© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

GRAPHICAL TRANSFORMATIONS

Exercise

1. Plot $y=|x|$ and $y=|x|+2$.

D Watch Video Solution
2. Plot $y=|x|$ and $y=|x|-2$.
3. Plot $y=e^{x}, y=e^{x}+1$ and $y=e^{x}-1$.

D Watch Video Solution
4. Plot $y=|x|$ and $y=|x-2|$

D Watch Video Solution

5. Plot $y=|x|$ and $y=|x+2|$

D Watch Video Solution
6. Plot $y=\sin \left(x+\frac{\pi}{4}\right)$ and $y=\sin \left(x-\frac{\pi}{4}\right)$.

- Watch Video Solution

7. Plot $y=\sin x$ and $y=2 \sin x$.

D Watch Video Solution

8. Plot $y=\sin x$ and $y=\frac{1}{2} \sin x$.

(D) Watch Video Solution

9. Plot $y=\sin x a n d y=\sin 2 x$.

(Watch Video Solution

10. Plot $y=\sin x a n d y=\frac{\sin x}{2}$

(D) Watch Video Solution

11. Draw the graph of $y=e^{-x}$, when the graph of $y=e^{x}$ is known.

D Watch Video Solution

12. Draw graph of $y=\log (-x)$, when the graph of $y=\log (x)$ is given .

D Watch Video Solution
13. Draw the graph of $y=-e^{x}$ when the graph of $y=e^{x}$ is known.

- Watch Video Solution

14. Draw the graph of $y=-\log (x)$ when the graph of $y=\log x$ is known.

- Watch Video Solution

15. Draw the graph of $y=|\log x|$ when the graph of $y=\log (x)$ is known.

- Watch Video Solution

16. Draw the graph of $y=\log |x|$ when the graph of $y=\log (x)$ is known.

- Watch Video Solution

17. Draw the graph of $y=\left||x|^{2}-2\right| x|-3|$, if the graph for $y=x^{2}-2 x-3$ is given.

- Watch Video Solution

18. Draw graph for $|y|=(x-1)$.

D Watch Video Solution

19. Draw the graph for $|y|=(x-1)(x-2)$.

(Watch Video Solution

20. Draw the graph of $y=\left[x^{3}\right]$,
when $-2^{1 / 3} \leq x \leq 2^{1 / 3}$

- Watch Video Solution

21. Draw the graph of $y=[\sin x]$.
(D) Watch Video Solution
22. Draw the curve $y=e^{[x]}$

- Watch Video Solution

23. Draw the graph for $y=(\{x\}-1)^{2}$.

- Watch Video Solution

24. Plot $y=x+\sin x$.

(Watch Video Solution

25. Plot $y=|x|-2$ and hence $f(x)=\frac{1}{|x|-2}$

- Watch Video Solution

26.

$$
f(x)=\left\{\begin{array}{ll}
x \sin \cdot \frac{1}{x}, & x \neq 0 \\
0, & x=0
\end{array}\right\}
$$

$g(x)=\left\{\begin{array}{ll}x^{2} \sin \cdot \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right\}$
Discuss the graph for $f(x)$ and $g(x)$, and evaluate the continuity and differentiabilityof $f(x)$ and $g(x)$.

- Watch Video Solution

27. Draw graph for $y=\max \left\{2 x, x^{2}\right\}$ and discuss the continuity and diffrentiablity.

(D) Watch Video Solution

28. Draw the graph for $y=|2-|x-1||$.
29. Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of X . Then (A) h is continuous for all $x(B) h$ is differentiable for all $\mathrm{x}(\mathrm{C}) h^{\prime}(x)=1$, for all $\mathrm{x}>1$ (D) h is not differentiable at two values of x

D Watch Video Solution

30. The number of real solution of the equation
$e^{x}+x=0$, is
A. 0
B. 1
C. 2
D. None of these

Answer:

D Watch Video Solution

31. The number of real solutions of the equation
$\log _{a} x=|x|, 0<a<1$, is
A. 0
B. 1
C. 2
D. None of these

Answer:

32. number of solution of the equation $|x|=\cos x$
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

33. How many roots does the following equation possess
$3^{|x|}(|2-|x||)=1 ?$
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution

34. The number of real solution of the equation
$x^{2}=1-|x-5|$ is
A. 1
B. 2
C. 4
D. None of these

Answer:

D Watch Video Solution

35. Number of solutions $2^{\sin (|x|)}=4^{|\cos x|} \in[-\pi, \pi]$ is equal to
A. 2
B. 4
C. 6
D. 8

Answer:
36. Number of roots of $|\sin | x||=x+|x| \operatorname{in}[-2 \pi, 2 \pi]$, is
A. 2
B. 3
C. 4
D. 6

Answer:

(D) Watch Video Solution
37. The equation $3^{x-1}+5^{x-1}=34$ has
A. one solution
B. two solutions
C. three solutions
D. four solutions

Answer:

- Watch Video Solution

38. Number of solutions of the equation $\cos [x]=e^{2 x-1}, x \in[0,2 \pi]$, where[.] denotes the greatest integer function is
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution

39. Let $g(x)=\sqrt{x-2 k}, \forall 2 k \leq x<2(k+1)$ where, $k \in l$, then
A. $g(x)=\sqrt{x+2},-2 \leq x<0$
B. $g(x)=\sqrt{x-2}, 2 \leq x<4$
C. $g(x)=\sqrt{x}, 0 \leq x<2$
D. period of $g(x)$ is 2 .

Answer:

40. The graph of $f(x)$ is given below.

Then, (a) Graph of $-f(x)+2$ is
Then, (a) Graph of $-f(x)+2$ is

(b) Graph of $-f(x-1)$ is

(c) Graph of $f(|x|)$ is

(d) Graph of $f(x+1)-2$ is

A. Then, (a) Graph of $-f(x)+2$ is
B. Graph of $-f(x-1)$ is
C. Graph of $f(|x|)$ is
D. Graph of $f(x+1)-2$ is

Answer:

- Watch Video Solution

41. The number of solutions of the equation $[y+[y]]=2 \cos x$, where $y=\frac{1}{3}[\sin x+[\sin x+[\sin x]]]$ (where [.] denotes the greatest integer function) is

- Watch Video Solution

42. The sum of the roots of the equation $\cos ^{-1}(\cos x)=[x]$. where $[x]$ denotes greatest integer function, is

(D) Watch Video Solution

43. Sketch the graph of $y=\log _{0.5}|x|$.
44. Sketch the graph of $y=\left|\left|\frac{1}{x}\right|-3\right|$.

- Watch Video Solution

45. Find the number of solutions of the equations $y=|\sin x|$ and $x^{2}+y^{2}=1$.

D Watch Video Solution

46. Find the number of solutions of $4\{x\}=x+[x]$.

- Watch Video Solution

47. Sketch the graph of $\left|\sin x+\frac{1}{2}\right|$.

D Watch Video Solution

48. Sketch the graph of $y=\frac{2^{x}}{2^{[x]}}$

D Watch Video Solution

49. Sketch the region for $y=\sin (x-[x])$.
(D) Watch Video Solution
50. Sketch the region for $\mid y \models \sin x$.

- Watch Video Solution

51. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(a) $f(x)+1$

(D) Watch Video Solution

52. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(b) $f(x)-1$

D Watch Video Solution

53. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(c) $-f(x)$

- Watch Video Solution

54. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(d) $|f(x)|$
55. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(e) $f(-x)$

- Watch Video Solution

56. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(f) $f(|x|)$

D Watch Video Solution

57. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(g) $2 f(x)$

- Watch Video Solution

58. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(h) $f(2 x)$
59. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(i) $[f(x)]$

- Watch Video Solution

60. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(g) $f(x-[x])$

D Watch Video Solution

61.

Sketch
the
graph
of
$y=\max (\sin x, \cos x), \forall x \in\left(-\pi, \frac{3 \pi}{2}\right)$.

(D) Watch Video Solution

62. Sketch the graph for $y=\min \{\tan x, \cot x\}$.

D Watch Video Solution

63. Sketch the graph of $y=\min \{|x|,|x-1|,|x+1|\}$.

- Watch Video Solution

64. Sketch the graph of $y=\sin ^{-1} x, \forall x \in[-1,1]$.

D Watch Video Solution
65. Sketch the graph for $y=\cos ^{-1} x, \forall x \in[-1,1]$.

D Watch Video Solution
66. Sketch the graph for $y=\tan ^{-1} x, \forall x \in R$.

D Watch Video Solution

67. Sketch the graph for $y=\sin ^{-1}(\sin x)$.

D Watch Video Solution

68. Sketch the graph for $y=\cos ^{-1}(\cos x)$.

(D) Watch Video Solution

69. Sketch the graph for $y=\tan ^{-1}(\tan x)$.

(D) Watch Video Solution

70. Find the value of x graphically which satisfy $\left|\frac{x^{2}}{x-1}\right| \leq 1$.

- Watch Video Solution

71. Find the values of x graphically satisfying $[x]-1+x^{2} \leq 0$ where [.] denotes the greatest integer function.

- Watch Video Solution

72. Find the values of x graphically which satisfy, $-1 \leq[x]-x^{2}+4 \leq 2$, where [.] denotes the greatest
integer function.

- Watch Video Solution

73. Find the number of solutions of $2 \cos x=|\sin x|$ when
$x \in[0,4 \pi]$.

D Watch Video Solution

74. Sketch the curves
(i) $y=\sqrt{x-[x]}$
(where [.] denotes the greatest integer function).

(D) Watch Video Solution

75. Sketch the curves
(ii) $y=[x]+\sqrt{x-[x]}$
(where [.] denotes the greatest integer function).

- Watch Video Solution

76. Sketch the curves
(iii) $y=|[x]+\sqrt{x-[x]}|$
(where [.] denotes the greatest integer function).
(where [.] denotes the greatest integer function).

- Watch Video Solution

1. Plot the following functions.
$y=x^{2}+1$

- Watch Video Solution

2. Plot the following functions.
$y=x^{2}-1$

- Watch Video Solution

3. Plot the following functions.
$y=x^{3}+1$

Watch Video Solution
4. Plot the following functions.
$y=x^{3}-1$

- Watch Video Solution

5. Plot the following functions.
$y=\sin x+1$
(Watch Video Solution
6. Plot the following functions.
$y=\sin x-1$

Watch Video Solution
7. Plot the following functions.

$$
y=\left(\log _{e} x\right)+1
$$

D Watch Video Solution
8. Plot the following functions.

$$
y=\left(\log _{e} x\right)-1
$$

- Watch Video Solution

Exercise For Session 2

1. Consider the following function f whose graph is given below.

- Watch Video Solution

2. Draw the graph of the following function.
$f(x+1)$

D View Text Solution

3. Draw the graph of the following function.
$f(x-1)$
4. Draw the graph of the following function.
$-f(x)$

- View Text Solution

5. Draw the graph of the following function.
$f(-x)$

D Watch Video Solution

6. Draw the graph of the following function.
$2 f(x)$
7. Draw the graph of the following function.
$\frac{1}{2} f(x)$

- Watch Video Solution

8. Draw the graph of the following function.
$f(2 x)$

- Watch Video Solution

9. Draw the graph of the following function. $f\left(\frac{x}{2}\right)$

Exercise For Session 3

1. Consider the following function f, whose graph is given below.

Draw the graph of the following functions.
(i) $|f(x)|$
(ii) $f(|x|)$
(iii) $|f(|x|)-1|$
2. Plot the following.
$y=\left|x^{2}-2 x-3\right|$

D Watch Video Solution

3. Plot the following.
$y=x^{2}-2|x|-3$

- Watch Video Solution

4. Plot the following.
$y=\left|\log _{2} x\right|$
5. Plot the following.
$y=\left|\log _{2}\right| x| |$

D Watch Video Solution

6. Plot the following.

$$
y=\log _{2}|1-x|
$$

- Watch Video Solution

7. Plot the following.
$y=\log _{2}(2-x)^{2}$
8. Plot the following.
$y=|\cos | x| |$
(D) Watch Video Solution
9. Plot the following.
$y=\left|2-2^{2}\right|$

D Watch Video Solution
10. Plot the following.
$y=\sin (|x|)$
(Watch Video Solution
11. Plot the following.
$y=|\cos | x| |$

- Watch Video Solution

12. Plot the following.
$|f(x)|=\log _{e} x$

D Watch Video Solution

13. Plot the graph (i) $|f(x)|=\log _{2}(-x)$
14. Find the number of solutions of $\sin \pi x=\left|\log _{2}(-x)\right|$

D Watch Video Solution

15. Find the number of solutions of
$2^{|x|}=\sin x^{2}$

D Watch Video Solution

16. Find the number of solutions of the equation $\sin x=x^{2}+x+1$.

(D) Watch Video Solution

Exercise For Session 4

1. Plot the following, where [.] denotes integer function.
$f(x)=\left[x^{2}\right]$, whe $-2 \leq x \leq 2$

(Watch Video Solution

2. Plot the following, where [.] denotes integer function.
$f(x)=[|x|]$

D Watch Video Solution

3. Plot the following, where [.] denotes integer function.
$f(x)=[|x-2|]$.

- Watch Video Solution

4. Plot the following, where [.] denotes integer function.
$f(x)=[|x|-2]$

- Watch Video Solution

5. Plot the following. $f(x)=\sin ^{-1}(\sin |x|)$

(D) Watch Video Solution

6. Plot the following, where [.] denotes integer function.
$f(x)=\left[\cos ^{-1} x\right]$

D Watch Video Solution

7. Plot the following, where [.] denotes integer function.
$f(x)=\cos (x-[x])$

- Watch Video Solution

8. Plot the following, where [.] denotes integer function.
$f(x)=\left[\sin ^{-1}(\sin x)\right]$

D Watch Video Solution

9. Plot the graph for $f(x)=\min (x-[x],-x-[-x])$.

D Watch Video Solution

10. Find the area enclosed by the curves
$\max (|x|,|y|)=1$

- Watch Video Solution

11. Find the area enclosed by the curves
$\max (2|x|, 2|y|)=1$

D Watch Video Solution

12. Find the area enclosed by the curves
$\max (|x+y|,|x-y|)=1$

Watch Video Solution

Exercise Single Option Correct Type Questions

1. The number of real solutions of the equation
$e^{|x|}-|x|=0$, is
A. 0
B. 1
C. 2
D. None of these

Answer: a
2. The number of real solutions of the equation $3^{-|x|}-2^{|x|}=0$, is
A. 0
B. 1
C. 2
D. 3

Answer: c

Watch Video Solution

3. The number of solutions of $3^{|x|}=|2-|x||$, is
A. 0
B. 2
C. 4
D. infinite

Answer: B

- Watch Video Solution

4. The total number of roots of the equation $\left|x-x^{2}-1\right|=\left|2 x-3-x^{2}\right|$ is
A. 0
B. 1
C. 2
D. infinity many

Answer: C

- Watch Video Solution

5. The equation $e^{x}=m(m+1), m<0$ has
A. no real root
B. exactly one real root
C. two real root
D. None of the above

Answer: B

(Watch Video Solution

6. The number of real solutions of the equation
$1-x=[\cos x]$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

Watch Video Solution

7. The number of roots of the equation $1+3^{\frac{x}{2}}=2^{x}$ is
A. 0
B. 1
C. 2
D. Noe of the above

Answer: B

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The equation $x^{2}-2=[\sin x]$, where $[$.$] denotes the$ greatest integer function, has
A. infinity many roots
B. exactly one integer root
C. exactly one irrational root
D. exactly two roots

Answer: B::C::D

- Watch Video Solution

2. Consider the function $f(x)= \begin{cases}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{cases}$ where [.] denotes the fractional integral function and I is the set of integers.

Then find
$g(x) \max \cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.
A. $x^{2},-2 \leq x \leq-1$
B. $1-x,-1<x \leq-\frac{1}{4}$
C. $\frac{1}{2}+x,-\frac{1}{4}<x<0$
D. $1+x, 0 \leq x<1$

Answer: A::B::C::D

D Watch Video Solution

3. Let $f(x)$ be defined on [-2,2] and is given by
$f(x)= \begin{cases}-1 & -2 \leq x \leq 0 \\ x-1 & 0<x \leq 2\end{cases}$
and $\mathrm{g}(\mathrm{x})=f(|x|)+|f(x)|$. Then $\mathrm{g}(\mathrm{x})$ is equal to
A. $-x,-2 \leq x \leq 0$
B. $x,-2 \leq x \leq 0$
C. $0,0<x \leq 1$
D. $2(x-1), 1<x \leq 2$

Answer: A::C::D

(Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement I The graph of $y=\sec ^{2} x$ is symmetrical about the Y-axis.

Statement II The graph of $y=\operatorname{tax}$ is symmetrical about the origin.
A. Both Statement I and Statement II are correct and

Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct but

Statement I

C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

2. Statement I The equation $|(x-2)+a|=4$ can have four distinct real solutions for x if a belongs to the interval $(-\infty, 4)$.

Statemment II The number of point of intersection of the curve represent the solution of the equation.
A. Both Statement I and Statement II are correct and

Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct but

Statement II is not the correct explanation of

Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: D

- Watch Video Solution

1. Let $f(x)=f_{1}(x)-2 f_{2}(x)$, where
$f_{1}(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x| \leq 1 \\ \max \left\{x^{2},|x|\right\}, & |x|>1\end{cases}$
and $\quad f_{2}(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x|>1 \\ \max \left\{x^{2},|x|\right\}, & |x| \leq 1\end{cases}$
and let $g(x)=\{\min \{f(t),-3 \leq t \leq x,-3 \leq x<0\}$
and let $g(x)=\{\max \{f(t), 0 \leq t<x, 0 \leq x \leq 3\}$
For $x \in(-1,00), f(x)+g(x)$ is
A. $x^{2}-2 x+1$
B. $x^{2}+2 x-1$
C. $x^{2}+2 x+1$
D. $x^{2}-2 x-1$

Answer: b
2. Let $\quad f(x)=f_{1}(x)-2 f_{2}(x)$, where
$f_{1}(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x| \leq 1 \\ \max \left\{x^{2},|x|\right\}, & |x|>1\end{cases}$
and $\quad f_{2}(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x|>1\end{cases}$
and let $g(x)=\{\min \{f(t),-3 \leq t \leq x,-3 \leq x<0\}$
and let $g(x)=\left\{\begin{array}{l}\max \{f(t), 0 \leq t<x, 0 \leq x \leq 3\}\end{array}\right.$
The graph of $y=g(x)$ in its domain is broken at
A. 1 point
B. 2 points
C. 3 points
D. None of these

Answer: A
3.
$f(x)=f(x)= \begin{cases}x-1, & -1 \leq x \leq 0 \\ x^{2}, & 0 \leq x \leq 1\end{cases}$
and $\quad g(x)=\sin x$.
If $h_{1}(x)=f(|g(x)|)$
and $\quad h_{2}(x)=|f(g(x))|$.
Which of the following is not true about $h_{1}(x)$?
A. It is a periodic function with period π
B. The range is $[0,1]$
C. Domain R
D. None of these

Answer: D
$f(x)=f(x)= \begin{cases}x-1, & -1 \leq x \leq 0 \\ x^{2}, & 0 \leq x \leq 1\end{cases}$
and

$$
g(x)=\sin x .
$$

If $h_{1}(x)=f(|g(x)|)$
and $\quad h_{2}(x)=|f(g(x))|$.
Which of the following is not true about $h_{2}(x)$?
A. The domain is R
B. It is periodic with period 2π
C.
D. The range is $[0,1]$

Answer: B

D View Text Solution

Exercise Subjective Type Questions

1. Let $f(x)=x+2|x+1|+x-1 \mid \operatorname{Iff}(x)=k$ has exactly one real solution, then the value of k is 3 (b) 0 (c) 1
(d) 2

D Watch Video Solution

2. The number of roots of the equation $x \sin x=1,, x \in[-2 \pi, 0] \cup(0,2 \pi)$ is

(D) Watch Video Solution

3. The number of solutions of $\tan x-m x=0, m>1$, in
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is 1 (b) 2 (c) 3 (d) m

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. Find the number of solutions of the equation $\frac{x^{2}}{1-|x-2|}=1$, graphically.

D Watch Video Solution

2. Find the number of solutions for $\tan 4 x=\cos x$, when $x \in(0, \pi)$
3. Find number of solutions for equation $\left[\sin ^{-1} x\right]=x-[x]$, where $[$.$] denotes the greatest integer$ function.

- Watch Video Solution

4. If x and y satisfy the equations $\max (|x+y|,|x-y|)=1$ and $|y|=x-[x], \quad$ the number of ordered paris (x, y).

- Watch Video Solution

5. Find the area enclosed by
$|x+y-1|+|2 x+y+1|=1$.
6. Find $f(x)$ when it is given by
$f(x)=\max \left\{x^{3}, x^{2}, \frac{1}{64}\right\}, \forall x \in[0, \infty)$.

(D) Watch Video Solution

7. Find a formula for the function f graphed as

8. Find the domain for $f(x)=\frac{1}{[|x-1|]+[|5-x|]-4}$ graphically.

- Watch Video Solution

9. Draw the graph for $y=\sqrt{\{x\}}$ and $|y|=\sqrt{\{x\}}$.

D Watch Video Solution

10. Draw the graph for $y=-[x]+\sqrt{\{x\}}$.

- Watch Video Solution

