©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

MATHEMATICAL INDUCTION

Examples

1. $1^{3}+2^{2}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

- Watch Video Solution
2.1.2.3 $+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Watch Video Solution

3. Using the principle of mathematical induction, prove that :
4. $2.3+2.3 .4++n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$ for all $n \in N$.

Watch Video Solution

4. Prove by mathematical induction that $\sum_{r=0}^{n} r^{n} C_{r}=n .2^{n-1}, \forall n \in N$.

- Watch Video Solution

5. Use the principle of mathematical induction to show that $5^{2 n+1}+3^{n+2} .2^{n-1}$ divisible by 19 for all natural numbers n .

- Watch Video Solution

6. Use the principle of mathematical induction to show that $a^{n}-b^{9} n$) is divisble by $a-b$ for all natural numbers n .
7. Using problems are of the Inequality Type. Examples of this type are as follows:

- View Text Solution

8. Show using mathematical induciton that $n!<\left(\frac{n+1}{2}\right)^{n}$. Where $n \in N$ and $n>1$.

- Watch Video Solution

9. if $a+b=c+d$ and $a^{2}+b^{2}=c^{2}+d^{2}$, then show by mathematical induction $a^{n}+b^{n}=c^{n}+d^{n}$

- Watch Video Solution

10. Let $I_{m}=\int_{0}^{\pi}\left(\frac{1-\cos m x}{1-\cos x}\right) d x$ use mathematical induction to prove that $l_{m}=m \pi, m=0,1,2 \ldots \ldots$.

- Watch Video Solution

11. Given that $u_{n+1}=3 u_{n}-2 u_{n-1}$, and $u_{0}=2, u_{1}=3$, then prove that $u_{n}=2^{n}+1$ for all positive integer of n

- Watch Video Solution

12. Let $u_{1}=1, u_{2}=2, u_{3}=\frac{7}{2}$ and $u_{n+3}=3 u_{n+2}-\left(\frac{3}{2}\right) u_{n+1}-u_{n}$. Use the principle of mathematical induction to show that $u_{n}=\frac{1}{3}\left[2^{n}+\left(\frac{1+\sqrt{3}}{2}\right)^{n}+\left(\frac{1-\sqrt{3}}{2}\right)^{n}\right] \forall n \geq 1$.

- Watch Video Solution

13. If p is a fixed positive integer, prove by induction that $p^{n+1}+(p+1)^{2 n-1}$ is divisible by $P^{2}+p+1$ for all $n \in N$.
A. P
B. $P^{2}+P$
C. $P^{2}+P+1$
D. $P^{2}-1$

Answer:

- Watch Video Solution

14. Let $\mathrm{P}(\mathrm{n})$ denote the statement that $n^{2}+n$ is odd. It is seen that $P(n) \Rightarrow P(n+1), P(n)$ is true for all
A. $n>1$
B. n
C. $n>2$
D. None of these

Answer:

- Watch Video Solution

15. Let $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots+\frac{1}{2^{n}-1}$. Then
A. $a(100)>100$
B. $a(100)<200$
C. $a(200) \leq 100$
D. $a(200)>100$

Answer: D

- Watch Video Solution

16. Let $S(k)=1+3+5+\ldots+(2 k-1)=3+k^{2}$. Then which of the following is true?
A. Principle of mathematical induction can be used to prove the formula
B. $S(k) \Rightarrow S(k+1)$
C. $S(k) \nRightarrow S(k+1)$
D. $\mathrm{S}(1)$ is correct

Answer:

- Watch Video Solution

17. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$
A. 7
B. 5
C. 9

D. 7

Answer:

- Watch Video Solution

18. Statement-1 For all natural number $\mathrm{n}, 1+2+\ldots .+n<(2 n+1)^{2}$
Statement -2 For all natural numbers
$(2 n+3)^{2}-7(n+1)<(2 n+3)^{3}$.
A. Statement -1 is true, Statement -2 is true Statement -2 is correct explanation for Statement $\mathbf{- 1}$.
B. Statement -1 is true , Statement -2 is true, Statement -2 is not the correct explanation for Statement -1
C. Statement-1 is true , Statement-2 is false
D. Statement -1 is false , Statement -2 is true .

Answer: B

19.

$7+77+777+\ldots \ldots+777 \ldots \ldots \ldots{ }_{n-\text { digits }} 7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$ for all $n \in N$
A. Statement -1 is true, Statement -2 is true Statement -2 is correct explanation for Statement -1 .
B. Statement -1 is true, Statement -2 is true, Statement -2 is not the correct explanation for Statement -2
C. Statement-1 is true , Statement-2 is false
D. Statement-1 is false , Statement -2 is true .

Answer: C

- Watch Video Solution

20. Prove by induction that the integer next greater than $(3+\sqrt{5})^{n}$ is divisible by 2^{n} for all $n \in N$.

- Watch Video Solution

21. Using mathematical induction , show that

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{2}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots .\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+2}{2(n+1)}, \forall n \in
$$

- Watch Video Solution

22. Using the principle of mathematical induction to show that $\tan ^{-1}(n+1) x-\tan ^{-1} x, \forall x \in N$.

- Watch Video Solution

23. Use the principle of mathematical induction to prove that for all $n \in N$
$\sqrt{2+\sqrt{2+\sqrt{2}+\ldots+\ldots+\sqrt{2}}}=2 \cos \left(\frac{\pi}{2^{n+1}}\right)$
When the LHS contains n radical signs.

- Watch Video Solution

24. Prove by mathematical induction that
$\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\ldots .+\frac{2^{n}}{1+x^{2^{n}}}=\frac{1}{x-1}+\frac{2^{n+1}}{1-x^{2^{n+1}}}$ where,$|x| \neq 1$ and n is non - negative integer.

- Watch Video Solution

25. Using the principle of mathematical induction to prove that $\int_{0}^{\pi / 2} \frac{\sin ^{2} n x}{\sin x} d x=1+\frac{1}{3}+\frac{1}{5}+\ldots .+\frac{1}{2 n-1}$
26. Use induction to show that for all $n \in N$.
$\sqrt{a+\sqrt{a+\sqrt{a+\ldots . \sqrt{a}}}}<\frac{1+\sqrt{(4 a+1)}}{2}$
where'a' is fixed positive number and n radical signs are taken on LHS.

- Watch Video Solution

27. Prove \quad by
$\left\{\prod_{r=0}^{n} f_{r}(x)\right\}^{\prime}=\sum_{i=1}^{n}\left\{f_{1}(x) f_{2}(x) \ldots f_{i}{ }^{\prime}(x) \ldots f_{n}(x)\right\}$,
where dash denotes derivative with respect to x .

- View Text Solution

Mathematical Induction Exercise 1 Single Option Correct Tpye Questions

1. If $\left.a_{n}=\sqrt{7+\sqrt{7+\sqrt{7}+\ldots \ldots . .}}\right)$ having n radical signs then by methods of mathematical induction which is true
A. $a_{n}>7, \forall n \geq 1$
B. $n_{n}>3, \forall n \geq 1$
C. $a_{n}<4, \forall n \geq 1$
D. $a_{n}<3, \forall n \geq 1$

Answer:

- Watch Video Solution

2. If $P(n)=2+4+6+\ldots .+2 n, n \in N$. Then $P(k)=k(k+1)$
$\Rightarrow P(k+1)=(k+1)(k+2), \forall k \in N$, So , we can conclude that $P(n)=n(n+1)$ for
A. all $n \in N$
B. $n>1$
C. $n>2$
D. Nothing can be said

D Watch Video Solution

3. Show by using the principle of mathematical induction that for all natural number $n>2,2^{n}>2 n+1$
A. for $n \geq 3$
B. for $n<3$
C. for all n
D. for $m n$

Answer:

Watch Video Solution

1. If $a_{1}=1, a_{2}=5$ and $a_{n+2}=5 a^{n+1}-6 a_{n}, n \geq 1$. Show by using mathematical induction that $a_{n}=3^{n}-2^{n}$
A. Statement -1 is true, Statement -2 is true, Statement -2 is correct explanation for Statement -1
B. Statement -1 is true, Statement -2 is true, Statement -2 is not correct explanation for Staement -1
C. Statement -1 is true , Statement -2 is false
D. Statement - 1 is false , Statement - 2 is true.

Answer:

- Watch Video Solution

2. Statement -1 for all natural numbers $\mathrm{n}, 2.7^{n}+3.5^{n}-5$ is divisible by 24.

Statement -2 if $\mathrm{f}(\mathrm{x})$ is divisible by x , then $f(x+1)-f(x)$ is divisible by $x+1, \forall x \in N$.
A. Statement -1 is true, Statement -2 is true, Statement -2 is correct explanation for Statement - 2
B. Statement -1 is true, Statement -2 is true, Statement -2 is not correct explanation for Staement -2
C. Statement -1 is true , Statement -2 is false
D. Statement -1 is false , Statement -2 is true.

Answer:

- Watch Video Solution

3. Statement -1 For all natural numbers $\mathrm{n}, 0.5+0.55+0.555+\ldots .$. upto $\quad \mathrm{n} \quad$ terms $=\frac{5}{9}\left\{n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right\} \quad$ Statement-2
$a+a r+a r^{2}+\ldots .+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{(1-r)}$, for $0<r<1$.
A. Statement -1 is true , Statement -2 is true, Statement -2 is correct explanation for Statement -3
B. Statement -1 is true , Statement -2 is true , Statement -2 is not correct explanation for Staement -3
C. Statement -1 is true , Statement -2 is false
D. Statement - 1 is false, Statement - 2 is true.

Answer:

- Watch Video Solution

Exercise Subjective Type Questions

1. Prove the following by the principle of mathematical induction: $11^{n+2}+12^{2 n+1}$ is divisible 133 for all $n \in N$.

- Watch Video Solution

2. $n^{7}-n$ is divisible by 42 .

- Watch Video Solution

3. $3^{2 n}+24 n-1$ is divisible by 32 .

- Watch Video Solution

4. prove using mathematical induction: $-n(n+1)(n+5)$ is divisible by 6 for all natural numbers

- Watch Video Solution

5. Prove that $(25)^{n+1}-24 n+5735$ is divisible by $(24)^{2}$ for all $n=1,2$,

- Watch Video Solution

6. $x^{2 n-1}+y^{2 n-1}$ is divisible by $x+y$

- Watch Video Solution

7. Prove by induction that if n is a positive integer not divisible by 3 . then $3^{2 n}+3^{n}+1$ is divisible by 13 .

- Watch Video Solution

8. prove that the product of three consecutive positive integers is divisible by 6 .

- Watch Video Solution

9. Prove by induction that the sum of the cubes of three consecutive natural numbers is divisible by 9 .
10. When the square of any odd number, greater than 1 , is divided by 8 , it always leaves remainder 1 (b) 6 (c) 8 (d) Cannot be determined

- Watch Video Solution

11. Prove the following by using iduction for all $n \in N$.
$1+2+3+\ldots .+n=\frac{n(n+1)}{2}$

- Watch Video Solution

12. $1^{2}+2^{2}+3^{2}++n^{2}=\frac{n(n+1)(2 n+1)}{6}$

- Watch Video Solution

13.1.3 $+3.5+5.7+\ldots \ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
14. Prove the following by the principle of mathematical induction:

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}++\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4}
$$

- Watch Video Solution

15. Prove $1.4 .7+2.5 .8+3.6 .9+\ldots . .$. upto n terms $=\frac{n}{4}(n+1)(n+6)(n+7)$

- Watch Video Solution

16. $\frac{1^{2}}{1.3}+\frac{2^{2}}{3.5}+\frac{3^{2}}{5.7}+\ldots .+\frac{n^{2}}{(2 n-1)(2 n+1)}=\frac{(n)(n+1)}{(2(2 n+1))}$

- Watch Video Solution

17. Let $a_{0}=2, a_{1}=5$ and for $n \geq 2, a_{n}=5 a_{n-1}-6 a_{n-2}$, then prove by induction that $a_{n}=2^{n}+3^{n}, \forall n \geq 0, n \in N$.
18. If $a_{1}=1, a_{n+1}=\frac{1}{n+1} a_{n}, a \geq 1$, then prove by induction that $a_{n+1}=\frac{1}{(n+1)!} n \in N$.

- Watch Video Solution

19. if $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ and f are six real numbers such that $a+b+c=d+e+f$ $a^{2}+b^{2}+c^{2}=d^{2}+e^{2}+f^{2}$ and $a^{3}+b^{3}+c^{3}=d^{3}+e^{3}+f^{3}$, prove by mathematical induction that $a^{n}+b^{n}+c^{n}=d^{n}+e^{n}+f^{n} \forall n \in N$.

D View Text Solution

20.

Prove
that
$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\ldots \ldots \ldots .+\tan ^{-1}\left(\frac{1}{n^{2}+n+}\right.$

1. Statement-1: For every natural number $n \geq 2$,
$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}$
Statement-2: For every natural number $n \geq 2$,
$\sqrt{n(n+1)}<n+1$
A. Statement-1 is true, Statement-2 is true, Statement-2 is correct
explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is true , Statement-2 is false
D. Statement-1 is false , Statement -2 is true .

Answer:

2. Statement -1 For each natural number $n,(n+1)^{7}-n^{7}-1$ is divisible by 7 .

Statement -2 For each natural number $n, n^{7}-n$ is divisible by 7.
A. Statement- 1 is false, Statement-2 is true
B. Statement-1 is true , Statement-2 is true , Statement-2 is correct explanation for Statement-1
C. Statement-1 is true , Statement-2 is true , Statement-2 is not a correct explanation for Statement-1
D. Statement- 1 is true, Statement-2 is false

Answer:

(Watch Video Solution

