© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

ELLIPSE

Examples

1. If PSQ is a focal chord of the ellipse
$16 x^{2}+25 y^{2}=400$, such that $\mathrm{SP}=8$, then find the length of SQ.
2. If the latursrectum of an ellipse is equal to half of its minor-axis, then find its eccentricity.

- Watch Video Solution

3. If the distance between the directrices is thrice
the distance between the foci, then find eccentricity of the ellipse.
4. If $P(x, y)$ is any point on the ellipse $16 x^{2}+25 y^{2}=400$ and $f_{1}=(3,0) F_{2}=(-3,0)$, then find the value of $P F_{1}+P F_{2}$.

D Watch Video Solution

5. Find the eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the center of the ellipse is $\sqrt{5}$

- Watch Video Solution

6. An ellipse having foci at $(3,3)$ and $(-4,4)$ and passing through the origin has eccentricity equal to $\frac{3}{7}$ (b) $\frac{2}{7}$ (c) $\frac{5}{7}$ (d) $\frac{3}{5}$

D Watch Video Solution

7. Find the lengths of major and minor axes, the coordinate of foci, vertices and the eccentricity of
the ellipse $3 x^{2}+2 y^{2}=6$. Also the equation of the directries.
8. Find the equation to the ellipse, whose focus is
the point $(-1,1)$, whose directrix is the straight
line $x-y+3=0$, and whose eccentricity is $\frac{1}{2}$.

- Watch Video Solution

9. If the line $l x+m y+n=0$ cuts the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ at points whose eccentric angles differ by $\frac{\pi}{2}$, then find the value of $\frac{a^{2} l^{2}+b^{2} m^{2}}{n^{2}}$.

- Watch Video Solution

10. If the chord, joining two points whose eccentric angles are α and β, cuts the major axis ofthe ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at a distance c fromn the centre, then $\tan \alpha / 2 \cdot \tan \beta / 2$ is equal to

D Watch Video Solution

11. If the angle between the straight lines joining foci and the ends of minor axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{\pi}{2}$ then the eccentricity is

- Watch Video Solution

12. Find the equation of the ellipse whose minor axis is equal to distance between the foci and latus rectum is 10 .

D Watch Video Solution

13. The ratio of any triangle $P Q R$ inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and that of triangle formed by the corresponding points on the auxilliary circle is $\frac{b}{a}$.
14. If the extremities of a line segment of length I moves in two fixed perpendicular straight lines, then the locus of the point which divides this line segment in the ratio $1: 2$ is-

D Watch Video Solution

15. Find the lengths of and the equations to the
focal radii drawn to the point $(4 \sqrt{3}, 5)$ of the ellipse $25 x^{2}+16 y^{2}=1600$
16. Find the position of the point $(4,-3)$ relative to the ellipse $5 x^{2}+7 y^{2}=140$.

- Watch Video Solution

17. Find the set of those value(s) of α for which $\left(7-\frac{5 \alpha}{4}, \alpha\right) \quad$ lies inside the ellipse
$\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

- Watch Video Solution

18. If straight line $l x+m y+n=0$ is a tangent of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} l^{2}+b^{2} m^{2}=n^{2}$.

- Watch Video Solution

19. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$.
20. The values of λ for which the line $y=x+\lambda$ touches the ellipse $9 x^{2}+16 y^{2}=144$, are

D Watch Video Solution

21. If the line $3 x+4 y=\sqrt{7}$ touches the ellipse
$3 x^{2}+4 y^{2}=1$, then the point of contact is

D Watch Video Solution

22. Find the equations of the tangents to the ellipse $3 x^{2}+4 y^{2}=12$ which are perpendicular to
the line $y+2 x=4$.

- Watch Video Solution

23. Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

24. Find the point on the ellipse $16 x^{2}+11 y^{2}=256$ where the common tangent to
ti and the circle $x^{2}+y^{2}-2 x=15$ toch.

(D) Watch Video Solution

25. Find the maximum area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which touches the line $y=3 x+2$.

- Watch Video Solution

26. Find the slope of a common tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and a concentric circle of radius r.
27. Prove that the product of the perpendicular from the foci on any tangent to an ellipse is equal to the square of the semi-minor axis.

D Watch Video Solution

28. The locus of the middle point of the portion of
a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ included between axes is the curve
29. Show that the tangents at the extremities of
the latus rectum of an ellipse intersect on the corresponding directrix.

- Watch Video Solution

30. The normal at an end of a latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through an end of the minor axis if (A) $e^{4}+e^{2}=1$ (B) $e^{3}+e^{2}=1$
(C) $e^{2}+e=1$ (D) $e^{3}+e=1$

- Watch Video Solution

31. The line $l x+m y+n=0$ is a normal to the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. then prove that
$\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$

- Watch Video Solution

32. A normal inclined at 45° to the axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is drawn. It meets the x-axis \& the y-axis in $P \& Q$ respectively. If C is the centre of the ellipse, show that the area of triangle CPQ is $\frac{\left(a^{2}-b^{2}\right)^{2}}{2\left(a^{2}+b^{2}\right)}$ sq units
33. Any ordinate $M P$ of an ellipse meets the auxillary circle in Q . Ptove that the locus of the point of intersection of the normals at P and Q is the circle $x^{2}+y^{2}=(a+b)^{2}$.

D Watch Video Solution

34. Prove that the chord of contact of tangents drawn from the point (h, k) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ will subtend a right angle at the centre, if $\frac{h^{2}}{a^{4}}+\frac{k^{2}}{b^{4}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
35. Show that the locus of the middle points of chord of an ellipse which paas through a fixed point, is another ellipse

- Watch Video Solution

36. Show that the tangents at the ends of conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersect on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
37. Tangents at right angle are drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Show that the focus of the middle points of the chord of contact is the curve $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=\frac{x^{2}+y^{2}}{a^{2}+b^{2}}$.

- Watch Video Solution

38. A ray emanating from the point $(-3,0)$ is incindent on the ellipse $16 x^{2}+25 y^{2}=400$ at the point p with ordinate 4 . Find the equation of the reflected ray after first reflection.
39.

For
the
ellipse
$4(x-2 y+1)^{2}+9(2 x+y+2)^{2}=180$, lengths
of major and minor axes are respectively

- Watch Video Solution

40. Point ' O ' is the centre of the ellipse with major axis $A B \&$ minor axis $C D$. Point F is one focus of the ellipse. If OF $=6 \&$ the diameter of the inscribed circle of triangle OCF is 2 , then find the product $(A B) \cdot(C D)$
A. 52
B. 56
C. 78
D. None of these

Answer: A::B::C

- Watch Video Solution

41. Let P_{i} and Π ' be the feet of the perpendiculars drawn from the foci $S a n d S^{\prime}$ on a tangent T_{i} to an ellipse whose length of semi-major axis is 20 . If

10
$\sum_{i=0}\left(S P_{i}\right)\left(S^{\prime} \Pi^{\prime}\right)=2560$, then the value of
eccentricity is $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$
A. $\frac{1}{5}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: B::C

42. The coordinates of the vertices $B a n d C$ of a triangle $A B C$ are $(2,0)$ and $(8,0)$, respectively.

Vertex A is moving in such a way that $\tan B \tan C$ $4 \frac{\tan }{2} \frac{\tan C}{2}=1$. Then find the locus of A
A. $\frac{x-5^{2}}{25}+\frac{y^{2}}{16}=1$
B. $\frac{(x-5)^{2}}{16}+\frac{y^{2}}{9}=1$
C. $\frac{(x-5)^{2}}{25}+\frac{y^{2}}{9}=1$
D. $\frac{(x-5)^{2}}{16}+\frac{y^{2}}{25}=1$

Answer: A::B

43. A ray emanating from the point $(0,6)$ is incident on the ellipse $25 x^{2}+16 y^{2}=1600$ at the point P with ordinate S. After reflection, ray cuts the Y -axis at B. The length of $P B$ is
A. 5
B. 7
C. 12
D. 13

Answer: A::B::C::D
44. If the ellipse $\frac{x^{2}}{4}+y^{2}=1$ meets the ellipse $x^{2}+\frac{y^{2}}{a^{2}}=1$ in four distinct points and $a=b^{2}-5 b+7$, then b does not lie between
A. $(1,4)$
B. $(-\infty, 2) \cup(3, \infty)$
C. $(2,3)$
D. None of these

Answer: B

45. The normal at a variable point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of eccentricity e meets the axes of the ellipse at $Q a n d R$. Then the locus of the midpoint of $Q R$ is a conic with eccentricity e^{\prime} such that e^{\prime} is independent of $e(\mathrm{~b}) e^{\prime}=1 e^{\prime}=e$
(d) $e^{\prime}=\frac{1}{e}$
A. e^{\prime} is indipendant of e
B. $e^{\prime}=1$
C. e'=e
D. $\mathrm{e}^{\prime}=1 / \mathrm{e}$

D Watch Video Solution

46. If the curves $\frac{x^{2}}{4}+y^{2}=1$ and $\frac{x^{2}}{a^{2}}+y^{2}=1$ for a suitable value of a cut on four concyclic points, the equation of the circle passing through these four points is $x^{2}+y^{2}=2$ (b) $x^{2}+y^{2}=1$ $x^{2}+y^{2}=4(\mathrm{~d})$ none of these
A. $x^{2}+y^{2}=8$
B. $x^{2}+y^{2}=4$
C. $x^{2}=y^{2}=2$
D. $x^{2}+y^{2}=1$

Answer: A::B

D Watch Video Solution

47. If P is the length of perpendicluar drawn from the origin to any normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, then the maximum value of p is
A. 5
B. 4
C. 2
D. 1

Answer: D

D Watch Video Solution

48.

Consider
the
ellipse
$\frac{x^{2}}{f\left(k^{2}+2 k+5\right)}+\frac{y^{2}}{f(k+11)}=1$. If $f(x)$ is a
positive decr4easing function, then the set of
values of k for which the major axis is the x -axis is
$(-3,2)$. the set of values of k for which the major axis is the y-axis is $(-\infty, 2)$. the set of values of k for which the major axis is the y-axis is
$(-\infty,-3) \cup(2, \infty)$ the set of values of k for
which the major axis is the y-axis is $(-3,-\infty$,
A. $k \in(-2,3)$
B. $k \in(-3,2)$
C. $k \in(-\infty,-3) \cup(2, \infty)$
D. $k \in(-\infty,-2) \cup(3, \infty)$

Answer: B::C

- Watch Video Solution

49. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is normal to the circle
$x^{2}+y^{2}+4 x+1=0$, then the maximum value
of $a b$ is
A. 1
B. 2
C. 4
D. 8

Answer: D

- Watch Video Solution

50. Extremities of the latera recta of the ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ having a given major axis 2a lies on
A. $x^{2}=a(a-y)$
B. ${ }^{`}=a(a+y)$
C. $y^{2}=a(a+x)$
D. $y^{\wedge}(2)=a(a-x)^{\wedge}$

Answer: A::B

- Watch Video Solution

51. The locus pf the image of the focus of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, with the respect to any of the tangent to the ellipse is

$$
\begin{aligned}
& \text { A. }(x+4)^{2}+y^{2}=100 \\
& \text { B. }(x+2)^{\wedge}(2)+\mathrm{y}^{\wedge}(2)=50^{\wedge} \\
& \text { C. }(x-4)^{2}+y^{2}=100 \\
& \text { D. }\left(x-20^{2}+y^{2}=50\right.
\end{aligned}
$$

Answer: A::B::D
52. A tangent to the ellipse $4 x^{2}+9 y^{2}=36$ is cut by the tangent at the extremities of the major axis at T and T^{1}, the circle on $T T^{1}$ as diameter passes through the point
A. $(-\sqrt{5}, 0)$
B. $(\sqrt{5}, 0)$
C. $(\sqrt{3}, 0)$
D. $(-\sqrt{3}, 0)$

Answer: A::B::D

53. Consider the ellipse $\frac{x^{2}}{\tan ^{2} \alpha}+\frac{y^{2}}{\sec ^{2} \alpha}=1$ where $\alpha \in\left(0, \frac{\pi}{2}\right)$. Which of the following quantities would vary as α varies?
A. degree of flatness
B. ordinate of the vertex
C. coordinate of the foci
D. length of latusrectum

Answer: A::C::D

- Watch Video Solution

54. Let $A(\theta)$ and $B(\phi)$ be the extrenities of a chord of an emplise. If the slope of $A B$ is equal to the slope of the tangent at a point C (alpha) on the ellipse, then value of alpha is

$$
\begin{aligned}
& \text { A. } \frac{\theta+\phi}{2} \\
& \text { B. } \frac{\theta-\phi}{2} \\
& \text { C. } \frac{\theta+\phi}{2}+\pi \\
& \text { D. } \frac{\theta+\phi}{2}-\pi
\end{aligned}
$$

Answer: A::B::C
55. A series of concentric ellipses $E_{1}, E_{2}, E_{3} \ldots, E_{n}$ are drawn such that E touches the extremities of the major axis of E_{n-1}, and the foci of E_{n} coincide with the extremities of minor axis of E_{n-1} If the eccentricity of the ellipses is independent of n, then the value of the eccentricity, is (A) $\frac{\sqrt{5}}{3}$ (B)

$$
\begin{aligned}
& \frac{\sqrt{5}-1}{2} \text { (C) } \frac{\sqrt{5}+1}{2} \text { (D) } \frac{1}{\sqrt{5}} \\
& \text { A. } \frac{3-\sqrt{5}}{2} \\
& \text { B. } \frac{\sqrt{5}-1}{2} \\
& \text { C. } \frac{2-\sqrt{3}}{2} \\
& \text { D. } \frac{\sqrt{3}-1}{2}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

56. A series of concentric ellipse
$E_{1}, E_{2}, E_{3}, \ldots, E_{n}$ is constructed as follows:

Ellipse E_{n} touches the extremities of the major axis of E_{n-1} and have its focii at the extremities of the minor axis of E_{n-1}. If eccentricity of ellipse E_{n} is e_{n}, then the locus of $\left(e_{n}^{2}, e_{n-1}^{2}\right)$ is
A. a parabola
B. an ellipse
C. a hyperbola
D. a rectangular hyperbola

Answer: A::B::C

- View Text Solution

57. A series of concentric ellipse
$E_{1}, E_{2}, E_{3}, \ldots, E_{n}$ is constructed as follows:
Ellipse E_{n} touches the extremities of the major axis of E_{n-1} and have its focii at the extremities of the minor axis of E_{n-1} If equation of ellipse E_{1} is $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, then equation pf ellipse E_{3} is
A. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
B. $x^{2}+y^{49}=1$
C. $\frac{x^{2}}{25}+\frac{y^{2}}{41}=1$
D. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$

Answer: A::B::D

- Watch Video Solution

58. Consider an ellipse $\mathrm{E}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, centered at point ' O ' and having $A B$ and $C D$ as its major and minor axes respectively if S_{1} be one of the focus of
the ellipse, radius of the incircle of $\Delta O C S_{1}$ be 1 unit and $O S_{1}=6$ units.
Q. if the ellipse (E) is $\Delta \mathrm{sq}$ unit, then the value of 4
Δ is
A. 63π
B. 64π
C. 65π
D. 66π

Answer: C

- Watch Video Solution

59. An ellipse $E, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, centred at point O has $A B$ and $C D$ as its major and minor axes, respectively. Let S_{1} be one of the foci of the ellipse, the radius of the incircle of traingle $O C S_{1}$ be 1 unit, adn $O S_{1}=6$ units

The perimeter of $\triangle O C S_{1}$ is
A. 10
B. 15
C. 20
D. 25

- Watch Video Solution

60. Consider an ellipse $\mathrm{E}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, centered at point ' O ' and having $A B$ and $C D$ as its major and minor axes respectively if S_{1} be one of the focus of the ellipse, radius of the incircle of $\Delta O C S_{1}$ be 1 unit and $O S_{1}=6$ units. Q . The equation of the director circle of (E) is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=48.5 \\
& \text { B. } x^{2}+y^{2}=97 \\
& \text { C. } x^{2}+y^{2}=\sqrt{48.5}
\end{aligned}
$$

D. $x^{2}+y^{2}=\sqrt{97}$

Answer: A::B::D

- View Text Solution

61. If the normals at the four points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are concurrent, then the value of $\left(\sum_{i+1}^{4} x_{1}\right)\left(\sum_{i=1}^{4} \frac{1}{2}\right)$
62. If $x, y \in R, \quad$ satisfies the equation $\frac{(x-4)^{2}}{4}+\frac{y^{2}}{9}=1 \quad, \quad$ then the difference between the largest and the smallest valus of the expression $\frac{x^{2}}{4}+\frac{y^{2}}{9}$ is
A. 8
B. 7
C. 5
D. 9

Answer: A
63. Statement 1 Feet of prependiculars drawn from foci of an ellipse $4 x^{2}+y^{2}=16$ on the line $2 \sqrt{3} x+y=8$ lie on the circle $x^{2}+y^{2}=16$

Statement 2 If prependiculars are from foci of an ellipse to its any tangent, the feet of these perpendicular lie on director circle of the ellipse.

Watch Video Solution

64. Statement 1 the condition on a and b for which
two distinct chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$ passing through ($a,-b$) are bisected by the line
$\mathrm{x}+\mathrm{y}=\mathrm{b}$ is $a^{2}+6 a b-7 b^{2}>0$.
Statement 2 Equation of chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ whose mid-point $\quad\left(x_{1}, y_{1}\right)$ is $T=S_{1}$

- Watch Video Solution

65. Find the locus of the centriod of an equilateral
triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
66. If the normals to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the ends of the choeds $l x+m y=1$ and $l^{\prime} x+m^{\prime} y=1$.

- View Text Solution

67. An ellipse slides between two perpendicular straight lines. Then identify the locus of its center.

D Watch Video Solution

68. Triangles are formed by pairs of tangent dreawn from any point on the ellipse
$a^{2} x^{2}+b^{2} y 6(2)=\left(a^{2}+b^{2} \wedge(2)\right.$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the chord of contact. Show that the orthocentre of each such triangles lies triangle lies on the ellipse.

- View Text Solution

69. Show that the tangents drawn at those points of the ellipse $\frac{x^{2}}{a}+\frac{y^{2}}{b}=(a+b)$, where it is cut
by any tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, intersect at right angles.
70. A variable point P on the ellipse of eccentricity e is joined to the foci S and S^{\prime}. The eccentricity of the locus of incentre of the triangle $P S S^{\prime}$ is (A)
$\sqrt{\frac{2 e}{1+e}}$ (B) $\sqrt{\frac{e}{1+e}}$ (C) $\sqrt{\frac{1-e}{1+e}}$ (D) $\frac{e}{2(1+e)}$

D Watch Video Solution

71. If ω is one of the angles between the normals to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point whose eccentric angles are θ and $\frac{\pi}{2}+\theta$, then prove that $\frac{2 \cot \omega}{\sin 2 \theta}=\frac{e^{2}}{\sqrt{1-e^{2}}}$
72. Let $A B C$ be an equilateral triangle inscribed in the circle $x^{2}+y^{2}=a^{2}$. Suppose pendiculars
from A, B, C to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$ meets the ellipse respectivelily at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ so that P ,

Q, R lies on same side of major axis as A, B, C respectively. Prove that the normals to the ellipse drawn at the points $P Q$ nad R are concurrent.

D Watch Video Solution

73. Let $A B C$ be an equilateral triangle inscribed in
the circle $x^{2}+y^{2}=a^{2}$. Suppose pendiculars
from A, B, C to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$ meets the ellipse respectivelily at P, Q, R so that P,

Q, R lies on same side of major axis as A, B, C respectively. Prove that the normals to the ellipse drawn at the points $P Q$ nad R are concurrent.

- Watch Video Solution

74. If two concentric ellipse be such that the foci of one be on the and if e and e^{\prime} be their
eccentricities. Prove that the angle between their
axes is $\cos ^{-1}\left\{\frac{\sqrt{e}^{2}+e^{\prime 2}-1}{e e^{\prime}}\right\}$

- View Text Solution

75. If the normals at the four points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are concurrent. Prove that $\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}\right)=4\right.$

- View Text Solution

1. If the length of the major axis of the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ is three times the length of minor axis, its accentricity is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{2 \sqrt{2}}{5}$

Answer: C

2. The equation $\frac{x^{2}}{10-a}+\frac{y^{2}}{4-a}=1$ represents an ellipse, if
A. $a<4$
B. $a>4$
C. $4<a<10$
D. $a>10$

Answer: A

D Watch Video Solution
3. Find the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose latus rectum is half of its major axis.
A. $1 /$ sqrt3
B. $1 / \mathrm{sqrt2}$
C. sqrt3/2
D. $\sqrt{\left(\frac{2}{3}\right)}$

Answer: B

- Watch Video Solution

4. If the eccentricity of an ellipse is $\frac{1}{\sqrt{2}}$, then its latusrectum is equal to its
A. minor axis
B. semi minor axis
C. major axis
D. semi major axis

Answer: D

- Watch Video Solution

5. If the distance between the foci of an ellipse is equal to length of minor axis, then its eccentricity is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

6. The eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the centre of the ellipse is 2 , is

$$
\begin{aligned}
& \text { A. }-\frac{\pi}{4} \\
& \text { B. } \frac{\pi}{4} \\
& \text { C. } \frac{3 \pi}{2} \\
& \text { D. } \frac{5 \pi}{3}
\end{aligned}
$$

Answer: A::B
7. If $\tan \theta_{1} \cdot \tan \theta_{2}=\frac{a^{2}}{b^{2}}$ then the chord Joining two points θ_{1} and θ_{2} on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ will subtend a right angle at (A) focus (B) centre (C) end of the major axis (D) end of the major axis
A. focus
B. center
C. end of major axis
D. end of minor axis

Answer: B
8. If the eccentricities of the two ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and equal , then the value $\frac{a}{b}$, is
A. $\frac{5}{13}$
B. $\frac{6}{13}$
C. $\frac{13}{5}$
D. $\frac{13}{6}$

Answer: C
9. The ratio of the area of triangle inscribed in ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to that of triangle formed by the corresponding points on the auxiliary circle is 0.5 . Then, find the eccentricity of the ellipse.
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B
10. If $P S Q$ is a focal chord of the ellipse
$16 x^{2}+25 y^{2}=400$ such that $\mathrm{SP}=16$, then the length SQ is
A. $\frac{2}{9}$
B. $\frac{4}{9}$
C. $\frac{8}{9}$
D. $\frac{16}{9}$

Answer: D

11. Let P be a variable point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ with foci at S and S^{\prime}. If A be the area of triangle PSS' then the maximum value of A, is
A. 12 sq units
B. 24 sq units
C. 36 sq units
D. 48 sq units

Answer: A
12. $S_{1} a n d S_{2}$ are the foci of an ellipse of major axis of length 10 units, and P is any point on the ellipse such that the perimeter of triangle $P S_{1}$ is
15. Then the eccentricity of the ellipse is 0.5 (b)
0.25 (c) 0.28 (d) 0.75
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{7}{25}$
D. $\frac{3}{4}$

Answer: A

D Watch Video Solution

13. Find the latus rectum, eccentricity, coordinates of the foci and the length of axes of the ellipse $4 x^{2}+9 y^{2}-8 x-36 y+4=0$.

- Watch Video Solution

14. The distance between the foci of an ellipse is 10
and its latus rectum is 15 , find its equation referred to its axes as axes of coordinates.

- Watch Video Solution

15. Find the equation of the ellipse whose axes are parallel to the coordinate axes having its centre at the point $(2,-3)$ one focus at $(3,-3)$ and vertex at $(4,-3)$.

- Watch Video Solution

16. Find the equation of the ellipse whose foci are
$(2,3),(-2,3)$ and whose semi-minor axes is $\sqrt{5}$.
17. Show that the equation
$(10 x-5)^{2}+(10 y-5)^{2}=(3 x+4 y-1)^{2}$
represents an ellipse, find the eccentricity of the ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{3} \\
& \text { D. } \frac{\sqrt{2}}{3}
\end{aligned}
$$

Answer: B
18. The locus of extremities of the latus rectum of the family of ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ is

- Watch Video Solution

Exercise For Session 2

1. The number of values of c such that the straight
line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ is $0(b) 1$ (c) 2 (d) infinite
A. 0
B. 1
C. 2
D. infinite

Answer: C

D Watch Video Solution

2. If any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts off intercepts of length h and k on the axes, then $\frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}=$ (A) 0 (B) 1 (C) -1 (D) Non of these
A. -1
B. 0
C. 1
D. None of these

Answer: C

- Watch Video Solution

3. The equations of the tangents to the ellipse
$3 x^{2}+y^{2}=3$ making equal intercepts on the axes are
A. $y= \pm x \pm 2$
B. $y= \pm x \pm 4$
C. $y= \pm x \pm \sqrt{30}$
D. $y= \pm x \pm \sqrt{35}$

Answer: A

(D) Watch Video Solution

4. If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the eccentric angle θ of
point of contact.
A. 0
B. 45°
C. 60°
D. 90°

Answer: B

- Watch Video Solution

5. The number of values of $\phi \in[0,2 \pi]$ for which the line $2 x \cos \phi+3 y \sin \phi=6$ touches the ellipse $4 x^{2}+9 y^{2}=36$ is a) four b) two c)one d) infinite
A. 1
B. 2
C. 4
D. infinite

Answer: D

- Watch Video Solution

6. The common tangent of
$x^{2}+y^{2}=4$ and $2 x^{2}+y^{2}=2$ is
A. $x+y+4=0$
B. $x-y+7=0$
C. $2 x+3 y+8=0$
D. None of these

Answer: D

- Watch Video Solution

7. If the normal at any point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the axes at Gandg, respectively, then find the raio $P G: P g$.
A. a:b
B. $a^{2}: b^{2}$
C. b:a
D. $b^{2}: a^{2}$

Answer: D

D Watch Video Solution

8. The number of distinct normal lines that can be
drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from the point $P(0,6)$ is one (b) two (c) three (d) four
A. one
B. two

C. three

D. four

Answer: C

- Watch Video Solution

9. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$, then the maximum value of $a b$ is 4 (b) 2 (c) 1 (d) none of these
A. 4
B. 2
C. 1
D. none of these

Answer: A

- Watch Video Solution

10. If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14}+\frac{y^{2}}{5}=1$ intersects it again at the point
$Q(2 \theta)$, then $\cos \theta$ is equal to (A) $\frac{2}{3}$ (B) $\frac{-2}{3}$ (C) $\frac{3}{4}$
(D) non of these
A. $\frac{2}{3}$
B. $-\frac{2}{3}$
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

Answer: B

- Watch Video Solution

11. The line $5 x-3 y=8 \sqrt{2}$ is a normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, If 'theta' be eccentric angle of the foot of this normal then 'theta' is equal to

> A. $\frac{\pi}{6}$
> B. $\frac{\pi}{4}$
> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

12. If the tangent drawn at point $\left(t^{2}, 2 t\right)$ on the parabola $y^{2}=4 x$ is the same as the normal drawn at point $(\sqrt{5} \cos \theta, 2 \sin \theta)$ on the ellipse
$4 x^{2}+5 y^{2}=20$, then $\theta=\cos ^{-1}\left(-\frac{1}{\sqrt{5}}\right)$
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) t=-\frac{2}{\sqrt{5}}$ (d) $t=-\frac{1}{\sqrt{5}}$

- Watch Video Solution

13. If the normal at any point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts the major and minor axes in L and M respectively and if C is the centre, then
$a^{2} C L^{2}+b^{2} C M^{2}=$ (A) $(a-b)$ (B) $\left(a^{2}-b^{2}\right)$ (C)
$(a+b)$ (D) $\left(a^{2}+b^{2}\right)$

D Watch Video Solution

14. If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14}+\frac{y^{2}}{5}=1$ intersects it again at the point
$Q(2 \theta)$, then $\cos \theta$ is equal to (A) $\frac{2}{3}$ (B) $\frac{-2}{3}$ (C) $\frac{3}{4}$
(D) non of these
(D) Watch Video Solution
15. The tangent and normal at any point P of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cut its major axis in point Q and R respectively. If $Q R=a$ prove that the eccentric angle of the point P is given by $e^{2} \cos ^{2} \phi+\cos \phi-1=0$

D Watch Video Solution

Exercise For Session 3

1. Find the angle between the pair of tangents
from the point $(1,2)$ to the ellipse $3 x^{2}+2 y^{2}=5$.
A. $\tan ^{-1}\left(\frac{12}{5}\right)$
B. $\tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)$
C. $\tan ^{-1}\left(\frac{12}{\sqrt{5}}\right)$
D. $\tan ^{-1}(\sqrt{5})$

Answer: C

- Watch Video Solution

2. If the chords of contact of tangents from two point $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the ellipse
$\frac{x}{a^{2}}+\frac{y}{b^{2}}=1$ are at right angles, then find the value of $\frac{x_{1} x_{2}}{y_{1} y_{2}}$.
A. $\frac{a^{2}}{b^{2}}$
B. $-\frac{b^{2}}{a^{2}}$
C. $-\frac{a^{4}}{b^{4}}$
D. $\frac{b^{4}}{a^{4}}$

Answer: C

- Watch Video Solution

3. If the tangents from the point $(\lambda, 3)$ to the
ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ are at right angles then λ is
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: B

- Watch Video Solution

4. The eccentric angle of one end of a diameter of
$x^{2}+3 y^{2}=3$ is $\frac{\pi}{6}$, then the eccentric angle of the other end will be
A. $\frac{5 \pi}{6}$
B. $-5 \frac{\pi}{6}$
C. $-2 \frac{\pi}{3}$
D. $2 \frac{\pi}{3}$

Answer: B
5. The locus of mid-points of a focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{e x}{a}$
B. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{e x}{a}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}+b^{2}$

Answer: A

D Watch Video Solution
6. the centre of the ellipse

$$
\frac{(x+y-2)^{2}}{9}+\frac{(x-y)^{2}}{16}=1, \text { is }
$$

A. $(0,0)$
B. $(1,0)$
C. $(0,1)$
D. $(1,1)$

Answer: D
7. The locus of the point of intersection of two prependicular tangents of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \text { is }
$$

A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=13$
D. $x^{2}+y^{2}=5$

Answer: C

8. The area of the parallelogram inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, whose diaonals are the conjugate diameters of the ellipse is given by
A. $2 a b$
B. 3 ab
C. 4 ab
D. 5ab

Answer: A

- Watch Video Solution

9. Find the locus of the vertices of equilateral triangle circumscribing the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

D View Text Solution

10. A tangent to the ellipse $x^{2}+4 y^{2}=4$ meets the ellipse $x^{2}+2 y^{2}=6$ at $\mathrm{P} \& \mathrm{Q}$.

- Watch Video Solution

11. The locus of the mid-points of the chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which pass through the
positive end of major axis, is.

- Watch Video Solution

12. Ifchord ofcontact ofthe tangents drawn from the point (α, β) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,touches the circle $x^{2}+y^{2}=c^{2}$, then the locus of the point

D Watch Video Solution

13. Find the centre and eccentricity of the ellipse

$$
4(x-2 y+1)^{2}+9(2 x+y+2)^{2}=5
$$

(D) Watch Video Solution

14. A ray emanating from the point $(0, \sqrt{5})$ is incident on the ellipse $9 x^{2}+4 y^{2}=36$ at the point P with abscissa 2. find the equation of the reflected ray after first reflection.

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. Given f is increasing, the equation $\frac{x^{2}}{f(2 a)}+\frac{y^{2}}{f\left(a^{2}-3\right)}=1$ represents an ellipse with X -axis as major axis if
A. $[-1,3]$
B. $[1,3]$
C. $(-1,3)$
D. $(0,5)$

Answer: C
2. If $\frac{x^{2}}{f(4 a)}+\frac{y^{2}}{f\left(a^{2}-5\right)}$ represents an ellipse with major axis as Y -axis and f is a decreasing function,then
A. $\alpha \in(1 \infty, 1)$
B. $\alpha \in(5, \infty)$
C. $\alpha \in(1,4)$
D. $\alpha \in(-1,5)$

Answer: D

- Watch Video Solution

3. The curve represents by the equation $\frac{x^{2}}{\sin \sqrt{2}-\cos \sqrt{3}}+\frac{y^{2}}{\sin \sqrt{3}-\cos \sqrt{2}}=1$ is
A. an ellipse with foci on X-axis
B. an ellipse on focii Y-axis
C. a heyperbola with foci on X-axis
D. an hyperbola with foci on Y-axis

Answer: A

D Watch Video Solution
4. The maximum distance of the centre of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ from the chord of contact of mutually perpendicular tangents of the ellipse is
A. $144 / 5$
B. $16 / 5$
C. $\frac{9}{5}$
D. None of these

Answer: B

- Watch Video Solution

5. S and T are the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and B is an end of the minor axis. If $S T B$ is an equilateral triangle, the eccentricity of the ellipse is e then find value of $4 e$

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{\sqrt{3}}{2}
\end{aligned}
$$

Answer: C

6. A circle of radius $\frac{5}{\sqrt{2}}$ is concentric with the
ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, then the acute angle made by the common tangent with the line $\sqrt{3} x-y+6=0$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{12}$

Answer: D

7. Consider the particle travelling clockwise on the elliptical path $\frac{x^{2}}{100}+\frac{y^{2}}{25}=1$ The particle leaves the orbit at the point $(-8,3)$ and travels in a straight line tangent to the ellpse. At what point will the particle cross the y-axis?
A. $\left(0,-\frac{25}{3}\right)$
B. $\left(0, \frac{7}{3}\right)$
C. $\left(0, \frac{25}{3}\right)$
D. $(0,9)$
8. C is the centre of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and
A and B are two points on the ellipse such that angle $\mathrm{ACB}=90^{\circ}$, then $\frac{1}{(C A)^{2}}+\frac{1}{(C B)^{2}}=$
A. $\frac{7}{12}$
B. $\frac{12}{7}$
C. $\frac{25}{144}$
D. $\frac{144}{25}$

Answer: C
9. Let (alpha,beta) be a point from which two perpendicular tangents can be drawn to the ellipse $4 x^{2}+5 y^{2}=20$. If $F=4 \alpha+3 \beta$, then

$$
\begin{aligned}
& \text { A. }-15 \leq F \leq 15 \\
& \text { B. } F \geq 0 \\
& \text { C. }-5 \leq F \leq 20 \\
& \text { D. } F \leq-5 \sqrt{5} \text { or } F \geq 5 \sqrt{5}
\end{aligned}
$$

Answer: A

10. If $a=\left[t^{2}-3 t+4\right]$ and $b=[3+5 t]$, where
[.] donates the greatest integer function, then the latusrectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $t=\frac{3}{2}$ is
A. 20
B. 10
C. $\frac{1}{5}$
D. $\frac{1}{10}$

Answer: C

11. If the line $x+2 y+4=0$ cutting the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in points whose eccentric angies are 30° and 60° subtends right angle at the origin then its equation is
A. $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$
B. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
C. $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$
D. None of the above

Answer: B
12. An arc of a bridge is semi-elliptical with the major axis horizontal. If the length of the base is

9 m and the highest part of the bridge is 3 m from
the horizontal, then prove that the best approximation of the height of the acr 2 m from the center of the base is $\frac{8}{3} m$.
A. $\frac{11}{4} m$
B. $\frac{8}{3} m$
C. $\frac{7}{2} m$
D. $2 m$

- Watch Video Solution

13. A tangent to the ellipes $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ at any points meet the line $x=0$ at a point Q Let R be the image of Q in the line $y=x$, then circle whose extremities of a dameter are Q and R passes through a fixed point, the fixed point is
A. $(3,0)$
B. $(4,0)$
C. $(5,0)$
D. $(0,0)$

Answer: D

D Watch Video Solution

14. If tangents are drawn from any point on the circle $x^{2}+y^{2}=25$ the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ then the angle between the tangents is
A. $\frac{\sqrt{5}}{4}$
B. $\frac{\sqrt{5}}{3}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{7}}{3}$

Answer: C

D Watch Video Solution

15. the equation of the chord of contact of the pair of tangents drawn to the ellipse $4 x^{2}+9 y^{2}=36$ from the point (m, n) where $m \dot{n}=m+n, m, n$ being nonzero positive integers, is $2 x+9 y=18$
(b) $2 x+2 y=14 x+9 y=18$ (d) none of these
A. $2 x+9 y=18$
B. $2 x+2 y=1$
C. $4 x+9 y=18$
D. $4 x+2 y=1$

Answer: C

- Watch Video Solution

16. $x-2 y+4=0$ is a common tangent to $y^{2}=4 x$ and $\frac{x^{4}}{4}+\frac{y^{2}}{b^{2}}=1$. Then the value of b and the other common tangent are given by: (A)

$$
\begin{align*}
& b=\sqrt{3} \quad \text { (B) } \quad x+2 y+4=0 \quad \text { (С) } \quad b=3 \tag{D}\\
& x-2 y-4=0
\end{align*}
$$

$$
\text { A. } b=\sqrt{3}, x+2 y+4=0
$$

B. $b=3, x+2 y+4=0$
C. $b=\sqrt{3}, x+2 y-4=0$
D. $b=\sqrt{3}, x-2 y-4=0$

Answer: A

- Watch Video Solution

17. The point on the ellipse $x^{2}+2 y^{2}=6$ closest to the line $x+y=7$ is
A. $(\sqrt{2}, \sqrt{2})$
B. $(0, \sqrt{3})$
C. $(2,1)$
D. $\left(\sqrt{5}, \frac{1}{\sqrt{2}}\right)$

Answer: C

D Watch Video Solution

18. From a point on the axis of x common tangents
are drawn to the parabola $y^{\wedge}(2)=4 x$ and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$. If these tangents from an equilateral trianlge with their chord of contact w.r.t parabola, then set of exhaustive values of a is
A. $(0,3)$
B. $\left(0, \frac{3}{2}\right)$
C. $\left(\frac{3}{2}, 3\right)$
D. $\left(1, \frac{3}{2}\right)$

Answer: C

- Watch Video Solution

19. If circumcentre of an equilateral triangle inscribed in $\frac{x^{2}}{a^{2}}+y^{2} b^{2}=1$, with vertices having
eccentric angles alpna, β, γ, respectively is
$\left(x_{1}, y_{1}\right)$ then $\sum \cos \alpha \cos \beta+\sum \sin \alpha \sin \beta=$
A. $\frac{9 h^{2}}{a^{2}}+\frac{9 k^{2}}{b^{2}}+\frac{3}{2}$
B. $9 h^{2}-9 k^{2}+a^{2} b^{2}$
C. $\frac{9 h^{2}}{a^{2}}+\frac{9 k^{2}}{b^{2}}+3$
D. $\frac{9 h^{2}}{2 a^{2}}+\frac{9 k^{2}}{2 b^{2}}-\frac{3}{2}$

Answer: D

- Watch Video Solution

20. A parabola is drawn whose focus is one of the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (where $\mathrm{a}>\mathrm{b}$) and whose directrix passes through the other focus and perpendicular to the major axes of the ellipse.

Then the eccentricity of the ellipse for which the length of latus-rectum of the ellipse and the parabola are same is
A. $\sqrt{2}-1$
B. $\sqrt{3}-1$
C. $2 \sqrt{2}-2$
D. $3 \sqrt{3}-5$

Answer: A

D Watch Video Solution

21. If the maximum distance of any point on the ellipse $x^{2}+2 y^{2}+2 x y=1$ from its center is r,
then r is equal to $3+\sqrt{3}$ (b) $2+\sqrt{2}$
$\sqrt{3-\sqrt{5}}$
(d) $\sqrt{2-\sqrt{2}}$
A. $\frac{\sqrt{6}+1}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{\sqrt{3}+1}{2}$
D. $\frac{\sqrt{2}+2}{2}$

Answer: B

- Watch Video Solution

22. The length of the common chord of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$ and the circle $(x-1)^{2}+(y-2)^{2}=1$ is (A) 2 (B) $\sqrt{3}$ (C) 4 (D) none of these
A. zero
B. one
C. three
D. eight

Answer: A

D Watch Video Solution

23. The eccentricity of ellipse $a x^{2}+b y^{2}+2 g x+2 f y+c=0$ if its axis is
parallel to x-axis is (A) $\sqrt{\frac{a+b}{4}}$ (B) $\sqrt{\frac{a-b}{2}}$ (C)

$$
\sqrt{\frac{b-a}{a}} \text { (D) } \sqrt{\frac{b-a}{b}}
$$

$$
\text { A. } \sqrt{\left(\frac{b-a}{b}\right)}
$$

B. $\sqrt{\left(\frac{a+b}{b}\right)}$
C. $\sqrt{\left(\frac{a+b}{a}\right)}$
D. None of these

Answer: A

- Watch Video Solution

24. A circle has the same center as an ellipse and passes through the foci $F_{1} a n d F_{2}$ of the ellipse, such that the two cuves intersect at four points.

Let P be any one of their point of intersection. If the major axis of the ellipse is 17 and the area of
triangle $P F_{1} F_{2}$ is 30 , then the distance between the foci is 13 (b) 10 (c) 11 (d) none of these
A. 13
B. 11
C. 9
D. 7

Answer: A

- Watch Video Solution

25. The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the tangent and normal at its point whose eccentric angles $\frac{\pi}{4}$ is
A. $\frac{\left(a^{2}-b^{2}\right) a b}{a^{2}+b^{2}}$
B. $\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
C. $\frac{\left(a^{2}+b^{2}\right) a b}{\left(a^{2}-b^{2}\right)}$
D. $\frac{\left(a^{2}+b^{2}\right)}{\left(a^{2}-b^{2}\right)}$

Answer: A
26. An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $\frac{2}{3}$ then the eccentricity of the ellipse is: (A) $\frac{2 \sqrt{2}}{3}$ (B) $\frac{\sqrt{5}}{3}$ (C) $\frac{8}{9}$ (D) $\frac{2}{3}$
A. $2 \frac{\sqrt{2}}{3}$
B. $\frac{\sqrt{5}}{3}$
C. $\frac{8}{9}$
D. $\frac{2}{3}$
27. An ellipse slides between two perpendicular straight lines. Then identify the locus of its center.
A. parabola
B. ellipse
C. hyperbola
D. circle

Answer: D
28. The length of the chord of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ where mid point is $\left(\frac{1}{2}, \frac{2}{3}\right)$
$\frac{1}{10}$ (B) $\frac{\sqrt{8161}}{10}$ (C) $\frac{\sqrt{8061}}{10}$ (D) 1
A. $\frac{1}{10}$
B. $\frac{\sqrt{8161}}{10}$
C. $\frac{\sqrt{8061}}{10}$
D. None of the above

Answer: D

- Watch Video Solution

29. The equation of the locus of the middle point of the portion of the tangent to the ellipse
$x^{/} 16+\frac{y^{2}}{9}=1$ included between the co-ordinate axes is the curve
A. $9 x^{2}+16 y^{2}=4 x^{2} y^{2}$
B. $16 x^{2}+9 y^{2}=4 x^{2} y^{2}$
C. $3 x^{2}+4 y^{2}=4 x^{2} y^{2}$
D. $9 x^{2}+16 y^{2}=x^{2} y^{2}$

Answer: A
30. The tangent at a point $P(a \cos \varphi, b \sin \varphi)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets its auxiliary circle at two points, the chord joining which subtends a right angle at the center. Find the eccentricity of the ellipse.

$$
\begin{aligned}
& \text { A. } e^{2}\left(1+\cos ^{2} \theta\right)=1 \\
& \text { B. } e^{2}\left(\cos e c^{2} \theta+1\right)=1 \\
& \text { C. } e^{2}\left(1+\sin ^{2} \theta\right)=1 \\
& \text { D. } e^{2}\left(1+\tan ^{2} \theta\right)=1
\end{aligned}
$$

Answer: C

Exercise More Than One Correct Option Type Questions

1. The locus of extremities of the latus rectum of the family of ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ is

$$
\text { A. } x^{2}-a y=a^{2}
$$

B. $x^{2}-a y=b^{2}$
C. $x^{2}+a y=a^{2}$
D. $x^{2}+a y=b^{2}$

Answer: A::C

D Watch Video Solution

2. The distance of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ from the centre is 2 Then the eccentric angle of the point is
A. $\frac{\pi}{4}$
B. $\frac{3 \pi}{4}$
C. $\frac{5 \pi}{4}$
D. $\frac{7 \pi}{4}$

Answer: A::B::C::D

D Watch Video Solution

3. If the equation of family of ellipse is $x^{2} \sec ^{2} \theta+y^{2} \operatorname{cosec} c^{2} \theta=1$, where $\frac{\pi}{4}<\theta<\frac{\pi}{2}$, then the locus of extremities of the latusrectum is

$$
\begin{aligned}
& \text { A. } 2 y^{2}\left(1+x^{2}\right)=\left(1-x^{2}\right)^{2} \\
& \text { B. } 2 x^{2}\left(1+y^{2}=\left(1-y^{2}\right)^{2}\right. \\
& \text { C. } 2 y\left(1-x^{2}\right)=1+x^{2} \\
& \text { D. } 2 y^{2}\left(1+x^{2}\right)=1+x^{4}-2 x^{2}
\end{aligned}
$$

Answer: B::D

- View Text Solution

4. Let $F 1, F_{2}$ be two focii of the ellipse and $P T$ and $P N$ be the tangent and the normal respectively to the ellipse at ponit P.then
A. $P N b i \sec t s \angle F_{1} P F_{2}$
B. $P T b i \sec t s \angle F_{1} P F_{2}$
C. $P T b i \sec t s \angle\left(180 \circ-\angle F_{1} P F_{2}\right)$
D. None of above

Answer: A::C

D Watch Video Solution

5. $\frac{x^{2}}{r^{2}-r-6}+\frac{y^{2}}{r^{2}-6 r+5}=1$ will represent
ellipse if r lies in the interval
A. $(-\infty,-2)$
B. $(1, \infty)$
C. $(3, \infty)$
D. $(5, \infty)$
6. A laturectum of an ellipse is a line
A. passing through a focus
B. passing through the najor axis
C. perpendicular to the major axis
D. parallel to the major axis

Answer: A::B::C

- Watch Video Solution

7. An ellipse passes through the point $(4,-1)$ and touches the line $x+4 y-10=0$. Find its equation if its axes coincide with the coordinate axes.

$$
\begin{aligned}
& \text { A. } x^{2}+64 y^{2}=80 \\
& \text { B. } x^{2}+4 y^{2}=20 \\
& \text { C. } x^{2}+20 y^{2}=100 \\
& \text { D. } x^{2}+8 y^{2}=40
\end{aligned}
$$

Answer: A::B

8. If P is any point lying on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, whose foci are S and S^{\prime}. Let $\angle P S S^{\prime}=\alpha$ and $\angle P S^{\prime} S=\beta$,then
A. $S P+S^{\prime} P=2 a, \quad$ if $a>b$
B. $S P+S^{\prime} P=2 b, \quad$ if $\quad b>a$
C. $\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)=\frac{1-e}{e+1}$ D.

Answer: A::B::C

9. If $(5,12)$ and $(24,7)$ are the foci of an ellipse passing through the origin, then find the eccentricity of the ellipse.
A. $\frac{\sqrt{386}}{38}$
B. $\frac{\sqrt{386}}{12}$
C. $\frac{\sqrt{386}}{13}$
D. $\frac{\sqrt{386}}{25}$

Answer: A: B

D Watch Video Solution
10. If a pair of variable straight lines
$x^{2}+4 y^{2}+\alpha x y=0$ (where α is a real parameter)
cut the ellipse $x^{2}+4 y^{2}=4$ at two points A and B, then the locus of the point of intersection of tangents at A and B is

$$
\text { A. } x-2 y=0
$$

B. $2 x-y=0$
C. $x+2 y=0$
D. $2 x+y=0$

Answer: A: C
11. In the
$25 x^{2}+9 y^{2}-150 x-90 y+225=0$
A. foci are at $(3,1),(3,9)$
B. $e=\frac{4}{5}$
C. center is $(5,3)$
D. major axis axis is 6

Answer: A::B
12. If the tangent to the ellipse $x^{2}+4 y^{2}=16$ at the point 0 sanormal to the circle $x^{2}+y^{2}-8 x-4 y=0$ then θ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. 0
D. $-\frac{\pi}{4}$

Answer: A::C

D Watch Video Solution
13. The product of eccentricities of two conics is unity, one of them can be a/an
A. parabola
B. ellipse
C. hyperbola
D. circle

Answer: A::B::C

- Watch Video Solution

14. The parametric $\angle \alpha$ where $-\pi<\alpha \leq \pi$ of the point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at which the tangent drawn cuts the intercept of minimum length on the coordinates axes, is/are
A. $\tan -\sqrt{\frac{b}{a}}$
B. $-\tan (-1) \sqrt{\frac{b}{a}}$
C. $\pi-\tan ^{-1} \sqrt{\frac{b}{a}}$
D. $\pi+\tan ^{-1} \sqrt{\frac{b}{a}}$

Answer: A::B::C

15. If latus recturn of the ellipse
$x^{2} \tan ^{2} \alpha+y^{2} \sec ^{2} \alpha=1 \quad$ is $\quad \frac{1}{2} \quad$ then $\alpha(0<\alpha<\pi)$ is equal to
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $5 \frac{\pi}{12}$
D. $\frac{\pi}{2}$

Answer: A: C

- Watch Video Solution

Exercise Passage Based Questions
1.
A
conic
is
represented
$C \equiv 9 x^{2}+4 x y+6 y^{2}-22 x-16 y+9=0$

The center of conic C is
A. $(0,0)$
B. $(1,0)$
C. $(0,1)$
D. $(1,1)$

Answer: D

$$
\begin{align*}
& \text { 2. A conic } \quad \text { is represented } \\
& C \equiv 9 x^{2}+4 x y+6 y^{2}-22 x-16 y+9=0
\end{align*}
$$

The center of conic C is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{\sqrt{2}} \\
& \text { C. } \frac{2}{3} \\
& \text { D. } \frac{2}{\sqrt{5}}
\end{aligned}
$$

Answer: B
3. A conic is represented
$C \equiv 9 x^{2}+4 x y+6 y^{2}-22 x-16 y+9=0$

The center of conic C is
A. $2,2 \sqrt{2}$
B. $4,2 \sqrt{3}$
C. $6,2 \sqrt{5}$
D. $5,2 \sqrt{6}$

Answer: A

- Watch Video Solution

4. An ellipse E has its center $C(3,1)$, focus at $(3,6)$ and passing through the point $P(7,4) Q$. The product of the lengths of the prependicular segeent from the focii on tangent at point P is
A. 20
B. 45
C. 40
D. 90

Answer: A
5. An ellipse E has its center $C(3,1)$, focus at $(3,6)$ and passing through the point $P(7,4) Q$. The product of the lengths of the prependicular segeent from the focii on tangent at point P is
A. $\left(5, \frac{5}{3}\right)$
B. $3,\left(\frac{4}{3}\right)$
C. $\left(5,\left(\frac{10}{3}\right)\right.$
D. $3,\left(\frac{8}{3}\right)$

Answer: C

6. An ellipse E has its center $C(3,1)$, focus at $(3,6)$ and passing through the point $P(7,4) Q$. The product of the lengths of the prependicular segeent from the focii on tangent at point P is

$$
\begin{aligned}
& \text { A. } e_{1}=\frac{3}{\sqrt{5}} \\
& \text { B. } e_{1}=\frac{\sqrt{5}}{3} \\
& \text { C. } e_{1}=\frac{3}{\sqrt{10}} \\
& \text { D. } e_{1}=\frac{\sqrt{10}}{3}
\end{aligned}
$$

Answer: B
7. $C_{1}: x^{2}+y^{2}=r^{2}$ and $C_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ interset at four distinct points A, B, C, and D. Their common tangents form a peaallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. if $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a square, then r is equal to
A. 36
B. 72
C. 144
D. 288

Answer: D
8. $\quad C_{1}: x^{2}+y^{2}=r^{2}$ and $C_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ interset at four distinct points A, B, C, and D. Their common tangents form a peaallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. if $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a square, then r is equal to
A. 12
B. 15
C. 20
D. 25

Answer: D
9. $\quad C_{1}: x^{2}+y^{2}=r^{2}$ and $C_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ interset at four distinct points A, B, C, and D. Their common tangents form a peaallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. if $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a square, then r is equal to
A. 1: 4
B. $1: 2$
C. 3: 4
D. 9: 16

Answer: B
10. An ellipse whose distance between foci S and S^{\prime} is 4 units is inscribed in the $\triangle A B C$ touching thesides
$A B, A C$ and $B C a t P, Q$ and R. If centre of ellipse is at origin and major axis along x-axis $S P+S^{\prime} P=6$, then
A. $9 x^{2}+5 y^{2}=45$
B. $4 x^{2}+9 y^{2}=46$
C. $5 x^{2}+9 y^{2}=45$
D. $9 x^{2}+4 y^{2}=36$

(D) Watch Video Solution

11. An ellipse whose distance between foci S and S^{\prime} is 4 units is inscribed in the $\triangle A B C$ touching thesides
$A B, A C$ and $B C a t P, Q$ and R. If centre of ellipse is at origin and major axis along x-axis $S P+S^{\prime} P=6$, then

$$
\begin{aligned}
& \text { A. }\left(x^{2}+y^{2}-14\right)^{2}=4\left(5 x^{2}+9 y^{2}-45\right) \\
& \text { B. }\left(x^{2}+y^{2}-14\right)^{2}=4\left(5 x^{2}+9 y^{2}-54\right) \\
& \text { C. }\left(x^{2}+y^{2}-14\right)^{2}=4\left(9 x^{2}+5 y^{2}-45\right)
\end{aligned}
$$

D. $\left(x^{2}+y^{2}-14\right)^{2}=4\left(9 x^{2}+5 y^{2}-54\right)$

Answer: A

- Watch Video Solution

12. An ellipse whose distance between foci S and S^{\prime} is 4 units is inscribed in the $\triangle A B C$ touching thesides
$A B, A C$ and $B C a t P, Q$ and R. If centre of ellipse is at origin and major axis along x-axis $S P+S^{\prime} P=6$, then

$$
\text { A. } 5 x^{2}+9 y^{2}=15
$$

B. $5 x^{2}+9 y^{2}=60$
C. $9 x^{2}+5 y^{2}=14$
D. $9 x^{2}+5 y^{2}=144$

Answer: B

D Watch Video Solution

13. The line $2 p x+y \sqrt{1-p^{2}}=1(|p|<1)$ for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The eccentricity of the ellipse is
A. $\frac{1}{\sqrt{5}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{2}{\sqrt{5}}$

Answer: C

- Watch Video Solution

14. For all real p , the line $2 p x+y \sqrt{1-p^{2}}=1$ touches a fixed ellipse whose axex are the coordinate axes

The foci of the ellipse are
A. $\left(\pm \frac{\sqrt{3}}{2}, 0\right)$
B. $\left(0, \pm \frac{\sqrt{3}}{2}\right)$
C. $(\pm \sqrt{3}, 0$
D. $(0, \pm \sqrt{3})$

Answer: B

- Watch Video Solution

15. The line $2 p x+y \sqrt{1-p^{2}}=1(|p|<1)$ for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The locus of the
point of intersection of prependicular tangents of the ellipse is
A. $x^{2}+y^{2}=2$
B. $x^{2}+y^{2}=\frac{3}{2}$
C. $x^{2}+y^{2}=\frac{5}{4}$
D. $x^{2}+y^{2}=\frac{1}{2}$

Answer: C

D Watch Video Solution

1. Two concentric ellipse be such that the foci of one be on the other and if $3 / 5$ and $4 / 5$ be their eccentricities. If theta be the angle between their
axes, then the values of $2\left(1+\sin ^{2} \theta+\sin ^{4} \theta\right)$ must be

- View Text Solution

2. Rectangle $A B C D$ has area 200.An ellipse with area 200π passes through A and C and has foci at
B and D.Find the perimeter of the rectangle.

D Watch Video Solution

3. Number of points on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ from which pair of perpendicular tangents are drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is

D Watch Video Solution

4. The length of the sides of the square which can
be made by four perpendicular tangents to the
ellipse $\frac{x^{2}}{7}+\frac{2 y^{2}}{11}=1$, is

D Watch Video Solution
5. Length of the focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which is inclined to the major axis at angle θ is

D Watch Video Solution

6. The number of distinct normal lines that can be
drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from the point $P(0,6)$ is one (b) two (c) three (d) four

- Watch Video Solution

7. If p is the length of the perpendicular from a focus upon the tangent at any point P of the the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and r is the distance of P from the foicus, then $\frac{2 a}{r}-\frac{b^{2}}{p^{2}}$ is equal to

D Watch Video Solution

8. An ellipse passing through the origin has its foci
$(3,4)$ and $(6,8)$. Then length of its semi-minor axis is
b , then the value of $\frac{b}{\sqrt{2}}$ is
9. The maximum value of 5λ for which four normals can be drawn to ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ through a point $(\lambda, 0)$ is

D Watch Video Solution

10. An ellipse with major and minor axis
$6 \sqrt{3}$ and 6 respectively, slides along the coordinates axes and always remains confined in the first quardrant. If the length if arc decribed by center of ellipse is $\frac{\pi \lambda}{6}$ then the value of lambda is

Exercise Statement I And li Type Questions

1. Let the equation of ellipse be
$\frac{x^{2}}{a^{2}+1}=\frac{y^{2}}{a^{2}+2}=1$ Statement 1 If eccentricity
of the ellipse be $\frac{1}{\sqrt{6}}$, then length of latusrectum
is $\frac{10}{\sqrt{6}}$. Statement 2 Length of latusrectum $=$
$2\left(a^{2}+1\right)$
$\sqrt{a^{2}+2}$

- Watch Video Solution

2. Statement 1 : The area of the ellipse
$2 x^{2}+3 y^{2}=6$ is more than the area of the circle
$x^{2}+y^{2}-2 x+4 y+4=0$. Statement $2:$ The
length f the semi-major axis of an ellipse is more that the radius of the circle.
A. Statement I is true, statement II is true:
statement II is a correct explanation for statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: B

D Watch Video Solution

3. Statement 1 The equation of the director circle to the ellipse $4 x^{2}+9 y^{2}=36 i s x^{2}+y^{2}=13$

Statement 2 The locus of the point of intersection of perpendicular tangents to an ellipse is called the director circle.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: A

4. Statement 1 In an ellipse the distance between
foci is always less than the sum of focal distances of any point on it.

Statement 2 If e be the eccentricity of the ellipse, then Oltelt1.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: A

D View Text Solution

5. Statement 1 The sum of the focal distances of a point on the ellipse
$4 x^{2}+5 y^{2}-16 x-30 y 41=0 i s 2 \sqrt{5}$.
Statement
2 The
equation
$4 x^{2}+5 y^{2}-16 x-30 y+41=0 \quad$ can be
expressed as $4(x-2)^{2}+5(y-3)^{2}=20$.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: B

6. Statement 1 : The locus of the center of a variable circle touching two circle
$(x-1)^{2}+(y-2)^{2}=25$
and
$(x-2)^{2}+(y-1)^{2}=16$ is an ellipse. Statement
2 : If a circle $S_{2}=0$ lies completely inside the
circle $S_{1}=0$, then the locus of the center of a
variable circle $S=0$ that touches both the circles is an ellipse.
A. Statement I is true, statement II is true:
statement II is a correct explanation for statement I
B. Statement I is true, statement II is true, statement II is not a correct explanation for statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: C

D Watch Video Solution

7. Statement 1 The tangent and normal at any point P on a ellipse bisect the external and
internal angles between the focal distance of P.
Statement 2 The straight line joining the foci of the ellipse subtends of a right angle at P.
A. Statement I is true, statement II is true:
statement II is a correct explanation for statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: C

- View Text Solution

8. Statement 1 In a $\triangle A B C$, if based BC is fixed and perimeter of the triangle is also fixed, then certex moves on an ellipse.

Statement 2 If sum of distance of a point P from two fixed points is constant, then locus of P is an ellipse.
A. Statement I is true, statement II is true:
statement II is a correct explanation for

statement I

B. Statement I is true, statement II is true, statement II is not a correct explanation for statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: A

D Watch Video Solution

1. Consider the family ol circles
$x^{2}+y^{2}=r^{2}, 2<r<5$. If in the first quadrant,
the common tangnet to a circle of this family and the ellipse $4 x^{2}+25 y^{2}=100$ meets the coordinate axes at A and B, then find the equation of the locus of the mid-point of $A B$.

- Watch Video Solution

2. A straight line $P Q$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ and the circle
$x^{2}+y^{2}=r^{2}(b<r<a) . \mathrm{RS}$ is a focal chord of
the ellipse. If RS is parallel to $P Q$ and meets the circle at points R and S. Find the length of RS.

- Watch Video Solution

3. Let d be the perpendicular distance from the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the tangent drawn at a point P on the ellipse. If $F_{1} \& F_{2}$ are the two foci of the ellipse, then show the $\left(P F_{1}-P F_{2}\right)^{2}=4 a^{2}\left[1-\frac{b^{2}}{d^{2}}\right]$.

Exercise Questions Asked In Previous 13 Years Exam

1. The muinimum area of the triangle formed by
the tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes is
A. ad sq units
B. $\frac{a^{2}+b^{2}}{2}$ sq units
C. $\frac{(a+b)^{2}}{2}$ sq units
D. $\frac{a^{2}+a b+b^{2}}{3}$ sq units

Answer: A

D Watch Video Solution
2. Find the equation of the common tangent in the 1st quadrant to the circle $x^{2}+y^{2}=16$ and the ellise $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$. Also find the length of the intercept of the tangent between the coordinates axes.

D View Text Solution

3. An ellipse has $O B$ as the semi-minor axis, FandF' as its foci, and $\angle F B F^{\prime}$ a right angle.

Then, find the eccentricity of the ellipse.

> A. $\frac{1}{\sqrt{2}}$
> B. $\frac{1}{2}$
> C. $\frac{1}{4}$
> D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

4. In an ellipse, the distances between its foci is 6 and minor axis is 8 . Then its eccentricity is
A. $\frac{3}{5}$
B. $\frac{1}{2}$
C. $\frac{4}{5}$
D. $\frac{1}{\sqrt{5}}$

Answer: A

- Watch Video Solution

5. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right), y_{1}<0, y_{2}<0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. The equations of parabolas with latus rectum $P Q$ are
A. $x^{2}+2 \sqrt{3} y=3+\sqrt{3}$
B. $x^{2}-2 \sqrt{3} y=3+\sqrt{3}$
C. $x^{2}+2 \sqrt{3} y=3-\sqrt{3}$
D. $x^{2}-2 \sqrt{3} y=3-\sqrt{3}$

Answer: B::C

- Watch Video Solution

6. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$ Then the length of the semi-major axis is
A. $\frac{8}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$

Answer: A

- Watch Video Solution

7. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the triangle with
vertices at A, M, and O (the origin) is 31/10 (b)
29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer: D

- Watch Video Solution

8. The normal at a point P on the ellipse $x^{2}+4 y^{2}=16$ meets the x-axis at Q. If M is the midpoint of the line segment $P Q$, then the locus of M intersects the laius rectums of the given
ellipse at points. $\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{2}{7}\right)$
$\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{\sqrt{19}}{7}\right) \quad\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
$\left(\pm 2 \sqrt{3} \pm \frac{4 \sqrt{3}}{7}\right)$
A. $\left(\pm\left(3 \frac{\sqrt{5}}{2}, \pm \frac{2}{7}\right)\right.$
B. $\left(\pm\left(3 \frac{\sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)\right.$
C. $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
D. $\left(\pm 2 \sqrt{3}, \pm\left(4 \frac{\sqrt{3}}{7}\right)\right.$

Answer: C

D Watch Video Solution

9. a triangle $A B C$ with fixed base $B C$, the vertex
A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If $a, b a n d c$, denote the length of the sides of the triangle opposite to the angles $A, B, a n d C$, respectively, then $b+c=4 a$ (b) $b+c=2 a$ the locus of point A is an ellipse the locus of point A is a pair of straight lines
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of point A is an ellipse
D. locus of point A is a pair od straight lines

Answer: B::C

- Watch Video Solution

10. The conic having parametric representation

$$
x=\sqrt{3}\left(\left(1-\frac{t^{2}}{1+t^{2}}\right), y \frac{=2 t}{1+t^{2}}\right. \text { is }
$$

A. an circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: C

D Watch Video Solution

11. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the
ellipse is (1) $x^{2}+16 y^{2}=16$ (2) $x^{2}+12 y^{2}=16$
(3) $4 x^{2}+48 y^{2}=48(4) 4 x^{2}+64 y^{2}=48$
A. $x^{2}+12 y^{2}=16$
B. $4 x^{2}+48 y^{2}=48$
C. $4 x^{2}+64 y^{2}=48$
D. $x^{2}+16 y^{2}=16$

Answer: A

- Watch Video Solution

12. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at point A and B. Q. The coordinates of A and B are
A. $(3,0)$ amd $(0,2)$
B. $\left(-\frac{8}{5},\left(2 \frac{\sqrt{161}}{15}\right)\right.$ and $\left(-\frac{9}{8}, \frac{8}{5}\right)$
C. $\left(-\frac{8}{5},\left(2 \frac{\sqrt{161}}{15}\right)\right.$ and $(0,2)$
D. $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

Answer: D

D Watch Video Solution
13. Tangents are drawn from the point $P(3,4)$ to the
ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at point A and B. Q. The orthocenter of the trianlge PAB is
A. $\left(5, \frac{8}{7}\right)$
B. $\left(\frac{7}{5}, \frac{25}{8}\right)$
C. $\left(\frac{11}{5}, \frac{8}{5}\right)$
D. $\left(\frac{8}{25}, \frac{7}{5}\right)$

Answer: C

- Watch Video Solution

14. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at points A and B.

The equation of the locus of the point whose distance from the point P and the line $A B$ are equal, is:

$$
\begin{aligned}
& \text { A. }\left(9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0\right. \\
& \text { B. } x^{2}+9 y^{2}+6 x y-54 x+62 y-241=0 \\
& \text { C. } 9 x^{2}+9 y^{2}-6 x y-54 x-62 y-241=0 \\
& \text { D. } x^{2}+y^{2}-2 x y+27 x+31 y-120=0
\end{aligned}
$$

- Watch Video Solution

15. Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$ is:
$3 x^{2}+5 y^{2}-32=0$ (2) $5 x^{2}+3 y^{2}-48=0$
$3 x^{2}+5 y^{2}-15=0(4) 5 x^{2}+3 y^{2}-32=0$

$$
\begin{aligned}
& \text { A. } 5 x^{2}+3 y^{2}-48=0 \\
& \text { B. } 3 x^{2}+5 y^{2}-15=0 \\
& \text { C. } 5 x^{2}+3 y^{2}-32=0 \\
& \text { D. } 3 x^{2}+5 y^{2}-32=0
\end{aligned}
$$

Answer: D

D Watch Video Solution

16. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellipse E_{2} is

$$
\frac{\sqrt{2}}{2} \text { (b) } \frac{\sqrt{3}}{2} \text { (c) } \frac{1}{2} \text { (d) } \frac{3}{4}
$$

A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{2}$

> C. $\frac{1}{2}$
> D. $\frac{3}{4}$

Answer: C

D Watch Video Solution

17. Statement 1: An equation of a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4 i s y=2 x+2 \sqrt{3}$. Statement $2:$ If the line $y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0)$ is a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4 \quad$, then $m \quad$ satisfies
$m^{4}+2 m^{2}=24$. (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true,
statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false
A. Statement I is true, statement II is true:
statement II is a correct explanation for statement I
B. Statement 1 is true,

Statement 2 is true,

Statement 2 is a correct explanation for

statemennt 1

C. Statement 1 is true,statement 2 is true,

Statement 2 is not a correct explanation for statement 1.
D. Statement 1 is true,

Statement 2 is false.

Answer: B

- Watch Video Solution

18. An ellipse is drawn by taking a diameter of the
circle $(x 1)^{2}+y^{2}=1$ as its semiminor axis and a diameter of the circle $x^{2}+(y 2)^{2}=4$ as its semimajor axis. If the centre of the ellipse is the origin and its axes are the coordinate axes, then the equation of the ellipse is (1) $4 x^{2}+y^{2}=4$

$$
\begin{equation*}
x^{2}+4 y^{2}=8 \text { (3) } 4 x^{2}+y^{2}=8 \text { (4) } x^{2}+4 y^{2}=16 \tag{2}
\end{equation*}
$$

A. $4 x^{2}+y^{2}=4$
B. $x^{2}+4 y^{2}=8$
C. $4 x^{2}+y^{2}=8$
D. $x^{2}+4 y^{2}=16$

Answer: D

D Watch Video Solution

19. the equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. $x^{2}+y^{2}-6 y-7=0$
B. $x^{2}+y^{2}-6 y+7=0$
C. $x^{2}+y^{2}-6 y-5=0$
D. $x^{2}+y^{2}-6 y+5=0$

Answer: A

D Watch Video Solution

20. A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ at the points P and Q.Let the tangents to the ellipse at P and Q meet at R. If $\delta(h)$ Area of triangle $\delta P Q R$, and
$\delta_{1} \max \delta(h) \mathrm{A}$ further $\delta_{2} \min \quad \delta(h)$ Then $\frac{1}{2} \leq h \leq 1$ $\frac{1}{2} \leq h \leq 1$
$\frac{8}{\sqrt{5}} \delta_{1}-8 \delta_{2}$

D Watch Video Solution

21. The locus of the foot of prependicular drawn from the center of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is
A. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
B. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
C. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$

Answer: A
22. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at the end of latus rectum. Find the area of quadrilateral so formed
A. $\frac{27}{2}$
B. 27
C. $\frac{27}{4}$
D. 18

Answer: B

- Watch Video Solution

23. Let E1 and E2, be two ellipses whose centers are at the origin.The major axes of E1 and E2, lie along the x-axis and the y-axis, respectively. Let S be the circle $x^{2}+(y-1)^{2}=2$. The straight line $\mathrm{x}+\mathrm{y}=3$ touches the curves S, E1 and E2 at P,Q and R, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$.If e1 and e2 are the eccentricities of E1 and E2, respectively, then the correct expression(s) is(are):

$$
\begin{aligned}
& \text { A. } e_{1}^{2}+e_{2}^{2}=\frac{44}{40} \\
& \text { B. } e_{1} e_{2}=\frac{\sqrt{7}}{2 \sqrt{10}} \\
& \text { C. }|e|_{1}^{2}-e_{2}^{2} \left\lvert\,=\frac{5}{8}\right. \\
& \text { D. } e_{1} e^{2}=\frac{\sqrt{3}}{4}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

24. Suppose that the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \quad$ are $\quad\left(f_{1}, 0\right) \operatorname{and}\left(f_{2}, 0\right) \quad$ where $f_{1}>0 a n d f_{2}<0$. Let $P_{1} a n d P_{2}$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_{1} .0\right)$ and (2f_2 , 0), respectively. Let T_{1} be a tangent to P_{1} which passes through $\left(2 f_{2}, 0\right)$ and
T_{2} be a tangents to P_{2} which passes through $\left(f_{1}, 0\right)$. If m_{1} is the slope of T_{1} and m_{2} is the slope of T_{2}, then the value of $\left(\frac{1}{m 12}+m 22\right)$ is
25. If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets the x-axis at Q, then the ratio of area of the triangle MQR to area of the quadrilateral MF1NF2 is
A. $\left(-\frac{9}{10}, 0\right)$
в. $\left(\frac{2}{3}, 0\right)$
c. $\left(\frac{9}{10}, 0\right)$
D. $\left(\frac{2}{3}, \sqrt{6}\right)$

Answer: A

D Watch Video Solution

26. If the tangents to the ellipse at M and N meet
at R and the normal to the parabola at M meets
the x-axis at Q, then the ratio of area of the triangle MQR to area of the quadrilateral MF1NF2 is
A. $3: 4$
B. $4: 5$
C. $5: 8$
D. 2: 3

Answer: C

D Watch Video Solution

27. Let $F_{1}\left(x_{1}, 0\right)$ and $F^{2}\left(x_{2}, 0\right) \quad$ for
$x_{1}<0$ and $x_{2}>0$, be the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{8}=1$. Suppose a parabola having vertex at the origin and the focus at F_{2} intersects the ellipse at point M in the first quadrant and at point N in the fourth quadrant. Q. The eccentricity of an ellipse whose center is at the
origin is $\frac{1}{2}$. If one of its directices is $x=-4$, then the equation of the normal to its $\left(1, \frac{3}{2}\right)$ is

$$
\text { A. } x+2 y=4
$$

B. $2 y-x=2$
C. $4 x-2 y=1$
D. $4 x+2 y=7$

Answer: C

D View Text Solution

