperbola
C. parabola
D. pair of straight line

Answer: B

7. ABCD is a square of side length 2 units. C_{1} is the circle touching all the sides of the square ABCD and C_{2} is the circumcircle of square ABCD . L is a fixed line in the same plane and R is fixed point.

A line L' through a is drawn parallel to BD. Point S moves scuh that its distances from the line BD and the vertex A are equal. If loucs S cuts L ' at T_{2} and T_{3} and AC at T_{1}, then area of $\Delta T_{1} T_{2} T_{3}$ is
A. $\frac{1}{2}$ sq units
B. $\frac{2}{3}$ sq units
C. 1 sq units
D. 2 sq units

Answer: C

- View Text Solution

8. If the lines $3 x-4 y-7=0$ and $2 x-3 y-5=0$ are two diameters of a circle of area 49π square units, the equation of the circle is:
A. $x^{2}+y^{2}+2 x-2 y-47=0$
B. $x^{2}+y^{2}+2 x-2 y-62=0$
C. $x^{2}+y^{2}-2 x+2 y-62=0$
D. $x^{2}+y^{2}-2 x+2 y-47=0$

Answer: D

- Watch Video Solution

9. Let C be the circle with centre $(0,0)$ and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle of $\frac{2 \pi}{3}$ at its center is (A) $x^{2}+y^{2}=\frac{3}{2}$ (B) $x^{2}+y^{2}=1$
$x^{2}+y^{2}=\frac{27}{4}$ (D) $x^{2}+y^{2}=\frac{9}{4}$
A. $x^{2}+y^{2}=\frac{3}{2}$
B. $x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=\frac{27}{4}$
D. $x^{2}+y^{2}=\frac{9}{4}$

Answer: D

- Watch Video Solution

10. Tangents are drawn from the point $(17,7)$ to the circle $x^{2}+y^{2}=169$, Statement I The tangents are mutually perpendicular Statement, Ils The locus of the points frorn which mutually perpendicular tangents can be drawn to the given circle is $x^{2}+y^{2}=338$ (a) Statement I is correct, Statement II is correct; Statement II is a correct explanation for Statement (b(Statement I is correct, Statement I| is correct Statement II is not a correct explanation for Statementl (c)Statement I is correct, Statement II is incorrect (d) Statement I is incorrect, Statement II is correct
A. Statement I is True, statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: A

D Watch Video Solution

11. Consider a family of circles which are passing through the point $(-1,1)$ and are tangent to x-axis. If (h, k) are the co-ordinates of the centre of the circles, then the set of values of k is given by the interval (1)
$0<k<$
(2) $k \geq$
(3) $\prec=k \leq$
(4) $k \leq$
A. $-\frac{1}{2} \leq k \leq \frac{1}{2}$
B. $k \leq \frac{1}{2}$
C. $0 \leq k \leq \frac{1}{2}$
D. $k \geq \frac{1}{2}$

Answer: D

- Watch Video Solution

12. A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $\mathrm{PQ}, \mathrm{QR}, \mathrm{RP}$ are $\mathrm{D}, \mathrm{E}, \mathrm{F}$, respectively. The line $P Q$ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is (3 sqrt3/2, 3/2). Further, it is given that the origin and the centre of C are on the same side of the line PQ. (1)The equation of circle C is (2)Points E and F are given by (3)Equation of the sides $Q R, R P$ are
A. $(x-2 \sqrt{3})^{2}+(y-1)^{2}=1$
B. $(x-2 \sqrt{3})^{2}+\left(y+\frac{1}{2}\right)^{2}=1$
C. $(x-\sqrt{3})^{2}+(y+1)^{2}=1$
D. $(x-\sqrt{3})^{2}+(y-1)^{2}=1$

- Watch Video Solution

13. A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $\mathrm{PQ}, \mathrm{QR}, \mathrm{RP}$ are $\mathrm{D}, \mathrm{E}, \mathrm{F}$, respectively. The line $P Q$ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is (3 sqrt $3 / 2,3 / 2$). Further, it is given that the origin and the centre of C are on the same side of the line $P Q$. (1)The equation of circle C is (2)Points E and F are given by (3)Equation of the sides QR, RP are
A. $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right),(\sqrt{3}, 0)$
B. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),(\sqrt{3}, 0)$
C. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
D. $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Answer: A

14. A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $P Q, Q R, R P$ are D, E, F, respectively. The line PQ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is (3 sqrt3/2, 3/2). Further, it is given that the origin and the centre of C are on the same side of the line PQ. (1)The equation of circle C is (2)Points E and F are given by (3)Equation of the sides $Q R, R P$ are
A. $y=\frac{2}{\sqrt{3}}+x+1, y=-\frac{2}{\sqrt{3}} x-1$
B. $y=\frac{1}{\sqrt{3}} x, y=0$
C. $y=\frac{\sqrt{3}}{2} x+1, y=-\frac{\sqrt{3}}{2} x-1$
D. $y=\sqrt{3} x, y=0$

Answer: D

- Watch Video Solution

15. Consider: $L_{1}: 2 x+3 y+p-3=0 L_{2}: 2 x+3 y+p+3=0$ where p is a real number and $C: x^{2}+y^{2}+6 x-10 y+30=0$ Statement 1 : If line L_{1} is a chord of circle C, then line L_{2} is not always a diameter of circle C. Statement 2 : If line L_{1} is a a diameter of circle C, then line L_{2} is not a chord of circle C. Both the statement are True and Statement 2 is the correct explanation of Statement 1. Both the statement are True but Statement 2 is not the correct explanation of Statement 1 . Statement 1 is True and Statement 2 is False. Statement 1 is False and Statement 2 is True.
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: C

16. The point diametrically opposite to the point $\mathrm{P}(1,0)$ on the circle $x^{2}+y^{2}+2 x+4 y-3=0$ is
A. $(3,-4)$
B. $(-3,4)$
C. $(-3,-4)$
D. $(3,4)$

Answer: C

- Watch Video Solution

