©゙doubtnut

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

CONTINUITY AND DIFFERENTIABILITY

Examples

1. If $f(x)=\frac{|X|}{X}$. Discuss the continuity at $x \rightarrow 0$

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}2 x+3, & \text { when } x<0 \\ 0, & \text { when } x=0 \\ x^{2}+3, & \text { when } x>0\end{array}\right.$ Discuss the continuity.
3. If $f(x)=\frac{x^{2}-1}{x-1}$ Discuss the continuity at $x \rightarrow 1$

(Watch Video Solution

4. Show that the function $f(x)=\left\{\begin{array}{ll}2 x+3, & -3 \leq x<-2 \\ x+1, & -2 \leq x<0 \\ x+2, & 0 \leq x \leq 1\end{array}\right.$ is discontinuous at $\mathrm{x}=0$ and continuous at every point in interval $[-3,1]$

- Watch Video Solution

5. Examine the function, $f(x)=\left\{\begin{array}{ll}\frac{\cos x}{\pi / 2-x}, & x \neq \pi / 2 \\ 1, & x=\pi / 2\end{array}\right.$ for continuity at $x=\pi / 2$

- Watch Video Solution

6. Discuss the continuity of $f(x)=\tan ^{-1} x$
7. Let $y=f(x)$ be defined parametrically as $y=t^{2}+t|t|, x=2 t-|t|, t \in R$. Then, at $\mathrm{x}=$ find $\mathrm{f}(\mathrm{x})$ and discuss continuity.

- View Text Solution

8. Let $f(x)=\frac{e^{\tan x}-e^{x}+\ln (\sec x+\tan x)-x}{\tan x-x}$ be a continuous function at $x=0$. The value $f(0)$ equals
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 2

Answer: C

9. If $f(x)=\sqrt{\frac{1}{\tan ^{-1}\left(x^{2}-4 x+3\right)}}$, then $f(x)$ is continuous for
A. $(1,3)$
B. $(-\infty, 0)$
C. $(-\infty, 1) \cup(3, \infty)$
D. None of these

Answer: C

- Watch Video Solution

10. If $f(x)=[x]$, where [$\cdot]$ denotes greatest integral function. Then, check the continuity on (1, 2]

- Watch Video Solution

11. Examine the function, $f(x)=\left\{\begin{array}{ll}x-1, & x<0 \\ 1 / 4, & x=0 \\ x^{2}-1, & x>0\end{array}\right.$ Discuss the continuity and if discontinuous remove the discontinuity.

- Watch Video Solution

12. Show the function, $f(x)=\left\{\begin{array}{ll}\frac{e^{1 / x}-1}{e^{1 / x}+1}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{array}\right.$ has nonremovable discontinuity at $x=0$

- Watch Video Solution

13. Show $f(x)=\frac{1}{|x|}$ has discontinuity of second kind at $\mathrm{x}=0$.

- Watch Video Solution

14. $f(x)=\left\{\begin{array}{ll}\left(\tan \left(\frac{\pi}{4}+x\right)\right)^{1 / x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ for what value of $\mathrm{k}, \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$?

- Watch Video Solution

15. A function $\mathrm{f}(\mathrm{x})$ is defined by, $f(x)=\left\{\begin{array}{ll}\frac{\left[x^{2}\right]-1}{x^{2}-1}, & \text { for } x^{2} \neq 1 \\ 0, & \text { for } x^{2}=1\end{array}\right.$ Discuss the continuity of $f(x)$ at $x=1$.

- Watch Video Solution

16. Discuss the continuity of the function
$f(x)=\lim _{n \rightarrow \infty} \frac{\log (2+x)-x^{2 n} \sin x}{1+x^{2 n}}$ at $\mathrm{x}=1$

- Watch Video Solution

17. Discuss the continuity of $\mathrm{f}(\mathrm{x})$, where $f(x)=\lim _{n \rightarrow \infty}\left(\sin \frac{\pi x}{2}\right)^{2 n}$
18. Let $f(x)=\left\{\begin{array}{ll}\{1+|\sin x|\}^{a /|\sin x|}, & -\pi / 6<x<0 \\ b, & x=0 \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\pi / 6\end{array}\right.$ Determine a and b such that $f(x)$ is continuous at $x=0$

- Watch Video Solution

19. Fill in the blanks so that the resulting statement is correct. Let $f(x)=[x+2] \sin \left(\frac{\pi}{[x+1]}\right)$, where $[\cdot]$ denotes greatest integral function. The domain of f isand the points of discontinuity of f in the domain are

- Watch Video Solution

20. Let $f(x+y)=f(x)+f(y)$ for all xandy. If the function $f(x)$ is continuous at $x=0$, show that $f(x)$ is continuous for all x.
21. Let $f(x)$ be a continuous function defined for $1 \leq x \leq 3$. If $f(x)$ takes rational values for all x and $f(2)=10$ then the value of $f(1.5)$ is:

- Watch Video Solution

22. Discuss the continuity for $f(x)=\frac{1-u^{2}}{2+u^{2}}$, where $\mathrm{u}=\tan \mathrm{x}$.

- Watch Video Solution

23. Find the points of discontinuity of $y=\frac{1}{u^{2}+u-2}$, where $u=\frac{1}{x-1}$

- Watch Video Solution

24. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.
25. Suppose that $\mathrm{f}(\mathrm{x})$ is continuous in $[0,1]$ and $f(0)=0, f(1)=0$. Prove $f(c)=1-2 c^{2}$ for some $c \in(0,1)$

Watch Video Solution

26. The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k, k$ is an integer, is
A. $(-1)^{k}(k-1) \pi$
B. $(-1)^{k-1}(k-1) \pi$
C. $(-1)^{k} k \pi$
D. $(-1)^{k-1} k \pi$

Answer: A

27. Which of the following functions is differentiable at $\mathrm{x}=0$?
A. $\cos (|x|)+|x|$
B. $\cos (|x|)-|x|$
C. $\sin (|x|)+|x|$
D. $\sin (|x|)-|x|$

Answer: D

- Watch Video Solution

28. Show that $f(x)=\left\{\begin{array}{ll}\mathrm{x} \sin \frac{1}{x}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{array}\right.$ is continuous but not differentiable at $\mathrm{x}=0$
29. Let $f(x)=(x e)^{\frac{1}{|x|}+\frac{1}{x}} ; x \neq 0, f(0)=0$, test the continuity \& differentiability at $x=0$

Watch Video Solution

30. Let $f(x)=|x-1|+|x+1|$ Discuss the continuity and differentiability of the function.

- Watch Video Solution

31. Discuss the continuity and differentiability for $f(x)=[\sin x]$ when $x \in[0,2 \pi]$, where [• $]$ denotes the greatest integer function x .

- Watch Video Solution

32. If $f(x)=\{|x|-|x-1|\}^{2}$, draw the graph of $\mathrm{f}(\mathrm{x})$ and discuss its continuity and differentiability of $\mathrm{f}(\mathrm{x})$
33. If $f(x)=\left\{\begin{array}{ll}x-3, & x<0 \\ x^{2}-3 x+2, & x \geq 0\end{array}\right.$ and let $g(x)=f(|x|)+|f(x)|$. Discuss the differentiability of $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

34. Let $\mathrm{f}(\mathrm{x})=[\mathrm{n}+\mathrm{p} \sin \mathrm{x}], x \in(0, \pi), n \in Z$, p a prime number and $[\mathrm{x}]=$ the greatest integer less than or equal to x . The number of points at which $f(x)$ is not not differentiable is :

- Watch Video Solution

35. If $f(x)=||x|-1|$, then draw the graph of $\mathrm{f}(\mathrm{x})$ and $\mathrm{fof}(\mathrm{x})$ and also discuss their continuity and differentiability. Also, find derivative of $(f o f)^{2}$ at $\mathrm{x}=\frac{3}{2}$
36. Draw the graph of the function $g(x)=f(x+I)+f(x-I)$, where $f(x)=\left\{\begin{array}{ll}k\left\{1-\frac{|x|}{I}\right\}, & \text { for } \\ 0, & |x| \leq I \\ 0, & |x|>I\end{array}\right.$ Also, discuss the continuity and differentiability of the function $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

37. Let $f(x)=\left\{\begin{array}{ll}\int_{0}^{x}\{5+|1-t|\} d t, & \text { if } x>2 \\ 5 x+1, & \text { if } x \leq 2\end{array}\right.$ Test $\mathrm{f}(\mathrm{x})$ for continuity and differentiability for all real x .

- View Text Solution

38. Draw the graph of the function and discuss the continuity and differentiability at $\mathrm{x}=1$ for, $f(x)= \begin{cases}3^{x}, & \text { when }-1 \leq x \leq 1 \\ 4-x, & \text { when } 1<x<4\end{cases}$

- Watch Video Solution

39. Match the conditions/expressions in Column I with statement in Column II. (A) $\sin (\pi[x])$ (B) $\sin \{\pi(x-[x])\}$

Watch Video Solution

40. The set of points where , $f(x)=x|x|$ is twice differentiable is

- Watch Video Solution

41. is The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$ is differentiable not differentiable at (a)-1 (b) 0 (c)1 (d)2
A. -1
B. 0
C. 1
D. 2

Answer: D

Watch Video Solution

42. If $f(x)=\sum_{r=1}^{n} a_{r}|x|^{r}$, where $a_{i} \mathrm{~s}$ are real constants, then $\mathrm{f}(\mathrm{x})$ is
A. continuous at $\mathrm{x}=0$, for all a_{i}
B. differentiable at $\mathrm{x}=0$, for all $a_{i} \in R$
C. differentiable at $\mathrm{x}=0$, for all $a_{2 k+1}=0$
D. None of the above

Answer: A:C

- Watch Video Solution

43. Let f and g be differentiable functions satisfying $g(a)=b, g^{\prime}(a)=2$ and $f 0 \mathrm{~g}=1$ (identity function). then $\mathrm{f}^{\prime}(\mathrm{b})$ is equal to
A. 2
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. None of these

Answer: C

- Watch Video Solution

44. If $f(x)=\frac{x}{1+(\log x)(\log x) \ldots \infty}, \forall x \in[1,3]$ is non-differentiable at $\mathrm{x}=\mathrm{k}$. Then, the value of $\left[k^{2}\right]$, is (where $[\cdot]$ denotes greatest integer function).
A. 5
B. 6
C. 7
D. 8

Answer: C

45. If $f(x)=|1-x|$, then the points where $\sin ^{-1}(f|x|)$ is nondifferentiable are
A. $\{0,1\}$
B. $\{0,-1\}$
C. $\{0,1,-1\}$
D. None of these

Answer: C

- Watch Video Solution

46. Discuss the differentiability of $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
47. Let [.] represent the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$ then :
A. $\lim _{x \rightarrow 0} f(x)$ doesn't exist
B. $f(x)$ is continuous at $x=0$
C. $f(x)$ is not differentiable at $x=0$
D. $f^{\prime}(0)=1$

Answer: B

- Watch Video Solution

48. Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of X . Then (A) h is continuous for all $\mathrm{x}(\mathrm{B}) \mathrm{h}$ is differentiable for all $\mathrm{x}(\mathrm{C}) h^{\prime}(x)=1$, for all $\mathrm{x}>1$
(D) h is not differentiable at two values of x
A. h is not continuous for all x
B. h is differentiable for all x
C. $h^{\prime}(x)=1$ for all x
D. h is not differentiable at two values of x

Answer: D

- Watch Video Solution

49. let $f: R \rightarrow R$ be a function defined by $f(x)=\max \left\{x, x^{3}\right\}$. The set of values where $f(x)$ is differentiable is:
A. $\{-1,1\}$
B. $\{-1,0\}$
C. $\{0,1\}$
D. $\{-1,0,1\}$

Answer: D

50. Let $\mathrm{f}(\mathrm{x})$ be a continuous function, $\forall x \in R, f(0)=1$ and $f(x) \neq x$ for any $x \in R$, then show $f(f(x))>x, \forall x \in R^{+}$

- Watch Video Solution

51. The total number of points of non-differentiability of $f(x)=\max \left\{\sin ^{2} x, \cos ^{2} x, \frac{3}{4}\right\}$ in $[0,10 \pi]$, is
A. 40
B. 30
C. 20
D. 10

Answer: A

- Watch Video Solution

52. If $f(x)=|x+1|\{|x|+|x-1|\}$, then draw the graph of $\mathrm{f}(\mathrm{x})$ in the interval $[-2,2]$ and discuss the continuity and differentiability in $[-2,2]$.

- Watch Video Solution

53. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$, [.] denotes the greatest integer function, is continuous in $[4,6]$, then find the values of a.
A. $a \in[8,64]$
B. $a \in(0,8]$
C. $a \in[64, \infty)$
D. None of these

Answer: C

$f(x)=x^{2}-2|x|$ and $g(x)= \begin{cases}\min \{\mathrm{f}(\mathrm{t}):-2 \leq t \leq x, & -2 \leq x \leq\} \\ \max \{\mathrm{f}(\mathrm{t}): 0 \leq t \leq x, & 0 \leq x \leq 3\}\end{cases}$
(i) Draw the graph of $\mathrm{f}(\mathrm{x})$ and discuss its continuity and differentiablity.
(ii) Find and draw the graph of g (x Also, discuss the continuity.

- Watch Video Solution

55. Let $f(x)=\phi(x)+\Psi(x)$ and $\Psi^{\prime}(a)$ are finite and definite. Then,
A. $f(x)$ is continuous at $x=a$
B. $f(x)$ is differentiable at $x=a$
C. $f^{\prime}(x)$ is continuous at $x=a$
D. $f^{\prime}(x)$ is differentiable at $x=a$

Answer: A: B

- Watch Video Solution

56. If $f(x)=x+\tan x$ and $g(x)$ is the inverse of $\mathrm{f}(\mathrm{x})$, then $\mathrm{g}^{\prime}(\mathrm{x})$ is equal to
A. $\frac{1}{1+(g(x)-x)^{2}}$
B. $\frac{1}{2+(g(x)+x)^{2}}$
C. $\frac{1}{2+(g(x)-x)^{2}}$
D. None of these

Answer: C

- Watch Video Solution

57. If $f(x)=\int_{0}^{x}(f(t))^{2} d t, f: R \rightarrow R$ be differentiable function and $f(g(x))$ is differentiable at $x=a$, then
A. $g(x)$ must be differentiable at $x=a$
B. $g(x)$ is discontinuous, then $f(a)=0$
C. $f(a) \neq 0$, then $\mathrm{g}(\mathrm{x})$ must be differentiable
D. None of these

Answer: B::C

- Watch Video Solution

58. If $f(x)=\left[x^{-2}\left[x^{2}\right]\right]$, (where $[\cdot]$ denotes the greatest integer function) $x \neq 0$, then incorrect statement
A. $f(x)$ is continuous everywhere
B. $\mathrm{f}(\mathrm{x})$ is discontinuous at $x=\sqrt{2}$
C. $f(x)$ is non-differentiable at $x=1$
D. $f(x)$ is discontinuous at infinitely many points

Answer: A

- Watch Video Solution

59.

$f(x)=\left\{x^{2}(\operatorname{sgn}[x])+\{x\}, 0 \leq x \leq 2 \sin x+|x-3|, 2<x<4\right.$, (where[.] \& \{.\} greatest integer function \& fractional part functiopn respectively), then -
A. $f(x)$ is differentiable at $x=1$
B. $f(x)$ is continuous but non-differentiable at x
C. $f(x)$ is non-differentiable at $x=2$
D. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=2$

Answer: C::D

- Watch Video Solution

60. A real valued function $f(x)$ is given as
$f(x)= \begin{cases}\int_{0}^{x} 2\{x\} d x, & x+\{x\} \in I \\ x^{2}-x+\frac{1}{2}, & \frac{1}{2}<x<\frac{3}{2} \\ x^{2}-x+\frac{1}{6}, & \text { otherwise } x \neq 1, \text { where }[] \quad \text { denotes }\end{cases}$
greatest integer less than or equals to x and $\}$ denotes fractional part function of x . Then,
A. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable in $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
B. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable in $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
C. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable in $x \in\left[\frac{1}{2}, \frac{3}{2}\right]$
D. $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable in $x \in(0,1)$

Answer: D

- View Text Solution

61. The values of a and b so that the function $f(x)= \begin{cases}x+a \sqrt{2} \sin x, & 0 \leq x<\pi / 4 \\ 2 x \cot x+b, & \pi / 4 \leq x \leq \pi / 2 \quad \text { is } \quad \text { continuous } \\ a \cos 2 x-b \sin x, & \pi / 2<x \leq \pi\end{cases}$ $x \in[0, \pi]$, are
A. $a=\frac{\pi}{6}, b=-\frac{\pi}{6}$
B. $a=-\frac{\pi}{6}, b=\frac{\pi}{12}$
C. $a=\frac{\pi}{6}, b=-\frac{\pi}{12}$
D. None of these

Answer: C

- Watch Video Solution

62. Let f be an even function and $f^{\prime}(0)$ exists, then $f^{\prime}(0)$ is
A. 1
B. 0
C. -1
D. -2

Answer: B

63. The set of points where $x^{2}|x|$ is thrice differentiable, is
A. R
B. $R-\{0,1\}$
C. $[0, \infty)$
D. $R-\{0\}$

Answer: D

- Watch Video Solution

64. The function $f(x)=\frac{|x+2|}{\tan ^{-1}(x+2)}$, is continuous for A. $x \in R$
B. $x \in R-\{0\}$
C. $x \in R-\{-2\}$
D. None of these

Answer: C

- Watch Video Solution

65. If $f(x)=\left[\begin{array}{ll}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b & 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} x & 1<x \leq 2\end{array}\right.$ is differentiable in
$[0,2]$ then: ([.] denotes greatest integer function)
A. $a=\frac{1}{6}, b=\frac{\pi}{4}-\frac{13}{6}$
B. $a=-\frac{1}{6}, b=\frac{\pi}{4}$
C. $a=-\frac{1}{6}, b=\frac{\pi}{4}-\frac{13}{6}$
D. None of these

Answer: A

- Watch Video Solution

66. If $g(x)=\lim _{m \rightarrow \infty} \frac{x^{m} f(1)+h(x)+1}{2 x^{m}+3 x+3}$ is continuous at $\mathrm{x}=1$ and $g(1)=\lim _{x \rightarrow 1}\left\{\log _{e}(e x)\right\}^{2 / \log _{e} x}$, then the value of $2 g(1)+2 f(1)-h(1)$ when $\mathrm{f}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are continuous at $\mathrm{x}=1$, is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

67. Let $g(x)=\ln f(x)$ where $\mathrm{f}(\mathrm{x})$ is a twice differentiable positive function on $(0, \infty)$ such that $f(x+1)=x f(x)$. Then for $\mathrm{N}=1,2,3$

$$
g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)=
$$

A. $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N-1)^{2}}\right\}$
B. $4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N-1)^{2}}\right\}$
C. $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N-1)^{2}}\right\}$
D. $4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N-1)^{2}}\right\}$

Answer: A

- Watch Video Solution

68. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a differentiable function, $\forall x \in R$ and satisfies, $f(x)=x+\int_{0}^{1} x^{2} z f(z) d z+\int_{0}^{1} x z^{2} f(z) d z$, then
A. $f(x)=\frac{20 x}{119}(2+9 x)$
B. $f(x)=\frac{20 x}{119}(4+9 x)$
C. $f(x)=\frac{10 x}{119}(4+9 x)$
D. $f(x)=\frac{5 x}{119}(4+9 x)$

Answer: B

69. A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) . f(y)$ for all, $f(x) \neq 0$. Suppose that the function is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=2$. Then,
A. $f^{\prime}(x)=2 f(x)$
B. $f^{\prime}(x)=f(x)$
C. $f^{\prime}(x)=f(x)+2$
D. $f^{\prime}(x)=2 f(x)+x$

Answer: A

- Watch Video Solution

70. Let f be a function such that $f(x+f(y))=f(x)+y, \forall x, y \in R$, then find $f(0)$. If it is given that there exists a positive real δ such that $f(h)$ $=\mathrm{h}$ for $0<h<\delta$, then find $\mathrm{f}^{\prime}(\mathrm{x})$
A. 0,1
B. $-1,0$
C. 2, 1
D. $-2,0$

Answer: A

- Watch Video Solution

71.

the
function
of
$f(x)=\left[\frac{(x-5)^{2}}{A}\right] \sin (x-5)+a \cos (x-2)$, where $[\cdot]$ denotes the greatest integer function, is continuous and differentiable in (7,9), then find the value of A
A. $A \in[8,64]$
B. $A \in[0,8)$
C. $A \in[16, \infty)$

D. $A \in[8,16]$

Answer: C

- Watch Video Solution

72. If $f(x)=[2+5|n| \sin x]$, where $n \in I$ has exactly 9 points of nonderivability in $(0, \pi)$, then possible values of n are (where $[\mathrm{x}$] dentoes greatest integer function)
A. ± 3
B. ± 2
C. ± 1
D. None of these

Answer: C

- Watch Video Solution

73. The number of points of discontinuity of $f(x)=[2 x]^{2}-\{2 x\}^{2}$ (where [] denotes the greatest integer function and \{\} is fractional part of x) in the interval $(-2,2)$, is
A. 6
B. 8
C. 4
D. 3

Answer: A

- Watch Video Solution

74. If $x \in R^{+}$and $n \in N$, we can uniquely write $x=m n+r$, where $m \in W$ and $0 \leq r<n$. We define $x \bmod n=r$. The number of points of discontinuity of the function, $f(x)=(x \bmod 2)^{2}+(x \bmod 4)$ in the interval $0<x<9$ is
A. 0
B. 2
C. 4
D. None of these

Answer: C

- Watch Video Solution

75. Let $f: R \rightarrow R$ be a differentiable function at $\mathrm{x}=0$ satisfying $\mathrm{f}(0)=0$
and $\mathrm{f}^{\prime}(0)=1$, then the value of $\lim _{x \rightarrow 0} \frac{1}{x} \cdot \sum_{n=1}^{\infty}(-1)^{n} \cdot f\left(\frac{x}{n}\right)$, is
A. 0
B. $-\log 2$
C. 1
D.e

Answer: B

76. Let $\mathrm{f}(\mathrm{x})$ is a function continuous for all $x \in R$ except at $\mathrm{x}=0$ such that
$f^{\prime}(x)<0, \forall x \in(-\infty, 0)$ and $f^{\prime}(x)>0, \forall x \in(0, \infty)$. $\lim _{x \rightarrow 0^{+}} f(x)=3, \lim _{x \rightarrow 0^{-}} f(x)=4$ and $f(0)=5$, then the image of the
point
(0,
1) about the line,
y. $\lim _{x \rightarrow 0} f\left(\cos ^{3} x-\cos ^{2} x\right)=x$. $\lim _{x \rightarrow 0} f\left(\sin ^{2} x-\sin ^{3} x\right)$, is
A. $\left(\frac{12}{25}, \frac{-9}{25}\right)$
B. $\left(\frac{12}{25}, \frac{9}{25}\right)$
C. $\left(\frac{16}{25}, \frac{-8}{25}\right)$
D. $\left(\frac{24}{25}, \frac{-7}{25}\right)$

Answer: D

- Watch Video Solution

77. If $\mathrm{f}(\mathrm{x})$ be such that $f(x)=\max \left(|3-x|, 3-x^{3}\right)$, then
A. $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
B. $\mathrm{f}(\mathrm{x})$ is differentiable $\forall x \in R$
C. $f(x)$ is non-differentiable at three points only
D. $f(x)$ is non-differentiable at four points only

Answer: A::D

- Watch Video Solution

78. Let $f(x)=|x-1|([x]-[-x])$, then which of the following statement(s) is/are correct. (where [.] denotes greatest integer function.)
A. $f(x)$ is continuous at $x=1$
B. $\mathrm{f}(\mathrm{x})$ is derivable at $\mathrm{x}=1$
C. $f(X)$ is non-derivable at $x=1$
D. $f(x)$ is discontinuous at $x=1$
79. If $\mathrm{y}=\mathrm{f}(\mathrm{x})$ defined parametrically by
$x=2 t-|t-1|$ and $y=2 t^{2}+t|t|$, then
A. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$
B. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R-\{2\}$
C. $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \in R$
D. $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \in R-\{2\}$

Answer: A::D

- View Text Solution

80. $f(x)=\sin ^{-1}\left[e^{x}\right]+\sin ^{-1}\left[e^{-x}\right]$ where [.] greatest integer function then
A. domain of $f(x)=(-\operatorname{In} 2, \operatorname{In} 2)$
B. range of $f(x)=\{\pi\}$
C. $\mathrm{f}(\mathrm{x})$ has removable discontinuity at $\mathrm{x}=0$
D. $f(x)=\cos ^{-1} x$ has only solution

Answer: A:C

- Watch Video Solution

81. $f: R \rightarrow R$ is one-one, onto and differentiable and graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is symmetrical about the point $(4,0)$, then
A. $f^{-1}(2010)+f^{-1}(-2010)=8$
B. $\int_{-2010}^{2018} f(x) d x=0$
C. if $f^{\prime}(-100)>0$, then roots of $x^{2}-f^{\prime}(10) x-f^{\prime}(10)=0$ may be non-real
D. if $f^{\prime}(10)=20$, then $\mathrm{f}^{\prime}(-2)=20$

- Watch Video Solution

82. Let f be a real-valued function defined on interval $(0, \infty)$,by $f(x)=\ln x+\int_{0}^{x} \sqrt{1+\sin t}$. $d t$. Then which of the following statement(s) is (are) true? (A). $\mathrm{f}^{\prime \prime}(\mathrm{x})$ exists for all $\in(0, \infty) . \quad$ (B). $\mathrm{f}^{\prime}(\mathrm{x})$ exists for all $\mathrm{x} \in(0, \infty)$ and f^{\prime} is continuous on $(0, \infty)$, but not differentiable on $(0, \infty)$. (C). there exists $\alpha>1$ such that $\left|f^{\prime}(x)\right|<|f(x)|$ for all $\mathrm{x} \in(\alpha, \infty)$. (D). there exists $\beta>1$ such that $|f(x)|+\left|f^{\prime}(x)\right| \leq \beta$ for all $\mathrm{x} \in(0, \infty)$.
A. $\mathrm{f}^{\prime \prime}(\mathrm{x})$ exists for all $x \in(0, \infty)$
B. $\mathrm{f}^{\prime}(\mathrm{x})$ exists for all $x \in(0, \infty)$ and f^{\prime} is continuous on $(0, \infty)$ but not differentiable on $(0, \infty)$
C. There exists $\alpha>1$ such that $\left|f^{\prime}(x)\right|<|f(x)|$ for all $x \in(0, \infty)$
D. There exists $\beta>0$ such that $|f(x)|+\left|f^{\prime}(x)\right| \leq \beta$ from all

$$
x \in(0, \infty)
$$

Answer: B::C

Watch Video Solution

83. If

$$
f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right) \quad \text { for }
$$

all
$x, y \in R(x y \neq 1)$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=2$, then
A. $f\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{3}$
B. $f\left(\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{3}$
C. $f^{\prime}(1)=1$
D. $f^{\prime}(1)=-1$

Answer: A: C

- Watch Video Solution

84. Let $f: R \vec{R}$ be a function satisfying condition $f\left(x+y^{3}\right)=f(x)+[f(y)]^{3} f$ or allx, $y \in R$. If $f^{\prime}(0) \geq 0$, find $f(10)$.

$$
\text { A. } f(x)=0 \text { only }
$$

B. $f(x)=x$ only
C. $f(x)=0$ or x only
D. $f(10)=10$

Answer: C::D

- Watch Video Solution

85.

Let
$f(x)=x^{3}-x^{2}+x+1$ and $g(x)=\left\{\begin{array}{ll}\max f(t), & 0 \leq t \leq x \\ 3-x, & 1<x \leq 2\end{array}\right.$ for $0 \leq$ Then, $g(x)$ in $[0,2]$ is
A. continuous for $x \in[0,2]-\{1\}$
B. continuous for $x \in[0,2]$
C. differentiable for all $x \in[0,2]$
D. differentiable for all $x \in[0,2]-\{1\}$
86. If $p^{\prime \prime}(x)$ has real roots α, β, γ. Then , $[\alpha]+[\beta]+[\gamma]$ is

A. -2
B. -3
C. -1
D. 0

Answer: B
87. In the given figure
graph
of
$y=P(x)=a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f$, is given.

The minimum number of real roots of equation $\left(P^{\prime \prime}(x)\right)^{2}+P^{\prime}(x) \cdot P^{\prime, \prime}(x)=0$, is
A. 5
B. 7
C. 6
D. 4

Answer: C

88. If α, β (where $\alpha<\beta$) are the points of discontinuity of the function $g(x)=f(f(f(x)))$, where $\mathrm{f}(\mathrm{x})=(1) /(1-x)$. Then, The points of discontinuity of $g(x)$ is
A. $x=0,-1$
B. $x=1$ only
C. $x=0$ only
D. $x=0,1$

Answer: D

- Watch Video Solution

89. If α, β (where $\alpha<\beta$) are the points of discontinuity of the function $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))$, where $f(x)=\frac{1}{1-x}$, and $P\left(a, a^{2}\right)$ is any point on XY plane. Then,

The domain of $f(g(x))$, is

$$
\text { A. } x \in R
$$

B. $x \in R-\{1\}$
C. $x \in R-\{0,1\}$
D. $x \in R-\{0,1,-1\}$

Answer: C

- Watch Video Solution

90. If α, β (where $\alpha<\beta$) are the points of discontinuity of the function $g(x)=f(f(x))$, where $f(x)=\frac{1}{1-x}$, and $P\left(a, a^{2}\right)$ is any point on XY - plane. Then, If point $P\left(a, a^{2}\right)$ lies on the same side as that of (α, β) with respect to line $x+2 y-3=0$, then
A. $a \in\left(-\frac{3}{2}, 1\right)$
B. $a \in R$
C. $a \in\left(-\frac{3}{2}, 0\right)$
D. $a \in(0,1)$

- Watch Video Solution

91. In the following, $[\mathrm{x}]$ denotes the greatest integer less than or equal to
x. Match the functions in Column I with the properties Column II.

Column I
(A) $\quad x|x|$
(B) $\sqrt{|x|}$
(C) $x+[x]$
(D) $|x-1|+|x+1|$

Column II
(p) continuous in ($-1,1$)
(q) differentiable in $(-1,1)$
(r) strictly increasing $(-1,1)$
(s) not differentiable at least at one point in (-1,

- Watch Video Solution

92. Let $f(X)=\left\{\begin{array}{ll}{[x],} & -2 \leq x<0 \\ |x|, & 0 \leq x \leq 2\end{array}\right.$ (where [.] denotes the greatest integer function) $\mathrm{g}(\mathrm{x})=\sec \mathrm{x}, x \in R-(2 n+1) \pi / 2$.

Match the following statements in Column I with their values in Column II
in the interval $\left(-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right)$.

Column I
(A) Lemit of fog exist at
(B) Limit of gof doesn't exist at
(C) Points of discontinuity of fog is/are
(C) Points of differentiability of fog is/are

Column II

(p) -1
(q) π
(r) $\frac{5 \pi}{6}$
(s) $-\pi$

- View Text Solution

93. Suppose a function $f(x)$ satisfies the following conditions
$f(x+y)=\frac{f(x)+f(y)}{1+f(x) f(y)}, \forall x, y$ and $f^{\prime}(0)=1$. Also, $-1<f(x)<1, \forall$

Match the entries of the following two columns.
Column I
(A) $\mathrm{f}(\mathrm{x})$ is differentiable over the set
(B) $\mathrm{f}(\mathrm{x})$ increases in the interval
(C) Number of the solutions of $\mathrm{f}(\mathrm{x})=0$ is (r) 0
(D) The value of the limit $\lim _{x \rightarrow \infty}[f(x)]^{x}$ is (s) 1

- View Text Solution

$f(x)=\left\{\left(\frac{1-\cos 4 x}{x^{2}},, x<0\right),(a,, x=0),\left(\frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}\right),, x>0\right)$
Then, the value of a if possible, so that the function is continuous at $x=0$, is \qquad

- Watch Video Solution

95. $f(x)=$ maximum $\left\{4,1+x^{2}, x^{2}-1\right) \forall x \in R$. Total number of points, where $f(x)$ is non-differentiable,is equal to

- Watch Video Solution

96. Let $f(x)=x^{n} n$ being a non negative integer. The value of n for which the equality $f^{\prime}(a+b)=f^{\prime}(a)+f^{\prime}(b)$ is valid for all $a . b>0$ is

- Watch Video Solution

97. The number of points where $f(x)=[\sin x+\cos x]$ (where [.] denotes the greatest integer function) $x \in(0,2 \pi)$ is not continuous is (A) 3 (B) 4 (C) 5 (D) 6

- Watch Video Solution

98. The number of points where $|x f(x)|+|x-2|-1 \mid$ is nondifferentiable in $x \in(0,3 \pi)$, where $f(x)=\prod_{k=1}^{\infty}\left(\frac{1+2 \cos \left(\frac{2 x}{3^{k}}\right)}{3}\right)$, is \qquad

- View Text Solution

99. If $f\left(\frac{x y}{2}\right)=\frac{f(x) \cdot f(y)}{2}, x, y \in R, f(1)=f^{\prime}(1)$. Then, $\frac{f(3)}{f^{\prime}(3)}$ is

- Watch Video Solution

100. Let $f: R \rightarrow R$ be a differentiable function satisfying $f(x)=f(y) f(x-y), \forall x, y \in R$ and $f^{\prime}(0)=\int_{0}^{4}\{2 x\} d x$, where \quad \{. $\}$ denotes the fractional part function and $f^{\prime}(-3)-\alpha e^{\beta}$. Then, $|\alpha+\beta|$ is equal to.......

- Watch Video Solution

101. Let $\mathrm{f}(\mathrm{x})$ is a polynomial function and $\left.f(\alpha))^{2}+f^{\prime}(\alpha)\right)^{2}=0$, then find $\lim _{x \rightarrow \alpha} \frac{f(x)}{f^{\prime}(x)}\left[\frac{f^{\prime}(x)}{f(x)}\right]$, where [.] denotes greatest integer function, is........

- Watch Video Solution

102. Let $f: R \rightarrow R$ is a function satisfying
$f(2-x)=f(2+x)$ and $f(20-x)=f(x), \forall x \in R$. On the basis of above information, answer the following questions if $f(0)=5$, then minimum possible number of values of x satisfying $f(x)=5$, for $x \in[10,170]$ is
103. If $f(x)$ is a differentiable function for all $x \in R$ such that $f(x)$ has fundamental period 2.f(x) $=0$ has exactly two solutions in $[0,2]$, also $f(0) \neq 0$ If minimum number of zeros of $h(x)=f^{\prime}(x) \cos x-f(x) \sin x$ in $(0,99)$ is $120+k$, then k is

- Watch Video Solution

104.

Discuss
the
differentiability
$f(x)=\operatorname{ma\xi } \mu m\{2 \sin x, 1-\cos x\} \forall x \in(0, \pi)$.

- Watch Video Solution

105. Discuss the continuity of the function $g(x)=[x]+[-x]$ at integral values of x.
106. If $f(x)=\frac{\sin 2 x+A \sin x+B \cos x}{x^{3}}$ is continuous at $\mathrm{x}=0$. Find the values of A and B. Also, find $f(0)$

- Watch Video Solution

107. Let $f: R \rightarrow R$ satisfying $|f(x)| \leq x^{2}, \forall x \in R$, then show that $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$.

- Watch Video Solution

108. Show that the function defined by $f(x)=\left\{\begin{array}{ll}x^{2} \sin 1 / x, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is differentiable for every value of x , but the derivative is not continuous for $x=$

- Watch Video Solution

109. If $f(x)=\left\{\begin{array}{ll}x-[x], & x \notin I \\ 1, & x \in I\end{array}\right.$ where I is an integer and [.] represents the greatest integer function and
$g(x)=\lim _{n \rightarrow \infty} \frac{\{f(x)\}^{2 n}-1}{\{f(x)\}^{2 n}+1}$, then
(a) Draw graphs of $\mathrm{f}(2 \mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{g}\{\mathrm{g}(\mathrm{x})\}$ and discuss their continuity.
(b) Find the domain and range of these functions.
(c) Are these functions periodic ? If yes, find their periods.

- Watch Video Solution

110. Prove that $f(x)=[\tan x]+\sqrt{\tan x-[\tan x]}$. (where [.] denotes greatest integer function) is continuous in $\left[0, \frac{\pi}{2}\right)$.

- Watch Video Solution

111. Determine the values of x for which the following functions fails to be continuous or differentiable $f(x)= \begin{cases}(1-x), & x<1 \\ (1-x)(2-x), & 1 \leq x \leq 2 \\ (3-x), & x>2\end{cases}$
justify your answer.

- Watch Video Solution

112. If $g(x)$ is continuous function in $[0, \infty)$ satisfying $g(1)=1 . I f \int_{0}^{x} 2 x . g^{2}(t) d t=\left(\int_{0}^{x} 2 g(x-t) d t\right)^{2}$, find $\mathrm{g}(\mathrm{x})$.

D View Text Solution

113.

$$
\text { Q. } \quad \mathrm{f}=\{(x+a \text { if } x<0),
$$

$$
(x-11 \text { if } x \geq 0)
$$

$g(x)=\left\{(x+1\right.$ if $x<0),(x-1)^{2}$ if $\left.x<0\right)$ where a and b are non-negative real numbers. Determine the composite function gof. If $(g o f)(x)$ is continuous for all real x , determine the values of a and b , Further for these values of a and b , is $g o f$ differentiable at $\mathrm{x}=0$? Justify your answer.

- Watch Video Solution

114. If a function $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that, $f(x)=f(2 a-x)$ for $x \in[a, 2 a]$ and the left-hand derivative at $x=a$ is 0 , then find the left-hand derivative at $x=-a$.

- Watch Video Solution

115. Discuss the continuity of $f(x)$ in $[0,2]$, where $f(x)=\left\{\begin{array}{ll}{[\cos \pi x],} & x \leq 1 \\ |2 x-3|[x-2], & x>1\end{array}\right.$ where [.] denotes the greatest integral function.

- Watch Video Solution

116. Let $f: R \rightarrow R$ be a differentiable function such that $f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t$.
$f(x)$ increases for

- Watch Video Solution

117. Let $f: R^{+} \rightarrow R$ satisfies the functional equation $f(x y)=e^{x y-x-y}\left\{e^{y} f(x)+e^{x} f(y)\right\}, \forall x, y \in R^{+}$. If $\mathrm{f}^{\prime}(1)=\mathrm{e}$, determine $f(x)$.

- View Text Solution

118. Let f is a differentiable function such that
$f^{\prime}(x)=f(x)+\int_{0}^{2} f(x) d x, f(0)=\frac{4-e^{2}}{3}$, find $\mathrm{f}(\mathrm{x})$.

(Watch Video Solution

119. A function $f(x)$ satisfies the following property: $f(x+y)=f(x) f(y)$. Show that the function is continuous for all values of x if its is continuous at $x=1$.

- Watch Video Solution

120. Let $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all real x and y . If $\mathrm{f}^{\prime}(0)$ exists and equals-1 and $f(0)=1$, find $f(2)$

- Watch Video Solution

121. Let $f(x)=1+4 x-x^{2}, \forall x \in R$
$g(x)=\max \{f(t), x \leq t \leq(x+1), 0 \leq x<3 \min \{(x+3), 3 \leq x \leq 5$
Verify conntinuity of $\mathrm{g}(\mathrm{x})$, for all $x \in[0,5]$

- View Text Solution

122.

Let
$f(x)=x^{3}-8 x^{3}+22 x^{2}-24 x$ and $g(x)=\left\{\begin{array}{cl}\min f(x), & x \leq t \leq x+1 \\ x-10, & x \geq 1\end{array}\right.$
Discuss the continuity and differentiability of $\mathrm{g}(\mathrm{x})$ in $[-1, \infty)$

- View Text Solution

123. Let $g(x)=\int_{0}^{x} f(t)$. $d t$,where f is such that $\frac{1}{2} \leq f(t) \leq 1$ for $t \in[0,1]$ and $0 \leq f(t) \leq \frac{1}{2}$ for $t \in[1,2]$.Then $g(2)$ satisfies the inequality

- Watch Video Solution

124. Let f be a one-one function such that $f(x) \cdot f(y)+2=f(x)+f(y)+f(x y), \forall x, y \in R-\{0\}$ and $f(0)=1, f$. Prove that $3\left(\int f(x) d x\right)-x(f(x)+2)$ is constant.

- Watch Video Solution

125. Let $f: R \rightarrow R$, such that $\mathrm{f}^{\prime}(0)=1$ and $\left.f(x+2 y)=f(x)+f(2 y)+e^{x+2 y}(x+2 y)-x \cdot e^{x}-2 y \cdot e^{2 y}+4 x y, \forall x,\right\}$
. Find $f(x)$.

- View Text Solution

126. Let be a function such that $f(x y)=f(x) \cdot f(y), \forall y \in R$ and $R(1+x)=1+x(1+g(x))$. where $\lim _{x \rightarrow 0} g(x)=0$. Find the value of $\int_{1}^{2} \frac{f(x)}{f^{\prime}(x)} \cdot \frac{1}{1+x^{2}} d x$

- View Text Solution

127. If $f(x)=a x^{2}+b x+c$ is such that
$|f(0)| \leq 1,|f(1)| \leq 1$ and $|f(-1)| \leq 1, \quad$ prove that
$|f(x)| \leq 5 / 4, \forall x \in[-1,1]$

D View Text Solution

128. Let $\alpha+\beta=1,2 \alpha^{2}+2 \beta^{2}=1$ and $f(x)$ be a continuous function such that $f(2+x)+f(x)=2$ for all
$x \in[0,2]$ and $p=\int_{0}^{4} f(x) d x-4, q=\frac{\alpha}{\beta}$. Then, find the least positive integral value of 'a' for which the equation $a x^{2}-b x+c=0$ has both roots lying between p and q , where $a, b, c \in N$.
129. Prove that the function
$f(x)=a \sqrt{x-1}+b \sqrt{2 x-1}-\sqrt{2 x^{2}-3 x+1}$, where $\mathrm{a}+2 \mathrm{~b}=2$ and $a, b \in R$ always has a root in $(1,5) \forall b \in R$

- Watch Video Solution

130. Let $\alpha \in R$. prove that a function $f: R-R$ is differentiable at α if and only if there is a function $g: R-R$ which is continuous at α and satisfies $f(x)-f(\alpha)=g(x)(x-\alpha), \forall x \in R$.

- Watch Video Solution

Exercise For Session 1

1. If function $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$ is continuous function at $\mathrm{x}=0$, then $f(0)$ is equal to
A. 2
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}\frac{1}{e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then
A. $\lim _{x \rightarrow 0^{-}} f(x)=0$
B. $\lim _{x \rightarrow 0^{+}} f(x)=1$
C. $f(x)$ is discontinuous at $x=0$
D. $f(x)$ is continuous at $x=0$

Answer: C

3. If $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-(a+2) x+2 a}{x-2}, & x \neq 2 \\ 2, & x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$, then a is equal to
A. 0
B. 1
C. -1
D. 2

Answer: A

4. If $f(x)=\left\{\begin{array}{cl}\frac{\log (1+2 a x)-\log (1-b x)}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to
A. $2 a+b$
B. $2 \mathrm{a}-\mathrm{b}$
C. b-2a
D. $a+b$

Answer: A

- Watch Video Solution

5. If $f(x)=\left\{\begin{array}{cc}{[x]+[-x],} & x \neq 2 \\ \lambda, & x=2\end{array}\right.$ and f is continuous at $\mathrm{x}=2$, where [\cdot] denotes greatest integer function, then λ is
A. -1
B. 0
C. 1
D. 2

Answer: A

1. Let $f(x)=\left\{\begin{array}{ll}-2 \sin x & \text { for }-\pi \leq x \leq-\frac{\pi}{2} \\ a \sin x+b & \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x & \text { for } \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$. If f is continuous on
$[-\pi, \pi)$, then find the values of a and b.

- Watch Video Solution

2. Draw the graph of the function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ and discuss the continuity or discontinuity of f in the interval $-1 \leq x \leq 1$

- Watch Video Solution

3. Discuss the continuity of ' f ' in $[0,2]$, where $f(x)=\left\{\begin{array}{ll}|4 x-5|[x] & \text { for } x>1 \\ {[\cos \pi x]} & \text { for } x \leq 1\end{array}\right.$, where [x$]$ is greatest integer not
greater than x .

D Watch Video Solution

4. Let $f(x)= \begin{cases}A x-B & x \leq 1 \\ 2 x^{2}+3 A x+B & x \in(-1,1] \\ 4 & x>1\end{cases}$

Statement I $\mathrm{f}(\mathrm{x})$ is continuous at all x if $A=\frac{3}{4}, B=-\frac{1}{4}$. Because Statement II Polynomial function is always continuous.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement are correct but Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: D

Exercise For Session 3

1. which of the following function(s) not defined at $x=0$ has/have removable discontinuity at $x=0$.
A. $f(x)=\frac{1}{1+2^{\cot x}}$
B. $f(x)=\cos \left(\frac{(|\sin x|)}{x}\right)$
C. $f(x)=\mathrm{x} \sin \frac{\pi}{x}$
D. $f(x)=\frac{1}{\operatorname{In}|x|}$

Answer: B::C::D

- Watch Video Solution

2. Function whose jump (non-negative difference of $L H L$ and $R H L$) of discontinuity is greater than or equal to one. is/are
A. $f(x)= \begin{cases}\frac{\left(e^{1 / x}+1\right)}{e^{1 / x}-1}, & x<0 \\ \frac{(1-\cos x)}{x}, & x>0\end{cases}$
B. $g(x)= \begin{cases}\frac{\left(x^{1 / 3}-1\right)}{x^{1 / 2}-1}, & x>0 \\ \frac{\operatorname{In} \mathrm{x}}{(x-1)}, & \frac{1}{2}<x<1\end{cases}$
C. $u(x)= \begin{cases}\frac{\sin ^{-1} 2 x}{\tan ^{-1} 3 x}, & x \in\left(0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x}, & x<0\end{cases}$
D. $v(x)= \begin{cases}\log _{3}(x+2), & x>2 \\ \log _{1 / 2}\left(x^{2}+5\right), & x<2\end{cases}$

Answer: A::C::D

- Watch Video Solution

3. Consider the piecewise \quad defined function describes the continuity of this function.
A. the function is unbounded and therefore cannot be continuous
B. the function is right continuous at $\mathrm{x}=0$
C. the function has a removable discontinuity at 0 and 4 , but is continuous on the rest of the real line.
D. the function is continuous on the entire real line

Answer: D

- Watch Video Solution

4. If $f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3)$, where $\operatorname{sgn}()$ is the signum function, then $f(x)$
A. is continuous over its domain
B. has a missing point discontinuity
C. has isolated point discontinuity
D. has irremovable discontinuity

Answer: C

5. If $f(x)=\left\{\frac{2 \cos x, s \in 2 x}{(\pi-2 x)^{2}}, x \leq \frac{\pi}{2} \frac{e^{-\cot x}-1}{8 x-4 \pi}, x>\frac{\pi}{2}\right.$, then which of the following holds? f is continuous at $x=\pi / 2 f$ has an irremovable discontinuity at $x=\pi / 2 f$ has a removable discontinuity at $x=\pi / 2$ None of these
A. h is continuous at $x=\pi / 2$
B. h has an irremovable discontinuity at $x=\pi / 2$
C. h has a removable discontinuity at $x=\pi / 2$
D. $f\left(\frac{\pi^{+}}{2}\right)=g\left(\frac{\pi^{-}}{2}\right)$

Answer: A::C::D

- Watch Video Solution

1. If $f(x)=\frac{1}{x^{2}-17 x+66}$, then $f\left(\frac{2}{x-2}\right)$ is discontinuous at $\mathrm{x}=$
A. 2
B. $\frac{7}{3}$
C. $\frac{24}{11}$
D. 6,11

Answer: A::B::C

- Watch Video Solution

2. Let f be a continuous function on R such that $f\left(\frac{1}{4 n}\right)=\frac{\sin e^{n}}{e^{n^{2}}}+\frac{n^{2}}{n^{2}+1}$ Then the value of $f(0)$ is
A. not unique
B. 1
C. data sufficient to find $f(0)$
D. data insufficient to find $f(0)$

Answer: B::C

- Watch Video Solution

3. $f(x)$ is continuous at $x=0$ then which of the following are always true?
A. $\lim _{x \rightarrow 0} f(x)=0$
B. $f(x)$ is non coninuous at $x=1$
C. $g(x)=x^{2} f(x)$ is continuous $\mathrm{x}=0$
D. $\lim _{x \rightarrow 0^{+}}(f(x)-f(0))=0$

Answer: C::D

- Watch Video Solution

4. If $f(x)=\cos \left[\frac{\pi}{x}\right] \cos \left(\frac{\pi}{2}(x-1)\right)$; where $[\mathrm{x}]$ is the greatest integer function of x,then $f(x)$ is continuous at :
A. $x=0$
B. $x=1$
C. $x=2$
D. None of these

Answer: B::C

- Watch Video Solution

5. Let $f(x)=[x]$ and $g(x)=\left\{0, x \in Z x^{2}, x \in R-Z\right.$ then (where
[.]denotest greatest integer funtion)
A. $\lim _{x \rightarrow 1} g(x)$ exists, but $\mathrm{g}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$
B. $\lim _{x \rightarrow 1} f(x)$ does not exist and $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$
C. gof is continuous for all x .
D. fog is continuous for all x .

Answer: A::B::C

- Watch Video Solution

6. Let $f(x)=\left\{\begin{array}{ll}a \sin ^{2 n} x & \text { for } \quad x \geq 0 \text { and } n \rightarrow \infty \\ b \cos ^{2 m} x-1 & \text { for } x<0 \text { and } m \rightarrow \infty\end{array}\right.$ then
A. $f\left(0^{-}\right) \neq f\left(0^{+}\right)$
B. $f\left(0^{+}\right) \neq f(0)$
C. $f\left(0^{-}\right)=f(0)$
D. f is continuous at $x=0$

Answer: A

- Watch Video Solution

7. Consider $f(x)=\lim _{n \rightarrow \infty} \frac{x^{n}-\sin x^{n}}{x^{n}+\sin x^{n}}$ for $\mathrm{x}>0, x \neq 1, f(1)=0$ then
A. f is continuous at $x=1$
B. f has a finite discontinuity at $x=1$
C. f has an infinite or oscillatory discontinuity at $\mathrm{x}=1$
D. f has a removal type of discontinuity at $x=1$

Answer: B

- Watch Video Solution

Exercise For Session 5

1. Examine the continuity at $x=0$ of the sum function of the infinite series:
$\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\ldots$

- Watch Video Solution

2.

$y_{n}(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots \ldots \frac{x^{2}}{\left(1+x^{2}\right)^{n-1}}$ and $y(x)=\lim _{n \rightarrow \infty}$
. Discuss the continuity of $y_{n}(x)(n=1,2,3 \ldots n)$ and $y(x)$ at $\mathrm{x}=0$

- Watch Video Solution

Exercise For Session 6

1. If a function $\mathrm{f}(\mathrm{x})$ is defined as $f(x)= \begin{cases}-x, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \text { then } \\ x^{2}-x+1, & x>1\end{cases}$
A. $f(x)$ is differentiable at $x=0$ and $x=1$
B. $f(x)$ is differentiable at $x=0$ but not at $x=1$
C. $f(x)$ is not differentiable at $x=1$ but not at $x=0$
D. $f(x)$ is not differentiable at $x=0$ and $x=1$

Answer: D

Watch Video Solution

2. If $f(x)=x^{3} \operatorname{sgn}(\mathrm{x})$, then
A. f is differentiable at $\mathrm{x}=0$
B. f is continuous but not differentiable at $x=0$
C. $f^{\prime}\left(0^{-}\right)=1$
D. None of these

Answer: A

- Watch Video Solution

3. Which one of the following functions is continuous everywhere in its domain but has atleast one point where it is not differentiable ?
A. $f(x)=x^{1 / 3}$
B. $f(x)=\frac{|x|}{x}$
C. $f(x)=e^{-x}$
D. $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$

Answer: A

- Watch Video Solution

4. If $f(x)=\left\{\begin{array}{ll}x+\{x\}+x \sin \{x\}, & \text { for } x \neq 0 \\ 0, & \text { for } x=0\end{array}\right.$, where $\{x\}$ denotes the fractional part function, then
A. f is continuous and differentiable at $x=0$
B. f is continuous but not differentiable at $\mathrm{x}=0$
C. f is continuous and differentiable at $\mathrm{x}=2$
D. None of these

Answer: D

5. If $f(x)=\left\{\begin{array}{cl}x\left(\frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{1 / x}}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$, then at $\mathrm{x}=0 \mathrm{f}(\mathrm{x})$ is
A. differentiable
B. not differentiable
C. $f^{\prime}\left(0^{+}\right)=-1$
D. $f^{\prime}\left(0^{-}\right)=1$

Answer: B

- Watch Video Solution

Exercise For Session 7

1. Number of points of non-differerentiable of $f(x)=\sin \pi(x-[x]) \operatorname{in}(-\pi / 2,[\pi / 2)$. Where [.] denotes the greatest integer function is
A. $\mathrm{f}(\mathrm{x})$ is discontinuous at $x=\{-1,0,1\}$
B. $\mathrm{f}(\mathrm{x})$ is differentiable for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{0\}$
C. $\mathrm{f}(\mathrm{x})$ is differentiable for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{-1,0,1\}$
D. None of these

Answer: C

- Watch Video Solution

2. $f(x)=\left\{\begin{array}{ll}x-1, & -1 \leq x 0 \\ x^{2}, & 0<x \leq 1\end{array} \quad\right.$ and $\quad \mathrm{g}(\mathrm{x})=\sin \mathrm{x}$. Find $h(x)=f(|g(x)|)+|f(g(x))|$.
A. $\mathrm{h}(\mathrm{x})$ is continuous for $x \in[-1,1]$
B. $\mathrm{h}(\mathrm{x})$ is differentiable for $x \in[-1,1]$
C. $\mathrm{h}(\mathrm{x})$ is differentiable for $x \in[-1,1]-\{0\}$
D. $\mathrm{h}(\mathrm{x})$ is differentiable for $x \in(-1),\{0\}$

Answer: C

3. If $f(x)=\left\{\begin{array}{ll}\left|1-4 x^{2}\right|, & 0 \leq x<1 \\ {\left[x^{2}-2 x\right],} & 1 \leq x<2\end{array}\right.$, where [] denotes the greatest integer function, then
A. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in[0,2)$
B. $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \in[0,2)-\{1\}$
C. $\mathrm{f}(\mathrm{X})$ is differentiable for all $x \in[0,2)-\left\{\frac{1}{2}, 1\right\}$
D. None of these

Answer: C

- Watch Video Solution

4. Let $f(x)=\int_{0}^{1}|x-t| d t$, then
A. $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable for all $x \in R$
B. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable for all $x \in R$
C. $\mathrm{f}(\mathrm{x})$ is continuous for $x \in R-\left\{\frac{1}{2}\right\}$ and $f(x)$ is differentiable for $x \in R-\left\{\frac{1}{4}, \frac{1}{2}\right\}$
D. None of these

Answer: B

- Watch Video Solution

5. Let f be a function such that $f(x+y)=f(x)+f(y)$ for all xandyand $f(x)=\left(2 x^{2}+3 x\right) g(x)$ for all x, where $g(x)$ is continuous and $g(0)=3$. Then find $f^{\prime}(x)$.
A. 6
B. 9
C. 8
D. None of these

Answer: B

6. If a function $g(x)$ which has derivaties $g^{\prime}(x)$ for every real x and which satisfies the following equation $g(x+y)=e^{y} g(x)+e^{x} g(x)$ for all x and y and $\mathrm{g}^{\prime}(0)=2$, then the value of $\left\{g^{\prime}(x)-g(x)\right\}$ is equal to
A. e^{x}
B. $\frac{2}{3} e^{x}$
C. $\frac{1}{2} e^{x}$
D. $2 e^{x}$

Answer: D

- Watch Video Solution

7. Let $f: R \rightarrow R$ be a function satisfying $f\left(\frac{x y}{2}\right)=\frac{f(x) \cdot f(y)}{2}, \forall x, y \in R$ and $f(1)=f^{\prime}(1)=\neq 0 . \quad$ Then,
$f(x)+f(1-x)$ is (for all non-zero real values of x) a.) constant b.) can't be discussed c.) $x d$.) $\frac{1}{x}$
A. constant
B. can't be discussed
C. x
D. $\frac{1}{x}$

Answer: A

- Watch Video Solution

8. Let $f: R \rightarrow R$ satisfying $f\left(\frac{x+y}{k}\right)=\frac{f(x)+f(y)}{k}(k \neq 0,2)$.Let $f(x)$ be differentiable on R and $f^{\prime}(0)=a$, then determine $f(x)$.
A. even function
B. neither even nor odd function
C. either zero or odd function
D. either zero or even function

Answer: C

D Watch Video Solution

9. If

$$
f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right) \quad \text { for }
$$

all
$x, y \in R(x y \neq 1)$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=2$, then
A. $2 \tan ^{-1} x$
B. $\frac{1}{2} \tan ^{-1} x$
C. $\frac{\pi}{2} \tan ^{-1} x$
D. $2 \pi \tan ^{-1} x$

Answer: A

10.

$f(x)=\sin x$ and $\mathrm{cg}(\mathrm{x})= \begin{cases}\max \{f(t), 0 \leq x \leq \pi\} & \text { for } 0 \leq x \leq \pi \\ \frac{1-\cos x}{2}, & \text { for } x>\pi\end{cases}$ Then, $g(x)$ is
A. differentiable for all $x \in R$
B. differentiable for all $x \in R-\{\pi\}$
C. differentiable for all $x \in(0, \infty)$
D. differentiable for all $x \in(0, \infty)-\{\pi\}$

Answer: C

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. If $f(x)=\left\{\begin{array}{ll}\sin \frac{\pi x}{2}, & x<1 \\ {[x],} & x \geq 1\end{array}\right.$, where $[\mathrm{x}]$ denotes the greatest integer function, then
A. $f(x)$ is continuous at $x=1$
B. $f(x)$ is discontinuous at $x=1$
C. $f\left(1^{+}\right)=0$
D. $f\left(1^{-}\right)=-1$

Answer: A

- Watch Video Solution

2. Consider $f(x)=\left\{\begin{array}{ll}\frac{8^{x}-4^{x}-2^{x}+1}{x^{2}}, & x>0 \\ e^{x} \sin x+\pi x+k \log 4, & x<0\end{array}\right.$ Then, $\mathrm{f}(0)$ so that $f(x)$ is continuous at $x=0$, is
A. $\log 4$
B. $\log 2$
C. $(\log 4)(\log 2)$
D. None of these

Answer: C

- Watch Video Solution

3. Let $f(x)=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}}, & x<0 \\ 3, & x=0 \\ {\left[1+\left(\frac{c x+d x^{3}}{x^{2}}\right)\right]^{1 / x},} & x>0\end{array}\right.$ If f is continuous at $\mathrm{x}=0$,
then $(a+b+c+d)$ is
A. 5
B. -5
C. $\log 3-5$
D. $5-\log 3$

Answer: C

- Watch Video Solution

4.

$\mathrm{f}(\mathrm{x})=\left\{\cos ^{\wedge}(-1)\{\cot \mathrm{x}), \mathrm{xpi} / 2 w h e r e[\right.$ dot $]$ representsthegreatestfunction and \{dot\} represents the fractional
part function. Find the jump of discontinuity.
A. 1
B. $\pi / 2$
C. $\frac{\pi}{2}-1$
D. 2

Answer: C

- Watch Video Solution

5. Let $f:[0,1] \overrightarrow{0,1}$ be a continuous function. Then prove that $f(x)=x$ for at least one $0 \leq x \leq 1$.
A. atleast one $x \in[0,1]$
B. atleast one $x \in[1,2]$
C. atleast one $x \in[-1,0]$
D. can't be discussed

- Watch Video Solution

6. If $f(x)=\frac{x+1}{x-1}$ and $g(x)=\frac{1}{x-2}$, then $(f \circ g)(\mathrm{x})$ is discontinuous at
A. $x=3$ only
B. $x=2$ only
C. $x=2$ and 3 only
D. $x=1$ only

Answer: C

- Watch Video Solution

7.

Let
$y_{n}(x)=x^{2}+\frac{x^{2}}{\left(1+x^{2}\right)}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots+\frac{x^{2}}{\left(1+x^{2}\right)^{n-1}}$ and $g(x)=\mathrm{li}_{n-}$
, then $y_{n}(x), n=1,2,3, \ldots, n$ and $y(x)$ is
A. continuous for $x \in R$
B. continuous for $x \in R-\{0\}$
C. continuous for $x \in R-\{1\}$
D. data unsufficient

Answer: B

D Watch Video Solution

8. If $g(x)=\frac{1-a^{x}+x a^{x} \log a}{x^{2} \cdot a^{x}}, x<0 \frac{(2 a)^{x}-x \log (2 a)-1}{x^{2}}, x>0$
(where $\mathrm{a}>0$) then find a and $g(0)$ so that $g(x)$ is continuous at $x=0$.
A. $\frac{-1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. 2
D. -2

Watch Video Solution

9. Let $f(x)=\left\{\frac{\frac{\pi}{2}-\sin ^{-1}\left(1-\{x\}^{2}\right) \cdot \sin ^{-1}(1-\{x\})}{\sqrt{2}\left(\{x\}+\{x\}^{3}\right)}, x \neq 0\right.$, where $\{$.$\} is$ fractional part of x, then
A. $f\left(0^{+}\right)=-\frac{\pi}{2}$
B. $f\left(0^{-}\right)=\frac{\pi}{4 \sqrt{2}}$
C. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
D. None of the above

Answer: B

- Watch Video Solution

10. Let $f(x)=\left\{\begin{array}{ll}\operatorname{sgn}(x)+x, & -\infty<x<0 \\ -1+\sin x, & 0 \leq x \leq \pi / 2 \\ \cos x, & \pi / 2 \leq x<\infty\end{array}\right.$, then number of points, where $f(x)$ is not differentiable, is/are
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

11. Let $f(x)=\left\{\begin{array}{ll}\frac{1}{|x|} & \text { for }|x|>1 \\ a x^{2}+b & \text { for }|x|<1\end{array}\right.$ If $\mathrm{f}(\mathrm{x})$ is continuous and differentiable at any point, then values of a and b are
A. $\frac{-1}{2}, \frac{3}{2}$
B. $\frac{1}{2}, \frac{-3}{2}$
C. $\frac{1}{2}, \frac{3}{2}$
D. None of these

Answer: A

Watch Video Solution

12. If $f(x)=\left\{\begin{array}{ll}A+B x^{2}, & x<1 \\ 3 A x-B+2, & x \geq 1\end{array}\right.$, then A and B , so that $\mathrm{f}(\mathrm{x})$ is differentiabl at $\mathrm{x}=1$, are
A. $-2,3$
B. $2,-3$
C. 2, 3
D. $-2,-3$

Answer: C

13. If $f(x)=\left\{\begin{array}{ll}|x-1|([x]-x), & x \neq 1 \\ 0, & x=1\end{array}\right.$, then
A. $f^{\prime}\left(1^{+}\right)=0$
B. $f^{\prime}\left(1^{-}\right)=0$
C. $f^{\prime}\left(1^{-}\right)=-1$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$

Answer: A

- Watch Video Solution

14. If $f(x)=\left\{\begin{array}{ll}{[\cos \pi x],} & x \leq 1 \\ 2\{x\}-1, & x>1\end{array}\right.$, where [.] and \{.\} denotes greatest integer and fractional part of x, then
A. $f^{\prime}\left(1^{-}\right)=2$
B. $f^{\prime}\left(1^{+}\right)=2$
C. $f^{\prime}\left(1^{-}\right)=-2$
D. $f^{\prime}\left(1^{+}\right)=0$

Answer: B

15. If $f(x)=\left\{\begin{array}{ll}x-3, & x<0 \\ x^{2}-3 x+2, & x \geq 0\end{array}\right.$, then $g(x)=f(|x|)$ is
A. $g^{\prime}\left(0^{+}\right)=-3$
B. $g^{\prime}\left(0^{-}\right)=-3$
C. $g^{\prime}\left(0^{+}\right)=g^{\prime}\left(0^{-}\right)$
D. $g(x)$ is not continuous at $x=0$

Answer: A

- Watch Video Solution

16. If $f(x)=\left\{\begin{array}{ll}\left\{x+\frac{1}{3}\right\}[\sin \pi x], & 0 \leq x<1 \\ {[2 x] \operatorname{sgn}\left(x-\frac{4}{3}\right),} & 1 \leq x \leq 2\end{array}\right.$, where [.] and \{.\} denotes greatest integerd and fractional part of x respectively, then the number of points, which is not differentiable, is
A. 3
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

17. Let f be differentiable function satisfying
$f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all $x, y>0$. If $\mathrm{f}^{\prime}(1)=1$, then $\mathrm{f}(\mathrm{x})$ is
A. $2 \log _{e} x$
B. $3 \log _{e} x$
C. $\log _{e} x$
D. $\frac{1}{2} \log _{e} x$

Answer: C

18. Let $f(x+y)=f(x)+f(y)-2 x y-1$ for all x and y . If $\mathrm{f}^{\prime}(0)$ exists and $f^{\prime}(0)=-\sin \alpha$, then $f\left\{f^{\prime}(0)\right\}$ is
A. -1
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution

19. A derivable function $f: R^{+} \rightarrow R$ satisfies the condition $f(x)-f(y) \geq \log \left(\frac{x}{y}\right)+x-y, \forall x, y \in R^{+}$. If g denotes the derivative of f , then the value of the sum $\sum_{n=1}^{100} g\left(\frac{1}{n}\right)$ is
A. 5050
B. 5510
C. 5150
D. 1550

Answer: C

- Watch Video Solution

20. If $\frac{d(f(x))}{d x}=e^{-x} f(x)+e^{x} f(-x)$, then $\mathrm{f}(\mathrm{x})$ is, (given $\left.\mathrm{f}(0)=0\right)$
A. an even function
B. an odd function
C. neither even nor odd function
D. can't say

Answer: B

- Watch Video Solution

21. Let $f:(0, \infty) \rightarrow R$ be a continuous function such that $f(x)=\int_{0}^{x} t f(t) d t$. If $f\left(x^{2}\right)=x^{4}+x^{5}$, then $\sum_{r=1}^{12} f\left(r^{2}\right)$, is equal to
A. 216
B. 219
C. 222
D. 225

Answer: B

- Watch Video Solution

22. For let $h(x)=\left\{\frac{1}{q}\right.$ if $x=\frac{p}{q}$ and 0 if x is irrational where $p \& q>0$ are relatively prime integers 0 then which one does not hold good?
A. $h(x)$ is discontinuous for all x in $(0, \infty)$
B. $h(x)$ is continuous for each irrational in $(0, \infty)$
C. $h(x)$ is discontinuous for each rational in $(0, \infty)$
D. $\mathrm{h}(\mathrm{x})$ is not derivable for all x in $(0, \infty)$

Answer: B

- Watch Video Solution

23. Let $f(x)=\frac{g(x)}{h(x)}$, where g and h are continuous functions on the open interval (a, b). Which of the following statements is true for $a<x<b$?
A. f is continuous at all x for which $x \neq 0$
B. f is continuous at all x for which $g(x)=0$
C. f is continuous at all x for which $g(x) \neq 0$
D. f is continuous at all x for which $h(x) \neq 0$

Answer: D

24. $f(x)=\frac{\cos x-\sin 2 x}{(\pi-2 x)^{2}} ; g(x)=\frac{e^{-\cos x}-1}{8 x-4 \pi}$
A. h is continuous at $x=\pi / 2$
B. h has an irremovable discontinuity at $x=\pi / 2$
C. h has a removable discontinuity at $x=\pi / 2$
D. $f\left(\frac{\pi^{+}}{2}\right)=g\left(\frac{\pi^{-}}{2}\right)$

Answer: B

- Watch Video Solution

25. If $f(x)=\frac{x-e^{x}+\cos 2 x}{x^{2}}, x \neq 0$ is continuous at $\mathrm{x}=0$, then
A. $f(0)=\frac{5}{2}$
B. $[f(0)]=-2$
C. $\{f(0)\}=-0.5$
D. $[f(0)] .\{f(0)\}=-1.5$

Answer: D

D Watch Video Solution

26. Consider the function $f(x)=\left[\begin{array}{lll}x\{x\}+1, & \text { if } & 0 \leq x<1 \\ 2-\{x\}, & \text { if } & 1 \leq x \leq 2\end{array}\right.$, where $\{\mathrm{x}\}$ denotes the fractional part function. Which one of the following statements is not correct ?
A. $\lim _{x \rightarrow 1} f(x)$ exists
B. $f(0) \neq f(2)$
C. $\mathrm{f}(\mathrm{x})$ is continuous in $[0,2]$
D. Rolle's theorem is not applicable to $f(x)$ in $[0,2]$

Answer: C

- Watch Video Solution

27. Let $f(x)=\left[\begin{array}{ll}\frac{2^{x}+2^{3-x}-6}{\sqrt{2^{-x}}-2^{1-x}}, & \text { if } x>2 \\ \frac{x^{2}-4}{x-\sqrt{3 x-2}}, & \text { if } x<2\end{array}\right.$,then
A. $f(2)=8 \Rightarrow f$ is continuous at $\mathrm{x}=2$
B. $f(2)=16 \Rightarrow f$ is continuous at $\mathrm{x}=2$
C. $f\left(2^{-}\right) \neq f\left(2^{+}\right) \Rightarrow f$ is discontinuous
D. f has a removable discontinuity at $\mathrm{x}=2$

Answer: C

- View Text Solution

28. Let $[\mathrm{x}]$ denote the integral part of $x \in R$ and $g(x)=x-[x]$. Let $f(x)$ be any continuous function with $f(0)=f(1)$ then the function $h(x)=f(g(x):$
A. has finitely many discontinuities
B. is discontinuous at some $x=c$
C. is continuous on R
D. is a constant function

Answer: C

- Watch Video Solution

29. Let f be a differentiable function on the open interval (a, b). Which of the following statements must be true? (i) f is continuous on the closed interval [a,b],(ii) fis bounded on the open interval (a,b)
A. Only I and II
B. Only I and III
C. Only II and III
D. Only III

Answer: D

30. Number of points where the function
$f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)$ is not differentiable, is:
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

31. Consider function $f: R-\{-1,1\} \rightarrow R . f(x)=\frac{x}{1-|x|}$ Then the incorrect statement is
A. it is continuous at the origin
B. it is not derivable at the origin
C. the range of the function is R
D. f is continuous and derivable in its domain

Answer: B

- Watch Video Solution

32. If the functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are such that $f(x)$ is continuous at $x=\alpha$ and $f(\alpha)=a$ and $g(x)$ is discontinuous at $x=a$ but $g(f(x))$ is continuous at $x=\alpha$. where, $f(x)$ and $g(x)$ are nonconstant functions (a) $x=\alpha$ extremum of $f(x)$ and $x=\alpha$ is an extremum $g(x)$ (b) $x=\alpha$ may not be extremum $f(x)$ and $x=\alpha$ is an extermum of $g(x)$ (c) $x=\alpha$ is an extremum of $f(x)$ and $x=\alpha$ may not be an extremum $g(x)$ (d) not of the above
A. $x=\alpha$ is a extremum of $\mathrm{f}(\mathrm{x})$ and $\mathrm{x}=\mathrm{a}$ is an extremum of $\mathrm{g}(\mathrm{x})$
B. $x=\alpha$ may not be an extremum of $\mathrm{f}(\mathrm{x})$ and $\mathrm{x}=\mathrm{a}$ is an extremum of
C. $x=\alpha$ is an extremum of $\mathrm{f}(\mathrm{x})$ and $\mathrm{x}=$ a may not be an extremum of

$$
g(x)
$$

D. None of the above

Answer: C

D Watch Video Solution

33. The total number of points of non-differentiability of $f(x)=\min \left[|\sin x|,|\cos x|, \frac{1}{4}\right] \operatorname{in}(0,2 \pi)$ is
A. 8
B. 9
C. 10
D. 11

Answer: D

34. The function $f(x)=[x]^{2}-\left[x^{2}\right]$ is discontinuous at (where $[\gamma]$ is the greatest integer less than or equal to γ), is discontinuous at
A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Answer: D

- Watch Video Solution

35. The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-6 x+5\right|+\cos |x|$ is not differentiable at
A. -1
B. 0
C. 1
D. 5

Answer: D

- View Text Solution

36. If $f(x)=\left\{\begin{array}{ll}\frac{1}{e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then
A. 0
B. 1
C. -1
D. desn't exist

Answer: A

$f(x)=\frac{e^{x}-\cos 2 x-x}{x^{2}}$, for $\mathrm{x} \in R-\{0\} g(x)=\left\{\begin{array}{lll}f(\{x\}), & \text { for } & n< \\ f(1-\{x\}), & \text { for } & n+ \\ & & \left\{\begin{array}{l}\text { n } \\ \text { fi }\end{array}\right.\end{array}\right.$
$\frac{5}{2}$ otherwise, then $g(x)$ is
A. discontinuous at all integral values of x only
B. continuous everywhere except for $\mathrm{x}=0$
C. discontinuous at $x=n+\frac{1}{2}, n \in I$ and at some $x \in I$
D. continuous everywhere

Answer: D

- Watch Video Solution

38. The function $g(x)=\left\{\begin{array}{ll}x+b, & x<0 \\ \cos x, & x \geq 0\end{array}\right.$ cannot be made differentiable at $\mathrm{x}=0$.
A. if b is equal to zero
B. if b is not equal to zero
C. if b takes any real value
D. for no value of b

Answer: D

D Watch Video Solution

39. The graph of function f contains the point $P(1,2)$ and $Q(s, r)$. The equation of the secant line through P and Q is $y=\left(\frac{s^{2}+2 s-3}{s-1}\right) x-1-s$. The value of $f^{\prime}(1)$, is
A. 2
B. 3
C. 4
D. non-existent

Answer: C

- Watch Video Solution

40.

Consider
$f(x)=\frac{\left(2\left(\sin x-\sin x-\sin ^{3} x\right)\right)+\left|\sin x-\sin ^{3} x\right|}{2\left(\sin x-\sin ^{3} x\right)-\left|\sin x-\sin ^{3} x\right|}, x \neq \frac{\pi}{2}$
$x \in(0, \pi), f\left(\frac{\pi}{2}\right)=3$ where [] denotes the greatest integer function then,
A. f is continuous and differentiable at $x=\pi / 2$
B. f is continuous but not differentiable at $x=\pi / 2$
C. f is neither continuous nor differentiable at $x=\pi / 2$
D. None of the above

Answer: A

41. If $f(x+y)=f(x)+f(y)+|x| y+x y^{2}, \forall x, y \in R$ and $f^{\prime}(0)=0$, then
A. f need not be differentiable at every non-zero x
B. f is differentiable for all $x \in R$
C. f is twice differentiable at $\mathrm{x}=0$
D. None of the above

Answer: B

- Watch Video Solution

42. Let $f(x)=\max .\left\{\left|x^{\wedge} 2-2\right| x| |,|x|\right\}$ and $g(x)=\min .\left\{\left|x^{\wedge} 2-2\right| x| |,|x|\right\}$ then
A. both $f(x)$ and $g(x)$ are non-differentiable at 5 points
B. $f(x)$ is not differentiable at 5 points whether $g(x)$ is nondifferentiable at 7 points
C. number of points of non-differentiability for $f(x)$ and $g(x)$ are 7 and 5 points, respectively
D. both $f(x)$ and $g(x)$ are non-differentiable at 3 and 5 points, respectively

Answer: B

- Watch Video Solution

43. Let $g(x)=\left[\begin{array}{cc}3 x^{2}-4 \sqrt{x}+1 & x<1 \\ a x+b & x \geq 1\end{array}\right)$ If $g(x)$ is continuous and differentiable for all numbers in its domain then (A) $a=b=-4$ (B) $a=b=4$ (C) $a=4$ and $b=-4$ (D) $a=-4$ and $b=4$
A. $a=b=4$
B. $a=b=-4$
C. $a=4$ and $b=-4$
D. $a=-4$ and $b=4$

- Watch Video Solution

44. Let $f(x)$ be continuous and differentiable function for all reals and $f(x$
$+\mathrm{y})=\mathrm{f}(\mathrm{x})-3 \mathrm{xy}+\mathrm{f}(\mathrm{y})$. If $\lim _{h \rightarrow 0} \frac{f(h)}{h}=7$, then the value of $\mathrm{f}^{\prime}(\mathrm{x})$ is
A. $-3 x$
B. 7
C. $-3 x+7$
D. $2 f(x)+7$

Answer: C

- Watch Video Solution

45. Let $[\mathrm{x}]$ be the greatest integer function $f(x)=\left(\frac{\sin \left(\frac{1}{4}(\pi[x])\right)}{[x]}\right)$ is
A. Not continuous at any point
B. Continuous at 3/2
C. Discontinuous at 2
D. Differentiable at 4/3

Answer: C

D Watch Video Solution

46. If $f(x)=\left\{\begin{array}{ll}b\left([x]^{2}+[x]\right)+1, & \text { for } x \geq-1 \\ \sin (\pi(x+a)), & \text { for } x<-1\end{array}\right.$ where [x] denotes the integral part of x, then for what values of a, b the function is continuous at $\mathrm{x}=-1$?
A. $a=2 n+(3 / 2), b \in R, n \in I$
B. $a=4 n+2, b \in R, n \in I$
C. $a=4 n+(3 / 2), b \in R^{+}, n \in I$
D. $a=4 n+1, b \in R^{+}, n \in I$

- Watch Video Solution

47. If both $f(x) \& g(x)$ are differentiable functions at $x=x_{0}$ then the function defiend as $h(x)=$ Maximum $\{f(x), g(x)\}$
A. is always differentiable at $x=x_{0}$
B. is never differentiable at $x=x_{0}$
C. is differentiable at $x=x_{0}$ when $f\left(x_{0}\right) \neq g\left(x_{0}\right)$
D. cannot be differentiable at $x=x_{0}$, if $f\left(x_{0}\right)=g\left(x_{0}\right)$

Answer: C

- Watch Video Solution

48. Number of points of non-differentiability of the function
$g(x)=\left[x^{2}\right]\left\{\cos ^{2} 4 x\right\}+\left\{x^{2}\right\}\left[\cos ^{2} 4 x\right]+x^{2} \sin ^{2} 4 x+\left[x^{2}\right]\left[\cos ^{2} 4 x\right]+\left\{x^{2}\right.$
in $(-50,50)$ where $[x]$ and $\{x\}$ denotes the greatest integer function and fractional part function of x respectively, is equal to :
A. 98
B. 99
C. 100
D. 0

Answer: D

- Watch Video Solution

49. If $f(x)=\frac{\{x\} g(x)}{\{x\} g(x)}$ is a periodic function with period $\frac{1}{4}$, where $\mathrm{g}(\mathrm{x})$ is differentiable function, then (where \{.\} denotes fractional part of x).
A. $\mathrm{g}^{\prime}(\mathrm{x})$ has exactly three roots in $\left(\frac{1}{4}, \frac{5}{4}\right)$
B. $\mathrm{g}(\mathrm{x})=0$ at $x=\frac{k}{4}$, where $k \in I$
C. $g(x)$ must be non-zero function
D. $g(x)$ must be periodic function

Answer: B

- View Text Solution

50. If $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$ for all $\mathrm{x}, \mathrm{y} \in R, y \neq 0$ and $f^{\prime}(x)$ exists for all x , $f(2)=4$. Then, $f(5)$ is
A. 3
B. 5
C. 25
D. None of the above

Answer: C

Watch Video Solution

1. Function whose jump (non-negative difference of LHL and RHL) of discontinuity is greater than or equal to one. Is/are
A. $f(x)= \begin{cases}\frac{e^{1 / x}+1}{e^{1 / x}-1}, & x<0 \\ \frac{1-\cos x}{x}, & x>0\end{cases}$
B. $g(x)= \begin{cases}\frac{x^{1 / 3}-1}{x^{1 / 2}-1}, & x>1 \\ \frac{\log x}{x-1}, & \frac{1}{2}<x<1\end{cases}$
C. $u(x)= \begin{cases}\frac{\sin ^{-1} 2 x}{\tan ^{-1} 3 x}, & x \in\left[0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x}, & x<0\end{cases}$
D. $v(x)= \begin{cases}\log _{3}(x+2), & x>2 \\ \log _{1 / 2}\left(x^{2}+5\right), & x<2\end{cases}$

Answer: A:C

- View Text Solution

2. Indicate all correct alternatives if, $f(x)=\frac{x}{2}-1$, then on the interval $[0, \pi]$
A. $\tan (f(x))$ and $\frac{1}{f(x)}$ are both continuous
B. $\tan (f(x))$ and $\frac{1}{f(x)}$ are both discontinuous
C. $\tan (f(x))$ and $f^{-1}(x)$ are both continuous
D. $\tan (f(x))$ is continuous but $\frac{1}{f(x)}$ is not continuous

Answer: C::D

- Watch Video Solution

3. On the interval $I=[-2,2]$, the function
$f(x)= \begin{cases}(x+1) e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)} & x \neq 0 \\ 0 & x=0\end{cases}$
A. $\mathrm{f}(\mathrm{x})$ is continuous for all values of $x \in I$
B. $\mathrm{f}(\mathrm{x})$ is continuous for $x \in I-\{0\}$
C. $f(x)$ assumes all intermediate values from $f(-2)$ to $f(2)$
D. $f(x)$ has a maximum value equal to $3 / e$

Answer: B::C::D

4.

$f(x)=\left\{3-\left[\cot ^{-1}\left(\frac{2 x^{3}-3}{x^{2}}\right)\right] f\right.$ or $x>0\left\{x^{2}\right\} \cos \left(e^{\frac{1}{x}}\right) f$ or $x<0$ (where $\}$ and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good? $f\left(0^{-}\right)=0$ b. $f\left(0^{+}\right)=3$ c. if $f(0)=0$, then $f(x)$ is continuous at $x=0 \mathrm{~d}$. irremovable discontinuity of f at $x=0$
A. $f\left(0^{0-}\right)=0$
B. $f\left(0^{+}\right)=0$
C. $f(0)=0 \Rightarrow$ Continuous at $\mathrm{x}=0$
D. Irremovable discontinuity at $\mathrm{x}=0$

Answer: A::B::C

- Watch Video Solution

5. If $f(x)=\left\{\begin{array}{ll}b\left([x]^{2}+[x]\right)+1, & \text { for } x>-1 \\ \sin (\pi(x+a)), & \text { for } x<-1\end{array}\right.$, where $[\mathrm{x}]$ denotes the integral part of x, then for what values of a, b, the function is continuous at $x=-1$?
A. $a=2 n+\frac{3}{2}, b \in R, n \in I$
B. $a=4 n+2, b \in R, n \in I$
C. $a=4 n+\frac{3}{2}, b \in R^{+}, n \in I$
D. $a=4 n+1, b \in R^{+}, n \in I$

Answer: A: C

- Watch Video Solution

6. Q . For every integer n , let an and bn be real numbers. Let function $f: R \rightarrow R$ be given by a $f(x)=\left\{a_{n}+\sin \pi x, f\right.$ or $x \in[2 n, 2 n+1]$, $-n+\cos \pi x, f$ or $x \in(2 n+1,2 n)$ for all integers n.

$$
\text { A. } a_{n-1}-b_{n-1}=0
$$

B. $a_{n}-b_{n}=1$
C. $a_{n}=b_{n+1}=1$
D. $a_{n-1}-b_{n}=-1$

Answer: B::D

D Watch Video Solution

7. If $f(x)=|x+1|(|x|+|x-1|)$, then at what points the function is/are not differentiable at the interval $[-2,2]$?
A. -1
B. 0
C. 1
D. $\frac{1}{2}$

Answer: A::B::C

8. Let $[\mathrm{x}]$ be the greatest integer function $f(x)=\left(\frac{\sin \left(\frac{1}{4}(\pi[x])\right)}{[x]}\right)$ is
A. Not continuous at any point
B. continuous at $x=\frac{3}{2}$
C. discontinuous at $\mathrm{x}=2$
D. differentiable at $x=\frac{4}{3}$

Answer: B::C::D

- Watch Video Solution

9. If $f(x)=\left\{\begin{array}{ll}\left(\sin ^{-1} x\right)^{2} \cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ then $\mathrm{f}(\mathrm{x})$ is
A. continuous nowhere in $-1 \leq x \leq 1$
B. continuous everywhere in $-1 \leq x \leq 1$
C. differentiable nowhere in $-1 \leq x \leq 1$
D. differentiable everywhere in $-1 \leq x \leq 1$

Answer: B::D

- Watch Video Solution

10. Q. Let $f(x)=\cos x \$ H(x)=\left[\min \left[f(t) 0 \leq t \leq x\right.\right.$ for $0 \leq x \leq \frac{\pi}{2}$, $\frac{\pi}{2}-x$ for $\frac{\pi}{2}<x \leq 3$
A. $\mathrm{H}(\mathrm{x})$ is continuous and derivable in $[0,3]$
B. $\mathrm{H}(\mathrm{x})$ is continuous but not derivable at $x=\frac{\pi}{2}$
C. $\mathrm{H}(\mathrm{x})$ is neither continuous nor derivable at $x=\frac{\pi}{2}$
D. maximum value of $\mathrm{H}(\mathrm{x})$ in $[0,3]$ is 1

Answer: A: D

- Watch Video Solution

11. If $f(x)=3(2 x+3)^{2 / 3}+2 x+3$, then
A. $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable at $x=-\frac{3}{2}$
B. $f(x)$ is differentiable at $x=0$
C. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
D. $\mathrm{f}(\mathrm{x})$ is differentiable but not continuous at $x=-\frac{3}{2}$

Answer: A::B::C

- Watch Video Solution

12. If $f(x)=\left\{\begin{array}{ll}-x-\frac{\pi}{2} & x \leq-\frac{\pi}{2} \\ -\cos x & -\frac{\pi}{2}<x \leq 0 \\ x-1 & 0<x \leq 1 \\ \operatorname{In} x & x>1\end{array}\right.$ then which one of the
following is not correct?
A. $\mathrm{f}(\mathrm{x})$ is continuous at $x=-\frac{\pi}{2}$
B. $f(x)$ is not differentiable at $x=0$
C. $f(x)$ is differentiable at $x=1$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $x=-\frac{\pi}{2}$

Answer: A::B::C::D

- Watch Video Solution

13. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{x \log \cos x}{\log \left(1+x^{2}\right)} & x \neq 0 \\ 0 & x=0\end{array}\right.$ then
A. f is continuous at $x=0$
B. f is continuous at $x=0$ but not differentiable at $x=0$
C. f is differentiable at $\mathrm{x}=0$
D. f is not continuous at $x=0$

Answer: A: C

- Watch Video Solution

14. Let $[\mathrm{x}$] denotes the greatest integer less than or equal to x . If $f(x)=[x \sin \pi x]$, then $\mathrm{f}(\mathrm{x})$ is
A. continuous at $\mathrm{x}=0$
B. continuous in ($-1,0$)
C. differentiable at $\mathrm{x}=1$
D. differentiable in ($-1,1$)

Answer: A::B::C

- Watch Video Solution

15. The function, $f(x)=[|x|]-|[x]|$ where [] denotes greatest integer function:
A. is continuous for all positive integers
B. is discontinuous for all non-positive integers
C. has finite number of elements in its range
D. is such that its graph does not lie above the X -axis

Answer: A::B::C::D

- Watch Video Solution

16. The function $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$
A. has its domain $-1 \leq x \leq 1$
B. has finite one sided derivates at the point $x=0$
C. is continuous and differentiable at $\mathrm{x}=0$
D. is continuous but not differentiable at $\mathrm{x}=0$

Answer: A::B::D

- Watch Video Solution

17. Consider the function $f(x)=\left|x^{3}+1\right|$. Then,
A. domain of $\mathrm{f} x \in R$
B. range of f is R^{+}
C. f has no inverse
D. f is continuous and differentiable for every $x \in R$

Answer: A::B::C

- Watch Video Solution

18. f is a continous function in $[a, b]$; g is a continuous function in $[\mathrm{b}, \mathrm{c}]$. A function $h(x)$ is defined as
$h(x)=f(x) f$ or $x \in[a, b), g(x) f$ or $x \in(b, c]$ if $f(\mathrm{~b})=\mathrm{g}(\mathrm{b})$ then
A. $h(x)$ has a removable discontinuity at $x=b$
B. $\mathrm{h}(\mathrm{x})$ may or may not be continuous in $[\mathrm{a}, \mathrm{c}]$
C. $h\left(b^{-}\right)=g\left(b^{+}\right)$and $h\left(b^{+}\right)=f\left(b^{-}\right)$
D. $g\left(b^{+}\right)=g\left(b^{-}\right)$and $h\left(b^{-}\right)=f\left(b^{+}\right)$

- Watch Video Solution

19. Which of the following function(s) has/have the same range?
A. $f(x)=\frac{1}{1+x}$
B. $f(x)=\frac{1}{1+x^{2}}$
C. $f(x)=\frac{1}{1+\sqrt{x}}$
D. $f(x)=\frac{1}{\sqrt{3-x}}$

Answer: B::C

- Watch Video Solution

20. If $f(x)=\sec 2 x+\operatorname{cosec} 2 x$, then $f(x)$ is discontinuous at all points in
A. $\{n \pi, n \in N\}$
B. $\left\{(2 n \pm 1) \frac{\pi}{4}, n \in I\right\}$
C. $\left\{\frac{n \pi}{4}, n \in I\right\}$
D. $\left\{(2 n \pm 1) \frac{\pi}{8}, n \in I\right\}$

Answer: A::B::C

- Watch Video Solution

21. Let $f(x)=\left\{\begin{array}{ll}x^{n} \sin & \frac{1}{x} \\ 0 & x \neq 0 \\ 0 & x=0\end{array}\right.$ Then $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable at $\mathrm{x}=0$. If
A. $\lim _{x \rightarrow 0} f(x)$ exists for every $n>1$
B. f is continuous at $\mathrm{x}=0$ for $n>1$
C. f is differentiable at $\mathrm{x}=0$ for every $n>1$
D. None of the above

Answer: A::B::C

22. A function is defined as $f(x)=\left\{\begin{array}{ll}e^{x}, & x \leq 0 \\ |x-1|, & x>0\end{array}\right.$, then $\mathrm{f}(\mathrm{x})$ is
A. continuous at $\mathrm{x}=0$
B. continuous at $\mathrm{x}=1$
C. differentiable at $\mathrm{x}=0$
D. differentiable at $\mathrm{x}=1$

Answer: A: B

- Watch Video Solution

23. Let $f(x)=\int_{-2}^{x}|t+1| d t$, then
A. $f(x)$ is continuous in $[-1,1]$
B. $f(x)$ is differentiable in $[-1,1]$
C. $f^{\prime}(x)$ is continuous in $[-1,1]$
D. $f^{\prime}(x)$ is differentiable in $[-1,1]$

Answer: A::B::C::D

- Watch Video Solution

24. A function $f(x)$ satisfies the relation
$f(x+y)=f(x)+f(y)+x y(x+y), \forall x, y \in R$. If $\mathrm{f}^{\prime}(0)=-1$, then
A. $\mathrm{f}(\mathrm{x})$ is a polynomial function
B. $f(x)$ is an exponential function
C. $\mathrm{f}(\mathrm{x})$ is twice differentiable for all $x \in R$
D. $f^{\prime}(3)=8$

Answer: A::C::D

- Watch Video Solution

25. If $f(x)=\left\{\begin{array}{ll}3 x^{2}+12 x-1, & -1 \leq x \leq 2 \\ 37-x, & 2<x \leq 3\end{array}\right.$, then
A. $f(x)$ is increasing on $[-1,2]$
B. $f(x)$ is continuous on $[-1,3]$
C. $f^{\prime}(2)$ doesn't exist
D. $f(x)$ has the maximum value at $x=2$

Answer: A::B::D

- Watch Video Solution

26. If $\mathrm{f}(\mathrm{x})=0$ for $x<0$ and $f(x)$ is differentiable at $\mathrm{x}=0$, then for $x>0, f(x)$ may be
A. x^{2}
B. x
C. $-x$
D. $-x^{3 / 2}$

Answer: A::D

- Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement $\mathrm{I} f(x)=\sin x+[x]$ is discontinuous at $\mathrm{x}=0$.

Statement II If $g(x)$ is continuous and $f(x)$ is discontinuous, then $g(x)+f(x)$ will necessarily be discontinuous at $\mathrm{x}=\mathrm{a}$.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

D Watch Video Solution

2. Consider $f(x)= \begin{cases}2 \sin \left(a \cos ^{-1} x\right), & \text { if } x \in(0,1) \\ \sqrt{3}, & \text { if } x=0 \\ a x+b, & \text { if } x<0\end{cases}$

Statement I If $\mathrm{b}=\sqrt{3}$ and $a=\frac{2}{3}$, then $\mathrm{f}(\mathrm{x})$ is continuous in $(-\infty, 1)$.
Statement II If a function is defined on an interval I and limit exists at every point of interval I, then function is continuou in I.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: C

3. Let $f(x)=\left\{\begin{array}{ll}\frac{\cos x-e^{x^{2} / 2}}{x^{3}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then

Statement $\mathrm{If}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
Statement II $\lim _{x \rightarrow 0} \frac{\cos x-e^{-x^{2} / 2}}{x^{3}}=-\frac{1}{12}$
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- View Text Solution

4. Statement । The equation $\frac{x^{3}}{4}-\sin \pi x+\frac{2}{3}=0$ has atleast one solution in [-2, 2].

Statement II Let $f:[a, b] \rightarrow R$ be a function and c be a number such that $f(a)<c<f(b)$, then there is atleast one number $n \in(a, b)$ such that $f(n)=c$.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

5. Statement I Range of $f(x)=x\left(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\right)+x^{2}+x^{4}$ is not R .

Statement II Range of a continuous evern function cannot be R.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

6. Let $f(x)= \begin{cases}A x-B & x \leq 1 \\ 2 x^{2}+3 A x+B & x \in(-1,1] \\ 4 & x>1\end{cases}$

Statement $\mathrm{I} \mathrm{f}(\mathrm{x})$ is continuous at all x if $A=\frac{3}{4}, B=-\frac{1}{4}$. Because
Statement II Polynomial function is always continuous.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: B

- Watch Video Solution

7. Let $h(x)=f_{1}(x)+f_{2}(x)+f_{3}(x)+\ldots+f(n)(x)$, where $f_{1}(x), f_{2}(x), f_{3}(x), \ldots, f_{n}(x)$ are real valued functions of x .

Statement I $f(x)=|\cos | x| |+\cos ^{-1}(\operatorname{sgn} \mathrm{x})+|\operatorname{In} \mathrm{x}|$ is not differentiable at 3 points in $(0,2 \pi)$

Statement II Exactly one function, is $f_{i}(x), i=1,2, \ldots, n$ is not differentiable and the rest of the function is differentiable at $\mathrm{x}=\mathrm{a}$ makes $h(x)$ not differentiable at $x=a$.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- View Text Solution

8. Statement I $f(x)=|x| \sin x$ is differentiable at $x=0$.

Statement II If $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=\mathrm{a}$ and $\mathrm{h}(\mathrm{x})$ is differentiable at $x=a$, then $g(x) . h(x)$ cannot be differentiable at $x=a$
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: C

D View Text Solution

9. Statement I $\mathrm{f}(\mathrm{x})=|\cos \mathrm{x}|$ is not derivable at $x=\frac{\pi}{2}$.

Statement II If $g(x)$ is differentiable at $x=a$ and $g(a)=0$, then $|g|(x) \mid$ is nonderivable at $x=a$.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: C

- Watch Video Solution

10. Let $\mathrm{f}(\mathrm{x})=x-x^{2}$ and $g(x)=\{x\}, \forall x \in R$ where denotes fractional part function.

Statement I $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ will be continuous, $\forall x \in R$.
Statement II $f(0)=f(1)$ and $g(x)$ is periodic with period 1 .
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

11.

$f(x)=-a x^{2}-b|x|-c,-\alpha \leq x<0, a x^{2}+b|x|+c 0 \leq x \leq \alpha$
where a, b, c are positive and $\alpha>0$, then- Statement- 1 : The equation $\mathrm{f}(\mathrm{x})=$ Ohas atleast one real root for $x \in[-\alpha, \alpha]$ Statement-2: Values of $f(-\alpha)$ and $f(\alpha)$ are opposite in sign.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: D

(D) Watch Video Solution

Exercise Passage Based Questions

1. Let f be a function that is differentiable everywhere and that has the follwong properties :
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) \cdot f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$
Range of $f(x)$ is
A. R
B. $R-\{0\}$
C. R^{+}
D. $(0, \mathrm{e})$

Answer: C

- Watch Video Solution

2. Let f be a function that is differentiable everywhere and that has the follwong properties:
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) \cdot f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$
Range of $f(x)$ is
A. $[0,1]$
B. $[0,1)$
C. $(0,1]$
D. None of these

Answer: A

3. Let f be a function that is differentiable everywhere and that has the follwong properties:
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) \cdot f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$
The function $y=f(x)$ is
A. odd
B. even
C. increasing
D. decreasing

Answer: D

4. Let f be a function that is differentiable everywhere and that has the follwong properties :
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) \cdot f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$ If $h(x)=f^{\prime}(x)$, then $h(x)$ is given by
A. $-f(x)$
B. $\frac{1}{f(x)}$
C. $f(x)$
D. $e^{f(x)}$

Answer: A

5. Let $y=f(x)$ be defined in $[a, b]$, then
(i) Test of continuity at $x=c, a<c<b$
(ii) Test of continuity at $\mathrm{x}=\mathrm{a}$
(iii) Test of continuity at $\mathrm{x}=\mathrm{b}$

Case I Test of continuity at $x=c, a<c<b$
If $y=f(x)$ be defined at $x=c$ and its value $f(c)$ be equal to limit of $f(x)$ as
$x \rightarrow c$ i.e. $\mathrm{f}(\mathrm{c})=\lim _{x \rightarrow c} f(x)$
or $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
or $L H L=f(c)=R H L$
then, $y=f(x)$ is continuous at $x=c$.
Case II Test of continuity at $\mathrm{x}=\mathrm{a}$
If $\mathrm{RHL}=f(a)$
Then, $f(x)$ is said to be continuous at the end point $x=a$
Case III Test of continuity at $x=b$, if $\mathrm{LHL}=\mathrm{f}(\mathrm{b})$
Then, $f(x)$ is continuous at right end $x=b$.
If $f(x)=\left\{\begin{array}{ll}\sin x, & x \leq 0 \\ \tan x, & 0<x<2 \pi \\ \cos x, & 2 \pi \leq x<3 \pi \\ 3 \pi, & x=3 \pi\end{array}\right.$,then $\mathrm{f}(\mathrm{x})$ is discontinuous at
A. $\frac{\pi}{2}, \frac{3 \pi}{2}, 2 \pi, 3 \pi$
B. $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 3 \pi$
C. $\frac{\pi}{2}, 2 \pi$
D. None of these

Answer: A

- Watch Video Solution

6. Let $y=f(x)$ be defined in $[a, b]$, then
(i) Test of continuity at $x=c, a<c<b$
(ii) Test of continuity at $\mathrm{x}=\mathrm{a}$
(iii) Test of continuity at $\mathrm{x}=\mathrm{b}$

Case I Test of continuity at $x=c, a<c<b$
If $y=f(x)$ be defined at $x=c$ and its value $f(c)$ be equal to limit of $f(x)$ as $x \rightarrow c$ i.e. $\mathrm{f}(\mathrm{c})=\lim _{x \rightarrow c} f(x)$
or $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
or $\mathrm{LHL}=\mathrm{f}(\mathrm{c})=\mathrm{RHL}$
then, $y=f(x)$ is continuous at $x=c$.
Case II Test of continuity at $\mathrm{x}=\mathrm{a}$
If $\mathrm{RHL}=\mathrm{f}(\mathrm{a})$

Then, $f(x)$ is said to be continuous at the end point $x=a$

Case III Test of continuity at $x=b$, if LHL $=f(b)$
Then, $f(x)$ is continuous at right end $x=b$.
Number of points of discontinuity of $\left[2 x^{3}-5\right]$ in $[1,2)$ is (where [.] denotes the greatest integral function.)
A. 14
B. 13
C. 10
D. None of these

Answer: B

- Watch Video Solution

7. Let $y=f(x)$ be defined in [a, $b]$, then
(i) Test of continuity at $x=c, a<c<b$
(ii) Test of continuity at $\mathrm{x}=\mathrm{a}$
(iii) Test of continuity at $\mathrm{x}=\mathrm{b}$

Case I Test of continuity at $x=c, a<c<b$
If $y=f(x)$ be defined at $x=c$ and its value $f(c)$ be equal to limit of $f(x)$ as
$x \rightarrow c$ i.e. $\mathrm{f}(\mathrm{c})=\lim _{x \rightarrow c} f(x)$
or $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
or $L H L=f(c)=R H L$
then, $y=f(x)$ is continuous at $x=c$.
Case II Test of continuity at $\mathrm{x}=\mathrm{a}$
If $\mathrm{RHL}=f(a)$
Then, $f(x)$ is said to be continuous at the end point $x=a$
Case III Test of continuity at $x=b$, if $\operatorname{LHL}=f(b)$
Then, $f(x)$ is continuous at right end $x=b$.
$\operatorname{Max}([\mathrm{x}],|\mathrm{x}|)$ is discontinuous at

$$
\text { A. } x=0
$$

B. ϕ
C. $x=n, n \in I$
D. None of these

Answer: B

- Watch Video Solution

8.

$\left(f(x)=\cos x\right.$ and $\left.H_{1}(x)=\min \{f(t), 0 \leq t<x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$
$\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}-x, \frac{\pi}{2}<x \leq \pi\right),\left(g(x)=\sin x\right.$ and $H_{3}(x)=\min \{$
$\left(g(x)=\sin x\right.$ and $\left.H_{4}(x)=\max \{g(t), 0 \leq t \leq x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$

Which of the following is true for $\mathrm{H}_{2}(x)$?
A. Continuous and derivable in $[0, \pi]$
B. Continuous but not derivable at $x=\frac{\pi}{2}$
C. Neither continuous nor derivable at $x=\frac{\pi}{2}$
D. None of the above

D Watch Video Solution

9.

$\left(f(x)=\cos x\right.$ and $\left.H_{1}(x)=\min \{f(t), 0 \leq t<x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$ $\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}-x, \frac{\pi}{2}<x \leq \pi\right),\left(g(x)=\sin x\right.$ and $H_{3}(x)=\min \{!$ $\left(g(x)=\sin x\right.$ and $\left.H_{4}(x)=\max \{g(t), 0 \leq t \leq x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$

Which of the following is true for $H_{3}(x)$?
A. Continuous and derivable in $[0, \pi]$
B. Continuous but not derivable at $x=\frac{\pi}{2}$
C. Neither continuous nor derivable at $x=\frac{\pi}{2}$
D. None of the above

Answer: B

10.

$\left(f(x)=\cos x\right.$ and $\left.H_{1}(x)=\min \{f(t), 0 \leq t<x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$
$\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}-x, \frac{\pi}{2}<x \leq \pi\right),\left(g(x)=\sin x\right.$ and $H_{3}(x)=\min \{$.
$\left(g(x)=\sin x\right.$ and $\left.H_{4}(x)=\max \{g(t), 0 \leq t \leq x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$

Which of the following is true for $H_{4}(x)$?
A. Continuous and derivable in $[0, \pi]$
B. Continuous but not derivable at $x=\frac{\pi}{2}$
C. Neither continuous nor derivable at $x=\frac{\pi}{2}$
D. None of the above

Answer: C

- Watch Video Solution

11. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions
I. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f(1)$, is
A. 0
B. 1
C. 2
D. Not defined

Answer: B

D View Text Solution

12. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions
I. $f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f(x)$, is
A. 2 x
B. $x^{2}+x+1$
C. x
D. None of these

Answer: C

- View Text Solution

13. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions

।. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f^{\prime}(10)$, is
A. 10
B. 0
C. $2 \mathrm{n}+1$
D. 1

Answer:

- View Text Solution

14. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions
I. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The function $f(x)$ is
A. odd
B. even
C. neither even nor odd
D. both even as well as odd

Answer: A

- View Text Solution

15. If $f: R \rightarrow(0, \infty)$ be a differentiable function $f(x)$ satisfying
$f(x+y)-f(x-y)=f(x) \cdot\{f(y)-f(y)-y\}, \forall x, y \in R,(f(y) \neq f(-$ and $f^{\prime}(0)=2010$.

Now, answer the following questions.
Which of the following is true for $f(x)$
A. $f(x)$ is one-one and into
B. $\{f(\mathrm{x})\}$ is non-periodic, where $\{$.$\} denotes fractional part of \mathrm{x}$
C. $f(x)=4$ has only two solutions
D. $f(x)=f^{\prime}(x)$ has only one solution

Answer: B

(D) Watch Video Solution

16. If $f: R \rightarrow(0, \infty)$ is a differentiable function $\mathrm{f}(\mathrm{x})$ satisfying $f(x+y)-f(x-y)=f(x) .\{f(y)-f(-y)\}, \forall x, y \in R,(f(y) \neq f(-?$
. Now, answer the following questions :
The value of $\frac{f^{\prime}(x)}{f(x)}$ is
A. 2016
B. 2014
C. 2012
D. 2010

Answer: D

- Watch Video Solution

1. Match the column.

Column I

Column II

(A) $f(x)=\left[\begin{array}{ll}x+1, & \text { if } x<0 \\ \cos x, & \text { if } x \geq 0\end{array}\right.$ at
(p) continuous $x=0$ is
(B) For every $x \in R$, the function $g(x)=\frac{\sin (\pi[x-\pi])}{1+[x]^{2}}$, where $[x]$
denotes the greatest integer function, is
(C) $\quad h(x)=\sqrt{\{x\}^{2}}$ where $\{x\}$ denotes (r) discontinuous fractional part function for all $x \in I$, is
(D) $k(x)=\left\{\begin{array}{cl}\frac{1}{\ln x}, & \text { if } x \neq 1 \text { at } \quad \text { (s) non-derivable } \\ e, & \text { if } x=1\end{array}\right.$ $x=1$ is

D Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Number points of discontinuity of $f(x)=\tan ^{2} x-\sec ^{2} x$ in $(0,2 \pi)$ is
2. Number, of pointis) of discontinuity of the function $f(x)=\left[x^{\frac{1}{x}}\right], x>0$, where [.] represents GIF is

Watch Video Solution

3. Let $f(x)=x+\cos x+2$ and $g(x)$ be the inverse function of $\mathrm{f}(\mathrm{x})$, then $g^{\prime}(3)$ equals to \qquad

- Watch Video Solution

4. Let $f(x)=x \tan ^{-1}\left(x^{2}\right)+x^{4}$ Let $f^{k}(x)$ denotes $k^{t h}$ derivative of $f(x)$ w.r.t. $x, k \in N$. If

- Watch Video Solution

5. Let $f_{1}(x)$ and $f_{2}(x)$ be twice differentiable functions where $F(x)=f_{1}(x)+f_{2}(x)$ and $G(x)=f_{1}(x)-f_{2}(x), \forall x \in R, f_{1}(0)=2$ an
. then the number of solutions of the equation $(F(x))^{2}=\frac{9 x^{4}}{G(x)}$ is.......

- Watch Video Solution

6. Suppose, the function $f(x)-f(2 x)$ has the derivative 5 at $x=1$ and derivative 7 at $x=2$. The derivative of the function $f(x)-f(4 x)$ at $x=1$, has the value $10+\lambda$, then the value of λ is equal to........

- Watch Video Solution

7. Let $f(x)=\left\{\begin{array}{ll}\frac{x\left(\frac{3}{4}\right)^{1 / x}-\left(\frac{3}{4}\right)^{-1 / x}}{\left(\frac{3}{4}\right)^{1 / x}+\left(\frac{3}{4}\right)^{-1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$. If $\mathrm{P}=f^{\prime}\left(0^{-}\right)-f^{\prime}\left(0^{+}\right)$,
then $4\left(\lim _{x \rightarrow p^{-}} \frac{(\exp ((x+2) \log 4))\left[\frac{x+1}{4}\right]-16}{4^{x}-16}\right)$, is...... (where $[\mathrm{x}]$ denotes greatest integer function.)

- View Text Solution

8.

$f(x)=-x^{3}+x^{2}-x+1$ and $g(x)=\left\{\begin{array}{cl}\min (f(t)), & 0 \leq t \leq x \text { and } 0 \\ x-1, & 1<x \leq 2\end{array}\right.$
Then, the value of $\lim _{x \rightarrow 1} g(g(x))$, is........ .

- Watch Video Solution

9. If $f(x)=\left\{\begin{array}{ll}\frac{\frac{\pi}{2}-\sin ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\sqrt{2}\left(\{x\}-\{x\}^{3}\right)}, & x>0 \\ k, & x=0 \\ \frac{A \sin ^{-1}(1-\{x\}) \cos ^{-1}(1-\{x\})}{\sqrt{2\{x\}}(1-\{x\})}, & x<0\end{array}\right.$ is continuous at
$\mathrm{x}=0$, then the value of $\sin ^{2} k+\cos ^{2}\left(\frac{A \pi}{\sqrt{2}}\right)$, is..... (where \{.\} denotes fractional part of x).

- View Text Solution

Exercise Subjective Type Questions

1. Check continuity and differentibilty of $f(x)=[x]+|1-x|$, [] denotes the greatest integer function

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}x[x] & 0 \leq x<2 \\ (x-1)[x] & 2 \leq x<3\end{array}\right.$ where [.] denotes the greatest integer function, then

- Watch Video Solution

3. Let f be a twice differentiable function such that $f^{x}=-f(x), a n d f^{\prime}(x)=g(x), h(x)=[f(x)]^{2}+[g(x)]^{2}$.

Find
$h(10)$ if $h(5)=11$

- Watch Video Solution

4. A function $f: R \rightarrow R$ satisfies the equation
$f(x+y)=f(x) f(y), \forall x, y$ in R and $f(x) \neq 0$ for any x in R . Let the function be differentiable at $x=0$ and $f^{\prime}(0)=2$. Show that $f^{\prime}(x)=2 f(x), \forall x$ in R. Hence, determine $\mathrm{f}(\mathrm{x})$

- Watch Video Solution

5. A function $f: R \rightarrow R$ satisfies the relation $f\left(\frac{x+y}{3}\right)=\frac{1}{3}|f(x)+f(y)+f(0)|$ for all $x, y \in R$. If $f^{\prime}(0)$ exists, prove that $f^{\prime}(x)$ exists for all $x, \in R$.

- Watch Video Solution

6. Let $f(x+y)=f(x)+f(y)+2 x y-1$ for all real xandy and $f(x)$ be a differentiable function. If $f^{\prime}(0)=\cos \alpha$, the prove that $f(x)>0 \forall x \in R$.

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$ then which are the correct statements
A. $[f(c)]^{2}+3 f(c)=[g(c)]^{2}+3 g(c)$ for some $\mathrm{c} \in[0,1] 1$
B. $[f(c)]^{2}+f(c)=[g(c)]^{2}+3 g(c)$ for some $\mathbf{c} \in[0,1]$
C. $[f(c)]^{2}+3 f(c)=[g(c)]^{2}+g(c)$ for some $c \in[0,1]$
D. $[f(c)]^{2}=[g(c)]^{2}$ for some $\mathrm{c} \in[0,1]$

Answer: A: D

- Watch Video Solution

2. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by $f(x)=|x|+1$ and $g(x)=x^{2}+1 . \quad$ Define $\quad h: R \rightarrow R \quad$ by
$h(x)=\{\max \{f(x), g(x)\}, \quad$ if $x \leq 0$ and $\min \{f(x), g(x)\}, \quad$ if $\quad x>$ The number of points at which $h(x)$ is not differentiable is

- Watch Video Solution

3. Let $f(x)=\left\{x^{2}\left|(\cos) \frac{\pi}{x}\right|, x \neq 0\right.$ and $0, x=0, x \in \mathbb{R}$, then f is
A. differentiable both at $\mathrm{x}=0$ and at $\mathrm{x}=2$
B. differentiable at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=2$
C. not differentiable at $\mathrm{x}=0$ but differentiable at $\mathrm{x}=2$
D. differentiable neither at $\mathrm{x}=0$ nor at $\mathrm{x}=2$

Answer: B

- Watch Video Solution

4. Q . For every integer n , let an and bn be real numbers. Let function $f: R \rightarrow R$ be given by a $f(x)=\left\{a_{n}+\sin \pi x, f\right.$ or $x \in[2 n, 2 n+1]$,
$-n+\cos \pi x, f$ or $x \in(2 n+1,2 n)$ for all integers n .
A. $a_{n-1}-b_{n-1}=0$
B. $a_{n}-b_{n}=1$
C. $a_{n}-b_{n+1}=1$
D. $a_{n-1}-b_{n}=-1$

Answer: D

- Watch Video Solution

5. Let $f: R \rightarrow R$ be a function such that
$f(x+y)=f(x)+f(y), \forall x, y \in R$.
A. $f(x)$ is differentiable only in a finite interval containing zero
B. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$
C. $\mathrm{f}^{\prime}(\mathrm{x})$ is constant for all $x \in R$
D. $f(x)$ is differentiable except at finitely many points

- Watch Video Solution

6. If $f(x)=\left\{\begin{array}{ll}-x-\frac{\pi}{2} & x \leq-\frac{\pi}{2} \\ -\cos x & -\frac{\pi}{2}<x \leq 0 \\ x-1 & 0<x \leq 1 \\ \operatorname{In} x & x>1\end{array}\right.$ then which one of the following is not correct?
A. $\mathrm{f}(\mathrm{x})$ is continuous at $x=-\frac{\pi}{2}$
B. $f(x)$ is not differentiable at $x=0$
C. $f(x)$ is differentiable $x=1$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $x=-\frac{3}{2}$

Answer: D
7. For the fucntion $f(x)=x \cos \frac{1}{x}, x \geq 1$ which one of the following is incorrect?
A. for at least one x in the interval $[1, \infty), f(x+2)-f(x)<2$
B. $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$
C. for all x in the interval $[1, \infty), f(x+2)-f(x)>2$
D. $f^{\prime}(x)$ is strictly decreasing in the interval $[1, \infty)$

Answer: C

- Watch Video Solution

8. Let $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)}, 0<x<2, m$ and n are integers, $m \neq 0, n>0$ and let p be the left hand derivative of $|x-1|$ at $\mathrm{x}=1 \mid$. If $\lim _{1^{+}} g(x)=p$, then

$$
x \rightarrow 1^{+}
$$

A. $n=1, m=1$
B. $n=1, m=-1$
C. $n=2, m=2$
D. $n>2, m=n$

Answer: C

- Watch Video Solution

9. Let f and g be real valued functions defined on interval $(-1,1)$ such that
$g^{\prime \prime}(x)$ is continuous,
$g(0) \neq 0, g^{\prime}(0)=0, g^{\prime}(0) \neq 0$, and $f(x)=g(x) \sin x$.
Statement I $\lim _{x \rightarrow 0}[g(x) \cos x-g(0) \operatorname{cosec} \mathrm{x}]=f^{\prime \prime}(0)$. and
Statement II $f^{\prime}(0)=g(0)$.
For the following questions, choose the correct answer from the codes
(a), (b), (c) and (d) defined as follows.
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: B

- Watch Video Solution

10. In the following, $[\mathrm{x}]$ denotes the greatest integer less than or equal to x.

Column I
$A \quad x|x|$
$B \quad \sqrt{|x|}$
$C \quad x+[x]$
$D|x-1|+|x+1|, \operatorname{in}(-1,1)$

Column II

p continuous in $(-1,1)$
q differentiable in $(-1,1)$
r strictly increasing $(-1,1)$
s not differentiable atleast at one poin1

- Watch Video Solution

11. If $f(x)=\min \cdot\left(1, x^{2}, x^{3}\right)$, then
A. $f(x)$ is continuous everywhere
B. $f(x)$ is continuous and differentiable everywhere
C. $f(x)$ is not differentiable at two points
D. $f(x)$ is not differentiable at one point

Answer: A::D

D Watch Video Solution

12. Let $f(x)=||x|-1|$, then points where, $f(x)$ is not differentiable is/are
A. 0 ± 1
B. ± 1
C. 0
D. 1
13. Iff is a differentiable function satisfying $f\left(\frac{1}{n}\right)=0, \forall n \geq 1, n \in I$, then
A. $f(x)=0, x \in(0,1]$
B. $f^{\prime}(0)=0=f(0)$
C. $f(0)=0$ but $f^{\prime}(0)$ not necessarily zero
D. $|f(x)| \leq 1, x \in(0,1]$

Answer: B

- Watch Video Solution

14. The domain of the derivative of the function $f(x)=\left\{\tan ^{-1} x, \quad\right.$ if $|x| \leq 1 \frac{1}{2}(|x|-1), \quad$ if $|x|>1 \quad R-\{0\} \quad$ b. $R-\{1\}$ c. $-\{-1\}$ d. $R-\{-1,1\}$
A. $R-\{0\}$
B. $R-\{1\}$
C. $R-\{-1\}$
D. $R-\{-1,1\}$

Answer: D

- Watch Video Solution

15. The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k, k$ is an integer, is
A. $(-1)^{k}(k-1) \pi$
B. $(-1)^{k-1}(k-1) \pi$
C. $(-1)^{k} k \pi$
D. $(-1)^{k-1} k \pi$
16. Which of the following functions is differentiable at $x=0$? $\cos (|x|)+|x|$
A. $\cos (|x|)+|x|$
B. $\cos (|x|)-|x|$
C. $\sin (|x|)+|x|$
D. $\sin (|x|)-|x|$

Answer: D

- Watch Video Solution

17. For $x \in R, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then
A. g is not differentiable at $x=0$
B. $g^{\prime}(0)=\cos (\log 2)$
C. $g^{\prime}(0)=-\cos (\log 2)$
D. g is differentiable at $x=0$ and $g^{\prime}(0)=-\sin (\log 2)$

Answer: B

- Watch Video Solution

18. If the function
$g(x)=\left\{\begin{array}{ll}k \sqrt{x+1} & 0 \leq x \leq 3 \\ m x+2 & 3<x \leq 5\end{array}\right.$ is differentiable, then the value of $\mathrm{k}+\mathrm{m}$ is
A. 2
B. $\frac{16}{5}$
C. $\frac{10}{3}$
D. 4

Answer: A

19. If f and g are differentiable functions in $[0,1]$ satisfying $f(0)=2=g(1), g(0)=0$ and $f(1)=6$, then for some $c \in] 0,1[$
$2 f^{\prime}(c)=g^{\prime}(c)$
(2) $\quad 2 f^{\prime}(c)=3 g^{\prime}(c)$
(3) $\quad f^{\prime}(c)=g^{\prime}(c)$
$f^{\prime}(c)=2 g^{\prime}(c)$
A. $2 f^{\prime}(c)=g^{\prime}(c)$
B. $2 f^{\prime}(c)=3 g^{\prime}(c)$
C. $f^{\prime}(c)=g^{\prime}(c)$
D. $f^{\prime}(c)=2 g^{\prime}(c)$

Answer: D

- Watch Video Solution

20. The function $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$ where [] denotes the greatest integer function, is discontinuous
A. continuous for every real x
B. discontinuous only at $x=0$
C. discontinuous only at non-zero integral values of x
D. continuous only at $x=0$

Answer: D

- Watch Video Solution

