

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

MATHEMATICAL INDUCTION

Examples

1.
$$1^3 + 2^2 + 3^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
.

Watch Video Solution

2.
$$1.2.3 + 2.3.4 + \ldots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

3. Using the principle of mathematical induction, prove that :

$$1.\ 2.\ 3+2.\ 3.\ 4+\ +n(n+1)(n+2)=rac{n(n+1)(n+2)(n+3)}{4}$$
 for all $n\in N$.

4. Prove by mathematical induction that $\sum_{r=0}^n r^n C_r = n.2^{n-1}, \ orall n \in N.$

5. Use the principle of mathematical induction to show that $5^{2n+1}+3^{n+2}.2^{n-1}$ divisible by 19 for all natural numbers n.

6. Use the principle of mathematical induction to show that a^n-b^9n is divisble by a-b for all natural numbers n.

7. Using problems are of the Inequality Type. Examples of this type are as follows:

8. Show using mathematical induciton that $n!<\left(\frac{n+1}{2}\right)^n$. Where $n\in N$ and n>1.

9. if a+b=c+d and $a^2+b^2=c^2+d^2$, then show by mathematical induction $a^n+b^n=c^n+d^n$

10. Let $I_m = \int_0^\pi \left(\frac{1-\cos mx}{1-\cos x}\right) dx$ use mathematical induction to prove that $l_m=m\pi, m=0,1,2$

Watch Video Solution

11. Given that $u_{n+1}=3u_n-2u_{n-1},$ and $u_0=2,u_1=3$, then prove that $u_n=2^n+1$ for all positive integer of n

12. Let $u_1=1, u_2=2, u_3=rac{7}{2} \ ext{and} \ u_{n+3}=3u_{n+2}-\Big(rac{3}{2}\Big)u_{n+1}-u_n.$

principle of mathematical induction to show that

$$u_n=rac{1}{3}iggl[2^n+\left(rac{1+\sqrt{3}}{2}
ight)^n+\left(rac{1-\sqrt{3}}{2}
ight)^niggr]\,orall n\geq 1.$$

13. If p is a fixed positive integer, prove by induction that $p^{n+1}+(p+1)^{2n-1}$ is divisible by P^2+p+1 for all $n\in N$.

$$B.P^2 + P$$

$$\mathsf{C.}\,P^2+P+1$$

D.
$$P^2 - 1$$

Answer:

Watch Video Solution

14. Let P(n) denote the statement that $n^2 + n$ is odd . It is seen that

$$P(n) \Rightarrow P(n+1), P(n)$$
 is true for all

$$\mathsf{A.}\, n>1$$

B. n

 $\mathsf{C}.\,n>2$

D. None of these

Answer:

Watch Video Solution

15. Let $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^n - 1}$. Then

A. a(100) > 100

 $\mathsf{B.}\,a(100)<200$

 $\mathsf{C.}\,a(200) \leq 100$

D. a(200)>100

Answer: D

16. Let $S(k) = 1 + 3 + 5 + ... + (2k - 1) = 3 + k^2$. Then which of the following is true?

A. Principle of mathematical induction can be used to prove the formula

$$\mathsf{B.}\,S(k) \Rightarrow S(k+1)$$

$$\mathsf{C.}\,S(k) \not \gg S(k+1)$$

D. S(1) is correct

Answer:

- **17.** $10^n+3ig(4^{n+2}ig)+5$ is divisible by $(n\in N)$
 - A. 7
 - B. 5
 - C. 9

Answer:

Watch Video Solution

- **18.** Statement-1 For all natural number n, $1+2+....+n<(2n+1)^2$ Statement -2 For all natural numbers ,
- $\left(2n+3\right)^2-7(n+1)<\left(2n+3\right)^3.$
 - A. Statement -1 is true , Statement -2 is true Statement -2 is correct explanation for Statement -1.
 - B. Statement -1 is true , Statement -2 is true , Statement -2 is not the correct explanation for Statement -1
 - C. Statement-1 is true, Statement-2 is false
 - D. Statement-1 is false, Statement -2 is true.

Answer: B

19. prove that

$$7+77+777+.....+777....._{n-digits}7=rac{7}{81}ig(10^{n+1}-9n-10ig)$$
 for all $n\in N$

A. Statement -1 is true, Statement -2 is true Statement -2 is correct explanation for Statement -1.

B. Statement -1 is true , Statement -2 is true , Statement -2 is not the correct explanation for Statement -2

C. Statement-1 is true , Statement-2 is false

D. Statement-1 is false, Statement -2 is true.

Answer: C

divisible by 2^n for all $n \in N$.

21. Using mathematical induction , show that

20. Prove by induction that the integer next greater than $(3+\sqrt{5})^n$ is

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{2}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{\left(n+1\right)^2}\right)=\frac{n+2}{2(n+1)},\ \forall n\in \mathbb{N}$$

22. Using the principle of mathematical induction to show that $an^{-1}(n+1)x - an^{-1}x, \ orall x \in N.$

23. Use the principle of mathematical induction to prove that for all

$$n \in N$$

$$\sqrt{2+\sqrt{2+\sqrt{2}+...+...+\sqrt{2}}}=2\cos\left(rac{\pi}{2^{n+1}}
ight)$$

When the LHS contains n radical signs.

24. Prove by mathematical induction that

$$rac{1}{1+x} + rac{2}{1+x^2} + rac{4}{1+x^4} + \dots + rac{2^n}{1+x^{2^n}} = rac{1}{x-1} + rac{2^{n+1}}{1-x^{2^{n+1}}}$$

where , |x|
eq 1 and n is non - negative integer.

25. Using the principle of mathematical induction to prove that

$$\int_0^{\pi/2} \frac{\sin^2 nx}{\sin x} dx = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$

26. Use induction to show that for all $n \in N$.

$$\sqrt{a+\sqrt{a+\sqrt{a+....}+\sqrt{a}}}<rac{1+\sqrt{(4a+1)}}{2}$$

where 'a' is fixed positive number and n radical signs are taken on LHS.

Watch Video Solution

27. Prove by induction that

$$\left\{\prod_{r=0}^n f_r(x)
ight\}{}' = \sum_{i=1}^n \left\{f_1(x)f_2(x)....\,f_i{}'(x)....\,f_n(x)
ight\},$$

where dash denotes derivative with respect to x.

View Text Solution

Mathematical Induction Exercise 1 Single Option Correct Tpye Questions

1. If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7} + \dots}}$ having n radical signs then by

methods of mathematical induction which is true

A.
$$a_n > 7, \ orall n \geq 1$$

B.
$$n_n>3,\ \forall n\geq 1$$

C.
$$a_n < 4, \ \forall n \geq 1$$

D.
$$a_n < 3, \ \forall n \geq 1$$

Answer:

Watch Video Solution

2. If
$$P(n)=2+4+6+....+2n, n\in N$$
. Then $P(k)=k(k+1)$ $\Rightarrow P(k+1)=(k+1)(k+2), \, orall k\in N$, So , we can conclude that

$$P(n) = n(n+1)$$
 for

A. all
$$n \in N$$

$$\mathsf{B.}\, n>1$$

$$\mathsf{C}.\,n>2$$

D. Nothing can be said

Answer:

Watch Video Solution

3. Show by using the principle of mathematical induction that for all natural number $n>2,\,2^n>2n+1$

- A. for $n \geq 3$
- B. for n < 3
- C. for all n
- D. for mn

Answer:

Watch Video Solution

Exercise Statement I And Ii Type Questions

1. If $a_1=1, a_2=5$ and $a_{n+2}=5a^{n+1}-6a_n, n\geq 1$. Show by using mathematical induction that $a_n=3^n-2^n$

A. Statement -1 is true , Statement -2 is true, Statement -2 is correct explanation for Statement -1

B. Statement -1 is true , Statement -2 is true , Statement -2 is not correct explanation for Staement -1

C. Statement -1 is true , Statement -2 is false

D. Statement -1 is false, Statement - 2 is true.

Answer:

24.

2. Statement -1 for all natural numbers n , $2.7^n + 3.5^n - 5$ is divisible by

Statement -2 if f(x) is divisible by x, then f(x+1) - f(x) is divisible by

$$x+1,\,orall x\in N$$
.

A. Statement -1 is true, Statement -2 is true, Statement -2 is correct

explanation for Statement -2

B. Statement -1 is true, Statement -2 is true, Statement -2 is not correct explanation for Staement -2

C. Statement -1 is true, Statement -2 is false

D. Statement -1 is false, Statement - 2 is true.

Answer:

Watch Video Solution

3. Statement -1 For all natural numbers n , 0.5+0.55+0.55+...

upto n terms $=rac{5}{9}igg\{n-rac{1}{9}igg(1-rac{1}{10^n}igg)igg\}$ Statement-2 $a + ar + ar^2 + \ + ar^{n-1} = rac{a(1-r^n)}{(1-r)}$, for 0 < r < 1 .

A. Statement -1 is true , Statement -2 is true, Statement -2 is correct

explanation for Statement -3

B. Statement -1 is true , Statement -2 is true , Statement -2 is not correct explanation for Staement -3

C. Statement -1 is true, Statement -2 is false

D. Statement -1 is false, Statement - 2 is true.

Answer:

Exercise Subjective Type Questions

- 1. Prove the following by the principle of mathematical induction:
- $11^{n+2}+12^{2n+1}$ is divisible 133 for all $n\in N$.
 - Watch Video Solution

2. $n^7 - n$ is divisible by 42.

3. $3^{2n}+24n-1$ is divisible by 32 .

4. prove using mathematical induction:-n(n+1)(n+5) is divisible by

6 for all natural numbers

5. Prove that $\left(25\right)^{n+1}-24n+5735$ is divisible by $\left(24\right)^2$ for all n=1,2,

6. $x^{2n-1} + y^{2n-1}$ is divisible by x+y

7. Prove by induction that if n is a positive integer not divisible by 3. then $3^{2n}+3^n+1$ is divisible by 13.

8. prove that the product of three consecutive positive integers is divisible by 6.

9. Prove by induction that the sum of the cubes of three consecutive natural numbers is divisible by 9.

10. When the square of any odd number, greater than 1, is divided by 8, it always leaves remainder 1 (b) 6 (c) 8 (d) Cannot be determined

11. Prove the following by using iduction for all $n \in N$. $1+2+3+\ldots\ldots+n=rac{n(n+1)}{2}$

12.
$$1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$$

13.
$$1.3 + 3.5 + 5.7 + \ldots + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$$

15. Prove
$$1.4.7 + 2.5.8 + 3.6.9 + \dots$$
 upto n terms $= \frac{n}{4}(n+1)(n+6)(n+7)$

16.
$$\frac{1^2}{1.3} + \frac{2^2}{3.5} + \frac{3^2}{5.7} + \dots + \frac{n^2}{(2n-1)(2n+1)} = \frac{(n)(n+1)}{(2(2n+1))}$$

17. Let $a_0=2,$ $a_1=5$ and for $n\geq 2,$ $a_n=5a_{n-1}-6a_{n-2},$ then prove by induction that $a_n=2^n+3^n,\ \forall n\geq 0,$ $n\in N.$

18. If
$$a_1=1, a_{n+1}=rac{1}{n+1}a_n, a\geq 1$$
, then prove by induction that $a_{n+1}=rac{1}{(n+1)!}n\in N.$

19. if a,b,c,d,e and f are six real numbers such that
$$a+b+c=d+e+f$$
 $a^2+b^2+c^2=d^2+e^2+f^2$ and $a^3+b^3+c^3=d^3+e^3+f^3$, prove

Prove

 $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \dots + \tan^{-1}\left(\frac{1}{n^2 + n + 1}\right)$

that

by mathematical induction that
$$a^n+b^n+c^n=d^n+e^n+f^n\,orall\,n\in N.$$

20.

1. Statement-1: For every natural number $n \geq 2$,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

Statement-2: For every natural number $n\geq 2,$

$$\sqrt{n(n+1)} < n+1$$

A. Statement-1 is true , Statement-2 is true, Statement-2 is correct explanation for Statement-1

B. Statement-1 is true, Statement-2 is true, Statement-2 is not a

correct explanation for Statement-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement -2 is true.

Answer:

2. Statement -1 For each natural number $n,\left(n+1
ight)^{7}-n^{7}-1$ is divisible

by 7.

Statement -2 For each natural number $n, n^7 - n$ is divisible by 7.

A. Statement-1 is false, Statement-2 is true

B. Statement-1 is true , Statement-2 is true , Statement-2 is correct

explanation for Statement-1

C. Statement-1 is true , Statement-2 is true , Statement-2 is not a

D. Statement-1 is true, Statement-2 is false

correct explanation for Statement-1

Answer:

