©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

PROPERTIES AND SOLUTION OF TRIANGLES

Examples

1. Find the angles of the triangle whose sides are $3+\sqrt{3}, 2 \sqrt{3}$ and $\sqrt{6}$.

- Watch Video Solution

2. The sides of a tringle are $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm . Prove that the greatest angle is double of the smalest angle.
3. With usual notatins, if in a $\triangle A B C, \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, then prove that $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$.

- Watch Video Solution

4. The sides of a triangle arr three consective natural numbers and its largest angle is twice the smallest one. Determine the sides of the triangle.

(Watch Video Solution

5. In the triangle ABC , lines $O A, O B$ and $O C$ are drawn so that angles $O A B$, $O B C$ and $O C A$ are each equal to ω, prove that $\cot \omega=\cot A+\cot B+\cot C$

- Watch Video Solution

6. Solve
$b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}$ in terms of k , where k is permeter of the $\triangle A B C$.

- Watch Video Solution

7. In a $\triangle A B C, c \cos ^{2} \frac{A}{2}+a \cos ^{2} \frac{C}{2}=\frac{3 b}{2}$, then a, b, c are in

- Watch Video Solution

8. In a $\triangle A B C, a=2 b$ and $|A-B|=\frac{\pi}{3}$. Determine the $\angle C$.

Watch Video Solution

9. In a $\triangle A B C$, the tangent of hald the difference of two angle is onethird the tangent of half the sum of the angle. Determine the ratio of the sides opposite to the angles.
10. If the angles of a triangle are 30° and 45°, and the included sise is $(\sqrt{3}+1) \mathrm{cm}$, then prove that the area of the triangle is $\frac{1}{2}(\sqrt{3}+1)$.

- Watch Video Solution

11. Consider the following statements concerning a $\triangle A B c$
(i) The sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and area of triangle are rational.
(ii) $a, \tan \frac{B}{2}, \tan \frac{C}{2}$
(iii) $a, \sin A \sin B, \sin C$ are rational .

Prove that $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i)$

- Watch Video Solution

12. Show that $\frac{b-c}{r_{1}}+\frac{c-a}{r_{2}}+\frac{a-b}{r_{3}}=0$.

- Watch Video Solution

13. If in a triangle $r_{1}=r_{2}+r_{3}+r$, prove that the triangle is right angled.

- Watch Video Solution

14. In any $\triangle A B C$, prove the following : $r_{1}=r \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

(Watch Video Solution

15. In a right angles triangle, prove that $r+2 R=s$.

- Watch Video Solution

16. The exradii r_{1}, r_{2} and r_{3} of $A B C$ are in H.P. Show that its sides a, bandc are in $A P$.

- Watch Video Solution

17. If A, B, C are the angles of a triangle then prove that $\cos A+\cos B-\cos C=-1+4 \cos \left(\frac{A}{2}\right) \cos \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$

- Watch Video Solution

18. Find the ratio of the circum-radius and the inradius of $\triangle A B C$, whose sides are in the ratio $4: 5: 6$.

- Watch Video Solution

19. Find the ratio of $I A: I B: I C$, where I is the incentre of $\triangle A B C$.

- Watch Video Solution

20. If the sides of a triangle are in GP and the largest angle is twice the smallest angle, then find the ralation for r.
21. The equation $a x^{2}+b x+c=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the side of a $\Delta A B C$, and the equation $x^{2}+\sqrt{2} x+1=0$ have a common root. Find measure for $\angle C$.

- Watch Video Solution

22. In triangle $A B C$, if $\cot A, \cot B, \cot C$ are in $A \dot{P}$; then a^{2}, b^{2}, c^{2} are in \qquad progression.

- Watch Video Solution

23. Find the Side of pedal triangle and Circum-Radius of pedal Triangle ?

- Watch Video Solution

24. Find the area, circum-radius and in-radius of the pedal triangle.
25. In a triangle ABC I_{1}, I_{2}, I_{3} are excentre of triangle then show that $I I_{1} . I I_{2} . I I_{3}=16 R^{2} r$.

- View Text Solution

26. Prove that
$\frac{l l_{1} \cdot l_{2} l_{3}}{\sin A}=\frac{l l_{2} \cdot l_{3} l_{1}}{\sin B}$

- View Text Solution

27. If $\mathrm{g}, \mathrm{h}, \mathrm{k}$ denotes the side of a pedal triangle, then prove that
$\frac{g}{a^{2}}+\frac{h}{b^{2}}+\frac{k}{c^{2}}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$

- Watch Video Solution

28. If x, y, z are respectively perpendiculars from the circumcentre on the sides of the $\triangle A B C$, the value of $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}-\frac{a b c}{4 x y z}=$

- Watch Video Solution

29. If O, H and G represents circum centre, orthocentre and centroid respectively, then show
$H G: G O=2: 1$. We have,

- Watch Video Solution

30. In $\triangle A B C$ it is given distance between the circumcentre (0) and orthocentre (H) is $R \sqrt{1-8 \cos A \cos B \cos C}$. If Q is the midopoint of $O H$, then $A Q$ is

- Watch Video Solution

31. Find the distance between the circumcentre and the incentre of the $\triangle A B C$.

- Watch Video Solution

32. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths the line segments $A_{0} A_{1}, A_{0} A_{2}$ and $A_{0} A_{4}$ is

- Watch Video Solution

33. If the area of circle is A_{1} and area of regular pentagon inscibed in the circle is A_{2}, then find the ratio of area of two.

- Watch Video Solution

34. The area of a cyclic quadrilateral $A B C D$ is $\frac{3 \sqrt{3}}{4}$. The radius of the circle circumscribing cyclic quadrilateral is 1.If $A B=1$ and $B D=\sqrt{3}$, then $B C \cdot C D$ is equal to

- Watch Video Solution

35. A regular pentagon and a regular decagon have the same perimeter, prove that their areas are as $2: \sqrt{5}$.

- Watch Video Solution

36. If the sides of a cylic aqudrilateral are $3,3,4,4$ shwo that a circle can be inscribed in it.
37. The two adjacent sides of a cyclic quadrilateral are $2 a n d 5$ and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides.

- Watch Video Solution

38. If a, b, c, d are the side of a quadrilateral, then find the the minimuym value of $\frac{a^{2}+b^{2}+c^{2}}{d^{2}}$

- Watch Video Solution

39. In any triangle $A B C$, the sides are $6 \mathrm{~cm}, 10 \mathrm{~cm}$ and 14 cm . Then the triangle is obtuse angled with the obtuse angle equal to
A. 120°
B. 135°
C. 110°
D. 150°

Answer: A

- Watch Video Solution

40. If a, b and A are given in a triangle and c_{1}, c_{2} are possible values of the third side, then prove that $c_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos 2 A=4 a^{2} \cos ^{2} A$

- Watch Video Solution

41. In a $\triangle A B C$, the median to the side $B C$ is of length $\frac{1}{\sqrt{11-6 \sqrt{3}}}$ and it divides the $\angle A$ into angles 30° and $45 \circ$. Find the length of the side BC.
42. Two flagstaffs stand on a horizontal plane. A and B are two points on the line joining their feet and between them. The angle of elevation of the tops of the flagstaffs as seen from A are 30° and 60° and as seen from B are 60° and 45°. If $A B$ is 30 m , the distance between the flagstaffs in metre is
A. $30+15 \sqrt{3}$
B. $45+15 \sqrt{3}$
C. $60-15 \sqrt{3}$
D. $60+15 \sqrt{3}$

Answer: A: C

- Watch Video Solution

43. In a cubicul hall $A B C D P Q R S$ with each side $10 m, G$ is the centre of the walls $B C R Q$ and T is the midpoint of the side $A B$, the angle of elevation of G at the Point T is
A. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer: A: C

- Watch Video Solution

44. Each side of an equilateral triangle subtends an angle of 60° at the top of a tower h m high located at the centre of the triangle. If a is the length of each side of the triangle, then
A. $3 a^{2}=2 h^{2}$
B. $2 a^{2}=2 h^{2}$
C. $a^{2}=3 h^{2}$
D. $3 a^{2}=h^{2}$

- View Text Solution

45. A vertical tower $P Q$ subtends th same angle 30° at each of two place A and $B, 60 \mathrm{~m}$ apart on the ground, $A B$ subtends an angle 120° at the foot of the tower. If h is the height of the tower, then $9 h^{2}+h+1$ is equal to
A. 3121
B. 2136
C. 3600
D. None of these

Answer: A:C

46. if $\tan ^{2} \frac{\pi-A}{4}+\tan ^{2} \frac{\pi-B}{4}+\tan ^{2} \frac{\pi-C}{4}=1$, then $\triangle A B C$ is
A. equilateral
B. isosceles
C. scalene
D. None of these

Answer: A: : $\mathrm{B}:: \mathrm{C}$

- Watch Video Solution

47. In $\triangle A B C, a^{2}+c^{2}=2002 b^{2}$ then $\frac{\cot A+\cot C}{\cot B}$ is equal to
A. $\frac{1}{2001}$
B. $\frac{2}{2001}$
C. $\frac{3}{2001}$
D. $\frac{4}{2001}$

Answer: B

- Watch Video Solution

48. A triangle has vertices A, B and C, and the respective opposite sides have lengths a, b and c. This triangle is inscribed in a circle of radius R. If $b=c=1$ and the altitude from A to side BC has length $\sqrt{\frac{2}{3}}$, then R equals:
A. $\frac{1}{\sqrt{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}}{2 \sqrt{2}}$

Answer: B::C

49. In $\triangle A B C$, if $A C=8, B C=7$ and D lies between A and B such that $A D=2, B D=4$, then the length CD equals
A. $\sqrt{46}$
B. $\sqrt{48}$
C. $\sqrt{51}$
D. $\sqrt{75}$

Answer: A

- Watch Video Solution

50.

In
a triangle
ABC,
if
$(a+b+c)(a+b-c)(b+c-a)(c+a-b)=\frac{8 a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}}$ then the triangle is
A. isosceles
B. right angled
C. equilateral
D. obtuse angled

Answer: A::B::C::D

D Watch Video Solution

51. Consider a $\triangle A B C$ and let a, b and c denote the lengths of the sides opposite to vertices A, B and C, repectively. if $a=1, b=3$ and $C=60^{\circ}$, then $\sin ^{2} \mathrm{~B}$ is equal to
A. $\frac{27}{28}$
B. $\frac{3}{28}$
C. $\frac{81}{28}$
D. $\frac{1}{3}$

Answer: B

52. In $\triangle A B C$, if $\cos A+\sin A-\frac{2}{\cos B+\sin B}=0$, then $\frac{a+b}{c}$ is equal to
A. $\sqrt{2}$
B. 1
C. $\frac{1}{\sqrt{2}}$
D. $2 \sqrt{2}$

Answer: A: B::C

- Watch Video Solution

53. In a triangle $A B C$, if $\angle A=30^{\circ}, b=10$ and $a=x$, then the values of x for which there are 2 possible triangles is given by(All symbols used have usual meaning in a triangle.)

$$
\text { A. } 5<x<10
$$

B. $x<\frac{5}{2}$
C. $\frac{5}{3}<x<10$
D. $\frac{5}{2}<x<10$

Answer: A::B

- Watch Video Solution

54. In a $\triangle A B C, A B=A C, P$ and Q are points on $A C$ and $A B$ respectively such that $C B=B P=P Q=Q A$. if $\angle A Q P=\theta$, then $\tan ^{2} \theta$ is a root of the equation
A. $y^{3}+21 y^{2}-35 y-12=0$
B. $y^{3}-21 y^{2}+35 y-12=0$
C. $y^{3}-21 y^{2}+35 y-7=0$
D. $12 y^{3}-35 y^{2}+35 y-12=0$
55. The angle of elevation of the top of a tower a point A due south of it is 30° and from a point B due west of it is 45°.If the height of the tower is 100 meters ,then find the distance $A B$.
A. 150 m
B. 200 m
C. 173.2 m
D. 141.4 m

Answer: A: B

- Watch Video Solution

56. An aeroplane flying horizontally, 1 km above the ground, is observed at an elevation of 60°,after 10 seconds, its elevation is observed to be 30°. Find the speed of the aeroplane in $\mathrm{km} / \mathrm{hr}$.
A. 240
B. $240 \sqrt{3}$
C. $60 \sqrt{3}$
D. None of these

Answer: A::B::C::D

- Watch Video Solution

57. In $\triangle A B C$, the ratio $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ is not always equal to (All symbols used have usual meaning in a triangle.)
A. 2 R , where R is the circumradius
B. $\frac{a b c}{2 \Delta}$, where Δ is the area of the triangle
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)^{\frac{1}{2}}$
D. $\frac{(a b c)^{\frac{2}{3}}}{\left(h_{1} h_{2} h_{3}\right)^{\frac{1}{3}}}$

- Watch Video Solution

58. Let $A B C D$ be a cyclic quadrilateral such that $A B=2, B C=3, \angle B=120^{\circ}$ and area of quadrilateral $=4 \sqrt{3}$. Which of the following is/are correct ?
A. The value of $(A C)^{2}$ is equal to 19
B. The sum of all positive value of product AC. BD I is equal to 35
C. The sum of all posible value of $(f A D)^{2}$ is equal to 29
D. The value of $(C D)^{2}$ can be 4

Answer: B

- View Text Solution

59. In a triangle $A B C$, which of the following quantities denote the area of the triangles $\frac{a^{2}-b^{2}}{2} \frac{\sin A \sin B}{\sin (A-B)}$
A. $\frac{a^{2}-b^{2}}{2}\left(\frac{\sin A \sin B}{\sin (A-B)}\right)$
B. $\frac{r_{1} r_{2} r_{3}}{\sqrt{\sum r_{1} r_{2}}}$
C. $\frac{a^{2}+b^{2}+c^{2}}{\cot A+\cot B+\cot C}$
D. $r^{2} \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$

Answer: A::B::C::D

- Watch Video Solution

60. Consider the system of equations
$\sin x \cos 2 y=\left(a^{2}-1\right)^{2}+1, \cos x \sin 2 y=a+1$
The number of values of $y \in[0,2 \pi]$, when the system has solution for permissible values of a, are
A. $\left(\frac{-\pi}{2}, \frac{-\pi}{2}\right)$
B. $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
C. $\left(\frac{3 \pi}{2}, \frac{-\pi}{2}\right)$
D. $\left(\frac{-\pi}{2}, \frac{3 \pi}{2}\right)$

- Watch Video Solution

61. In a triangle ABC , let $2 a^{2}+4 b^{2}+c^{2}=2 a(2 b+c)$, then which of the following holds good?
A. $\cos B=\frac{-7}{8}$
B. $\sin (A-C)=0$
C. $\frac{r}{r_{1}=\frac{1}{5}}$
D. $\sin A: \sin B: s i C=1: 2: 1$

Answer: A::B::C

Watch Video Solution

62. In $A A B C$, angle A, B and C are in the ratio $1: 2: 3$, then which of the following is (are) correct? (All symbol used have usual meaning in a
triangle.) (A) Circumradius of $A A B C=C$ (B) $a: b: c=1: \sqrt{3}: 2$ (C) Perimeter of $\triangle A B C=3+\sqrt{3}(\mathrm{D})$ Area of triangle $\mathrm{ABC}=\frac{\sqrt{3}}{8} c^{2}$
A. Circum-radius of $\triangle A B C=c$
B. $a: b: c=1: \sqrt{3}: 2$
C. Permimeter of $\triangle A B C=3+\sqrt{3}$
D. Area of $\triangle A B C=\frac{\sqrt{3}}{8} c^{2}$

Answer: A::B::C

- Watch Video Solution

63. If the length of tangents from A, B, C to the incircle of $\triangle A B C$ are $4,6,8$ then which of the following is(are) correct? (All symbols used have usual meaning in a triangle.
A. Area of $\triangle A B C i s 12 \sqrt{6}$
B. r_{1}, r_{2}, r_{3} are in HP
C. a, b, c are in AP
D. $r=\frac{4 \sqrt{6}}{3}$

Answer: B

- Watch Video Solution

64. In triangle $A B C$, let $b=10, c=10 \sqrt{2}$ and $R=5 \sqrt{2}$ then which of the following are correct
A. Area of triangle $A B C$ is 50 .
B. Distance between orthocentre and circumcetre iss $5 \sqrt{2}$.
C. Sum of circum-radius and in-radius of $D e \leq t a A B C$ is equal to 10 .
D. Length of internal angle bisector of $\angle A B C$ of $\triangle A B C$ is $\frac{5}{2 \sqrt{2}}$.

Answer: A::B::C

- Watch Video Solution

65. Let ' I ' is the length of median from the vertex A to the side $B C$ of a $\triangle A B C$. Then
A. $4 l^{2}=2 b^{2}+2 c^{2}-a^{2}$
B. $4 l^{2}=b^{2}+x^{2}+2 b c \cos A$
C. $4 l^{2}=a^{2}+4 b \mathrm{o} s A$
D. $4 l^{2}=(2 s-a)^{2}-4 b c \sin ^{2} \frac{A}{2}$

Answer: A::B::C::D

- Watch Video Solution

66. If a right angled $\triangle A B C$ of maximum area is inscribled within a circle of radius R , then $\left(\delta\right.$ representes area of $\triangle A B C$ and r, r_{1}, r_{2}, r_{3} represent in-radius and ex-radii, and s is the semi-perimeter of $\triangle A B C$, then
A. $\Delta=R^{2}$
B. $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{\sqrt{2}+1}{R}$
C. $r=(\sqrt{2}-1) R$
D. $s=(1+\sqrt{2}) R$

Answer: A,B,C,D

- Watch Video Solution

67. Statement I In a $\triangle A B C$, if $a<b<c$ and ri si inradius and $r_{1}, r_{2}+r_{2} r_{3}$ are the exradii opposite to angle A,B,C respectively, then $r<r_{1}<r_{2}<r_{3}$.

Statement II For, $\Delta A B C r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=\frac{r_{1} r_{2} r_{3}}{r}$
A. Statement I is True, Statement II is True, Statement II is a correct explanation for Statement I.
B. Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A::B::C::D

- View Text Solution

68. Statement I If the sides of a triangle are 13,1415 then the radius of in circle $=4$

Statement II In $a \Delta A B C, \Delta=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$ and $r=\frac{\Delta}{s}$
A. Statement I is True, Statement II is True, Statement II is a correct explanation for Statement I.
B. Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

D Watch Video Solution

69. Statement I In $a \Delta A B C, \sum \frac{\cos ^{2} \frac{A}{2}}{a}$ has the value equal to $\frac{s^{2}}{a b c}$.

Statement II in $a \Delta A B C, \cos \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$
$\cos \frac{\beta}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}}, \cos \frac{c}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}$
A. Statement I is True, Statement II is True, Statement II is a correct explanation for Statement I.
B. Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: C

- Watch Video Solution

70. If $a=4$ then area of the $\triangle A B C$ is equal to
A. $\frac{3 \sqrt{2}}{2}$
B. 3
C. $4 \sqrt{3}$
D. $3 \sqrt{2}$

Answer: A::B::C::D

Watch Video Solution
71. The radius of the circle circumscribing the triangle $A B C$, is equal to
A. $\frac{\sqrt{10}}{2}$
B. $\sqrt{5}$
C. $\sqrt{10}$
D. $\frac{\sqrt{5}}{2}$

Answer: A::B::C::D

- View Text Solution

72. Let Δ denote the area of the $\Delta A B C$ and Δp be the area of its pedal triangle. If $\Delta=k \Delta p$, then k is equal to
73. x is equal to
A. $\frac{\pi}{9}$
B. $\frac{2 \pi}{9}$
C. $\frac{\pi}{3}$
D. None of these

Answer: B

- View Text Solution

74. $\triangle A B C$ is
A. Equilateral
B. Isosceless
C. Scalene
D. Right angled

Answer: D

Watch Video Solution
75. Which of the following is true?
A. $B c>A C$
B. $A C=A B$
C. $A C>A B$
D. $B C=A C$

Answer: A::C::D

- Watch Video Solution

76. If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ denote the side of a pedal triangle, then $\frac{l}{a^{2}}+\frac{m}{b^{2}}+\frac{n}{c^{2}}$ is equal to
A. $\frac{a^{2}+b^{2}+c^{2}}{a^{3}+b^{3}+c^{2}}$
B. $\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
C. $\frac{a^{3}+b^{3}+c^{3}}{a b c(a+b+c)}$
D. $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Answer: B

77. If R be circum-radius of $a \Delta$, then circum-radius of a pedal Δ is
A. R
B. $\frac{2 R}{3}$
C. $\frac{R}{3}$
D. $\frac{R}{2}$

Answer: D

Watch Video Solution
78. The in-radius of pedal Δ of a $\triangle A B C$ is
A. $\frac{R}{2}$
B. $R \sin A \sin B \sin C$
C. $2 R \cos A \cos B \cos C$
D. $4 R \sin \frac{A}{2} \sin \frac{b}{2} \sin \frac{C}{2}$

- View Text Solution

79. In a triangle ABC , if $r_{1}+r_{3}+r=r_{2}$, then find the value of $\left(\sec ^{2} A+\csc ^{2} B-\cot ^{2} C\right)$,

- Watch Video Solution

80. In $\triangle A B C$, let $b=6, c=10$ and $r_{1}=r_{2}+r_{3}+r$ then find area of $\triangle A B C$.

- Watch Video Solution

81. Consider on obtuse angle triangles with side $8 \mathrm{~cm}, 15 \mathrm{~cm}$ and $\times \mathrm{cm}$ (largest side being 15 cm). If \times is an integer, then find the number of possible triangels.
82. let $A B C$ be a right angled triangle at C. If the inscribed circle touches the side A at D and $(A D)(B D)=11$, then find the area of triangle $A B C$.

Watch Video Solution

83. Consider a $\triangle A B C$ and let a, b, and c denote the leghts of the sides opposite to vertices A, B and C , respectively. Suppose $a=2, b=3, c=4$ and H be the orthocentre. Find $15(H A)^{2}$.

- Watch Video Solution

84. In a triangle ABC , the internal angle bisector of $\angle A B C$ meets AC at K . If $B C=2, C K=1$ and $B K=\frac{3 \sqrt{2}}{2}$, then find the length of side AB .
85. Triangle $A B C$ has $A C=13, A B=15$ and $B C=14$. Let ' O ' be the circumcentre of the $\triangle A B C$. If the length of perpendicular from the point ' O ' on $B C$ can be expressed as a rational $\frac{m}{n}$ in the lowest form then find $(m+n)$.

- Watch Video Solution

86. Two sides of a tariangle are given by the roots of the equation $x^{2}-2 \sqrt{3} x+2=0$. The angle between the sides is $\frac{\pi}{3}$. Find the perimeter of Δ.

- Watch Video Solution

87. If in $\triangle A B C, \angle A=90^{\circ}$ and c , $\sin \mathrm{B} \cos \mathrm{B}$ are rational numbers, then show a and b are rational .

- Watch Video Solution

88. If the sides of a $\triangle A B C$ are in AP and a is the smallest sie, then $\cos \mathrm{A}$ equals

- Watch Video Solution

89. If A, B and C are angles of a triangle such that $\angle A$ is obtuse, then show $\tan \mathrm{B} \tan C<1$.

- Watch Video Solution

90. If A is the area and $2 s$ is the sum of the sides of a triangle, then
$A \leq \frac{s^{2}}{4}$ (b) $A \leq \frac{s^{2}}{3 \sqrt{3}} 2 R \sin A \sin B \sin C$ (d) noneofthese

(Watch Video Solution

91. In a triangle, if $r_{1}>r_{2}>r_{3}$, then show $a>b>c$.

- Watch Video Solution

92. D is midpoint of BC in $\triangle A B C$ such that AD and AC are perpendicular, Show that $\cos A \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$

- Watch Video Solution

93.

Prove
that
in
$\triangle A B C, a^{3} \cos (B-C)+b^{3} \cos (C-A)+c^{3} \cos (A-B)=3 a b c$

- Watch Video Solution

94. If in a triangle of base ' a ', the ratio of the other two sides is r ($<1)$ Show that the altitude of the triangle is less than or equal to $\frac{a r}{1-r^{2}}$

- Watch Video Solution

95. Three circles touch each other externally. The tangents at their point of contact meet at a point whose distance from a point of contact is 4 .

Then, the ratio of their product of radii to the sum of the radii is

- Watch Video Solution

96. The internal bisectors of the angles of a $\triangle A B C$ meet the sides BC ,
CA, AB in D, E and F , respectively. Show that the area of the $\triangle D E F$ is equal to,

$$
\frac{2 \Delta a b c}{(b+c)(c+a)(a+b)}
$$

- View Text Solution

97. Prove m:n theorem in a $\triangle A B C$, a point D is taken on side BC such that $\mathrm{BD}: \mathrm{DC}$ is $\mathrm{m}: \mathrm{n}$. Then prove that $(1)(m+n) \cot \theta=m \cot \alpha-n \cot \beta$
(2) $(m+n) \cot \theta=n \cot B-m \cot C$

- Watch Video Solution

98. The bae of a triangle is divided into three equal parts. If t_{1}, t_{2}, t_{3} be the tangent sof the angles subtended by these parts at the opposite vertex, prove that :

$$
\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{3}}\right)=4\left(1+\frac{1}{t_{1}^{2}}\right)
$$

- Watch Video Solution

99. Prove that the triangle $A B C$ is equilateral if $\cot A+\cot B+\cot C=\sqrt{3}$

- Watch Video Solution

100. In any triangle. if $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$, then prove that the triangle is either right angled or isosceles.

- Watch Video Solution

101. The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then $4(1-\cos A)(1-\cos C)$ is equal to

- Watch Video Solution

102. Perpendiculars are drawn from the angles A, B and C of an acuteangled triangle onthe opposite sides, and produced to meet the circumscribing circle. If these produced parts are $\alpha ., \beta, \gamma$, respectively, then show that, then show that
$\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=2(\tan A+\tan B+\tan C)$.

- Watch Video Solution

103. If $a=\cos \theta+i \sin \theta, b=\cos \phi+i \sin \phi, c=\cos \psi+i \sin \psi$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=2$ then $\sin (\theta-\phi)+\sin (\phi-\psi)+\sin (\psi-\theta)$ equals

- Watch Video Solution

104. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Show that the tangents of the angles are the roots of the equation $q x^{3}-p x^{2}+(1+q) x-p=0$.

- Watch Video Solution

105. Given the base of a triangle, the opposite angle A , and the product k^{2} of other two sides, show that it is not possible for a to be less than $2 k \sin \frac{A}{2}$

- Watch Video Solution

106. If in a triangle $A B C, \angle C=60^{\circ}$, then prove that
$\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$

- Watch Video Solution

107. Let $1<m<3$. In a triangle $A B C$, if $2 b=(m+1)$ a \& $\cos A=\frac{1}{2} \sqrt{\frac{(m-1)(m+3)}{m}}$ prove that the are two values to the third side, one of which is m times the other.

- Watch Video Solution

108. In any $\triangle A B C$, if D be any points of the base BC such that $\frac{B D}{D C}=\frac{m}{n}$ and $\angle A B D=\alpha, \angle D A C=\beta, \angle C D A=\theta$ and $A D=x$ then prove that
$(m+n)^{2} \cdot x=(m+n)\left(m b^{2}+n c^{2}\right)-m n a^{2}$

- View Text Solution

109. ABCD is a trapezium such that $A B|\mid C D a n d C B$ is perpendicular to them. If $\angle A D B=\theta, B C=p, \operatorname{andCD}=q \quad$, show that $A B=\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$
110. In a triangle $A B C$, prove that $\frac{\cot \left(\frac{A}{2}\right)+\cot \left(\frac{B}{2}\right)+\cot \left(\frac{C}{2}\right)}{\cot A+\cot B+\cot (C)}=\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}$

- Watch Video Solution

111. If the sides of a triangle are in A.P., and its greatest angle exceeds the least angle by α, show that the sides are in the ration $1+x: 1: 1-x$, , where $x=\sqrt{\frac{1-\cos \alpha}{7-\cos \alpha}}$

- Watch Video Solution

112. In a $A B C$, if $\frac{\tan A}{2}, \frac{\tan B}{2}, \frac{\tan C}{2}$ are $\in A \dot{P}$; then show that $\cos A, \cos B, \cos C$ are in $A \dot{P}$.

- Watch Video Solution

113. If a,b,c are in HP, then prove that $\sin ^{2} \frac{A}{2}, \sin ^{2} \frac{B}{2}, \sin ^{2} \frac{C}{2}$ are also in HP.

- Watch Video Solution

114. If r_{1}, r_{2}, r_{3} are the ex-radii of $\triangle A B C$, then prove that

$$
\frac{b c}{r_{1}}+\frac{c a}{r_{2}}+\frac{a b}{r_{3}}=2 R\left[\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)-3\right]
$$

- Watch Video Solution

115. If r and R are radii of the incircle and circum-circle of $\triangle A B C$, then prove that :

$$
\begin{aligned}
& 8 r R\left\{\cos ^{2} A / 2+\cos ^{2} B / 2+\cos ^{2} C / 2\right\} \\
& =2 b c+2 c a+2 a b-a^{2}-b^{2}-c^{2}
\end{aligned}
$$

- Watch Video Solution

116. Prove that
$r_{1}^{2}+r_{2}^{2}+r_{3}^{3}+r^{2}=16 R^{2}-a^{2}-b^{2}-c^{2}$.
where $r=$ in radius, $\mathrm{R}=$ circumradius,, r_{1}, r_{2}, r_{3} are ex-radii.

- Watch Video Solution

117. Tangent are parallel to the three sides are drawn to the in-corcle. If x, y, z are the lengths of hrte prats of the tangents with in triangle, then prove that $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.

D View Text Solution

118. If in a triangle $A B C, \cos A+2 \cos B+\cos C=2$ prove that the sides of the triangle are in $A P$

- Watch Video Solution

119. In a cyclic quadrilateral $A B C D$, prove that $\tan ^{2} \frac{B}{2}=\frac{(s-a)(s-b)}{(s-c)(s-d)}, a, b, c$, and d being the lengths of sides $A B C, C D$ and $D A$ respectively and s is semi-perimeter of quadrilateral.

- Watch Video Solution

120. If x, y, z are respectively perpendiculars from the circumcentre on the sides of the $\triangle A B C$, the value of $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}-\frac{a b c}{4 x y z}=$

- Watch Video Solution

121. In the $\triangle A B C$, a similar $\Delta A^{\prime} B^{\prime} C^{\prime}$ is inscribed so that $B^{\prime} C^{\prime}=\lambda B C$. If $B^{\prime} C^{\prime}$ is inclined at an angle θ with Bc then prove that $\lambda \cos \theta=\frac{1}{2}$.
122. The circle inscribed in the triangle $A B C$ touches the side $B C, C A$ and AB in the point $A_{1} B_{1}$ and C_{1} respectively. Similarly the circle inscribed in the $\Delta A_{1} B_{1} C_{1}$ touches the sieds in A_{2}, B_{2}, C_{2} respectively and so on. If $A_{n} B_{n} C_{n}$ be the nth Δ so formed, prove that its angle are $\left(C-\frac{\pi}{3}\right)$. Hence prove that the triangle so formed is ultimately equilateral.

D View Text Solution

123. In a $\triangle A B C$, prove that:
$2 r \leq \frac{a \cot A+b \cot B+c \cot C}{3} \leq R$

- View Text Solution

124. If A, B and C are angles of a triangle, then prove
that $E=\frac{\cos \left(\frac{B-C}{2}\right)}{\cos \left(\frac{B+C}{2}\right)}+\frac{\cos \left(\frac{C-A}{2}\right)}{\cos \left(\frac{C+A}{2}\right)}+\frac{\cos \left(\frac{A-B}{2}\right)}{\cos \left(\frac{A+B}{2}\right)} \geq 6$
125. If Δ is the area of a triangle with side lengths a, b, c, then show that as $\Delta \leq \frac{1}{4} \sqrt{(a+b+c) a b c}$ Also, show that the equality occurs in the above inequality if and only if $a=b=c$.

- Watch Video Solution

Exercise For Sesssion 1

1. In the given figure,if $A B=A C, \angle B A D=30^{\circ}$ and $A E=A D$, then x is equal to

A. 15°
B. 10°
C. $12 \frac{1}{2}$
D. $7 \frac{1}{2}$
2. In $\triangle A B C, a=4, b=12$ and $B=60^{\circ}$, thn the vlaue of $\sin \mathrm{A}$ is
A. $\frac{1}{2 \sqrt{3}}$
B. $\frac{1}{3 \sqrt{2}}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{\sqrt{3}}{2}$
3. Let ABC be a triangle such that $\angle A=45^{\circ}, \angle B=75^{\circ}$, then $a+c \sqrt{2}$ is equal to
A. 0
B. b
C. 2 b
D. $-b$

- Watch Video Solution

4. Angles A, B and C of a $\triangle A B C$ are in $A P . I f \frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}$, then $\angle A$ is equal to
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{5 \pi}{12}$
D. $\frac{\pi}{2}$

- Watch Video Solution

5. If $\cot \frac{A}{2}=\frac{b+c}{a}$, then $\triangle A B C$ is
A. Isosceles
B. Equilateral
C. Right angled
D. None of these
6. If in a $\triangle A B C, \frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$, then the triangle is
A. Right angled or isosceles
B. Right angled and isosceles
C. Equiliateral
D. None of these
7. In any triangle $A B C$,
prove that:
$\frac{a^{2} \sin (B-C)}{\sin B+s \in C}+\frac{b^{2} \sin (C-A)}{\sin C+s \in A}+\frac{c^{2} \sin (A-B)}{\sin A+s \in B}=0$
A. $a+b+c$
B. $a+b-c$
C. $a-b+c$
D. 0
8. In any $\triangle A B C$, is $2 \cos B=\frac{a}{c}$, then the triangle is
A. right angled
B. equilateral
C. isosceles
D. None of these

- Watch Video Solution

9. Prove that $\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}}=\sin ^{2} A$
A. $\cos ^{2} A$
B. $\sin ^{2} A$
C. $\cos A \cos B \cos C$
D. None of these
10. If a $\cos A=b \cos B$, then the triangle is
A. Isosceles
B. Right angled
C. Isosceles or right angled
D. Right angled isosceles

- Watch Video Solution

11. In a $\triangle A B C,(a+b+c)(b+c-a)=\gamma b c$ if
A. lamd <0
B. $\lambda>0$
C. $0<\lambda<4$
D. $\lambda<4$

- Watch Video Solution

12. If : $a=9, b=8$ and $c=x$ satisfies $3 \cos \mathrm{C}=2$, then $: \mathrm{x}=$
A. $x=5$
B. $x=6$
C. $x=4$
D. $x=7$

- Watch Video Solution

13. In $\triangle A B C, \quad$ if $\sin ^{2} A+\sin ^{2} B=\sin ^{2} C$, then the triangle is
A. equilateral
B. isosceles
C. right angled
D. None of these

- Watch Video Solution

14. The lengths of the sides of a triangle are $\alpha-\beta, \alpha+\beta$ and
$\sqrt{3 \alpha^{2}+\beta^{2}},(\alpha>\beta>0)$. Its largest angle is
A. $\frac{2 \pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{6}$
15. In any triangle, $\frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=$
A. $\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
B. $\frac{b^{2}+c^{2}}{b^{2}-c^{2}}$
C. $\frac{c^{2}-a^{2}}{a^{2}+b^{2}}$
D. None of these

- Watch Video Solution

16. The sides a, b, c of a triangle $A B C$ are in arithmetic progression and ' a ' is the smallest side. What is $\cos A$ equal to ?
A. $\frac{3 c-4 b}{2 c}$
B. $\frac{3 c-4 b}{2 b}$
C. $\frac{4 c-3 b}{2 c}$
D. None of these

- Watch Video Solution

17. In a $\triangle A B C, a^{2} \cos 2 B+b^{2} \cos 2 A+2 a b \cos (A-B)=$
A. a^{2}
B. c^{2}
C. b^{2}
D. $a^{2}+b^{2}$

- Watch Video Solution

18. In any $\Delta A B C, 2[b c \cos A+c a \cos B+a b \cos C]=$
A. $a^{2}+b^{2}+c^{2}$
B. $a^{2}+b^{2}-c^{2}$
C. $a^{2}-b^{2}+c^{2}$
D. $a^{2}-b^{2}+c^{2}$

- Watch Video Solution

19. In a $\triangle A B C, \tan \frac{1}{2}(A+B) \cdot \cot \frac{1}{2}(A-B)$ is equal to
A. $\frac{a-b}{a+b}$
B. $\frac{a+b}{c}$
C. $\frac{a+b}{a-b}$
D. $\frac{a-b}{2(a+b)}$
20. If in a $\triangle A B C, b=\sqrt{3}, c=1$ and $B-C=90^{\circ}$, then $\angle A$ is
A. 30°
B. 45°
C. 75°
D. 15°

Exercise For Sesssion 2

1. If in a triangle $A B C,(s-a)(s-b)=s(s-c)$, then angle C is equal to
A. 90°
B. 45°
C. 30°
D. 60°

(Watch Video Solution

2. In any $\triangle A B C$, If $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in AP, then a, b, c are in
A. AP
B. GP
C. HP
D. None of these

- Watch Video Solution

3. In any $\triangle A B C, \frac{\tan \frac{A}{2}-\tan \frac{B}{2}}{\tan \frac{A}{2}+\tan \frac{B}{2}}$ is equal to
A. $\frac{a-b}{a+b}$
B. $\frac{a-b}{c}$
C. $\frac{a-b}{a+b+c}$
D. $\frac{c}{a+b}$

- Watch Video Solution

4. In a triangle $\mathrm{ABC}, b \cos ^{2} \frac{A}{2}+\operatorname{cacos}^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}=$
A. $(s-a)^{2}$
B. $(s-b)^{2}$
C. $(s-c)^{2}$
D. s^{2}
5. In a $\Delta A B C$, if $\cos A+\cos C=4 \sin ^{2}\left(\frac{B}{2}\right)$, then a,b,c are in
A. AP
B. GP
C. HP
D. None of these
6. In a $\triangle A B C$, if $b^{2}+c^{2}=3 a^{2}$, then $\cot B+\cot C-\cot A$ is equal to
A. 1
B. $\sqrt{3}$
C. 2
D. None of these
$\Delta A B C,\left(\frac{b-c}{a}\right) \cos ^{2}\left(\frac{A}{2}\right)+\left(\frac{c-a}{b}\right) \cos ^{2}\left(\frac{b}{2}\right)+\left(\frac{a-b}{2}\right) \cos ^{2}\left(\frac{C}{2}\right)$ is equal
A. $\frac{b^{2}-c^{2}}{a^{2}}$
B. $\frac{c^{2}-a^{2}}{b^{2}}$
C. $\frac{a^{2}-b^{2}}{c^{2}}$
D. 0

- Watch Video Solution

8. If in a $\triangle A B C$, the tangent of half the difference of two angles is onethird the tangent of half the sum of the angles. Then, the ratio of the sides opposite to the angles is
A. 2:3
B. 1:3
C. 2: 1
D. 3: 4

- Watch Video Solution

9. If in a triangle a $\frac{\cos ^{2} C}{2}+\frac{\cos ^{2} A}{2}=\frac{3 b}{2}$, then find the relation between the sides of the triangle.
A. AP
B. GP
C. HP
D. AGP
10. If $c^{2}=a^{2}+b^{2}$, then $4 s(s-a)(s-b)(s-c)$ is equal to
A. s^{4}
B. $b^{2} c^{2}$
C. $c^{2} a^{2}$
D. $a^{2} b^{2}$

- Watch Video Solution

11. The number of possible $\angle A B C$ in which
$B C=\sqrt{11} c m, C A=\sqrt{13} \mathrm{~cm}$ and $A=60^{\circ}$ is
A. 0
B. 1
C. 2
D. None of these

(Watch Video Solution

12. If two sides a, b and the $\angle A$ be such that the sum of two values of the third side is
A. $b^{2}-a^{2}$
B. $2 b \cos A$
C. $2 b \sin A$
D. $\frac{b-c}{b+c}$

- Watch Video Solution

13. If in a $\triangle A B C, \sin A=\sin ^{2} B$ and $2 \cos ^{2} A=3 \cos ^{2} B$, then the $\triangle A B C$ is

A. right angled

B. obtuse angled
C. isosceles
D. equilateral
14. If a $\cos A=b \cos B$, then the triange is
A. equliateral
B. right angled
C. isosceles
D. isosceles or right angled
15. Point D, E are taken on the side $B C$ of an acute angled triangle $A B C$,, such that $B D=D E=E C$.
$\angle B A D=x, \angle D A E=y$ and $\angle E A C=z \quad$ then the value of $\underline{\sin (x+y) \sin (y+z)}$ $\sin x \sin z$
A. 1
B. 2
C. 4
D. None of these

- Watch Video Solution

16. If the base angles of triangle are $\frac{22}{12}$ and $112 \frac{1}{2^{0}}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.
A. half the base
B. the base
C. twice the base
D. four times the base

- Watch Video Solution

17. In a $\Delta A B C, a=1$ and the perrimeter is six times the AM of the since of the angles. The measure of $\angle A$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$
18. In a $\triangle A B C$, if median AD is perpendicular to AB , the $\tan A+2 \tan B$ is equal to
A. 1
B. 3
C. 0
D. $\frac{1}{2}$

- Watch Video Solution

19. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Than the tangents of the angles are the roots of the equation $q x^{3}-p x^{2}+(1+q) x-p=?$.
A. $q x^{2}-p x^{2}+(1+q) x-p=0$
B. $p x^{3}-q z^{2}+(1-p) x-q=0$
C. $(1+q) x^{3}-p x^{2}+q x-p=0$
D. None of these

- Watch Video Solution

Exercise For Sesssion 3

1. The side of a triangle are $22 \mathrm{~cm}, 28 \mathrm{~cm}$, and 36 cm So, find the area of a the circumscribed circle.

- Watch Video Solution

2. If the lengths of the side of a triangle are 3,4 and 5 units, then find the circum radius R .

- Watch Video Solution

3. In an equliateral triangle of side $2 \sqrt{3} \mathrm{~cm}$. The find circum-radius.

- Watch Video Solution

4. If $8 R^{2}=a^{2}+b^{2}+c^{2}$. then prove that the Δ is right angled.

- Watch Video Solution

5. In a $\triangle A B C$, show that $2 R^{2} \sin A \sin B \sin C=\Delta$.

Watch Video Solution
6. In a $\triangle A B C$, show that $\frac{a \cos A+b \cos B+c \cos C}{a+b+c}=\frac{r}{R}$

- Watch Video Solution

7. If the sides of a triangles are $3: 7: 8$, then ratio $R: r$
8. In an equilateral triangle show that the in-radius and the circum-radius are connected by $r=\frac{R}{2}$.

- Watch Video Solution

9. In any $\triangle A B C$, find $\sin A+\sin B+\sin C$.

- Watch Video Solution

10. In any $\triangle A B C$, show that $\cos A+\cos B+\cos C=\left(1+\frac{r}{R}\right)$.

- Watch Video Solution

11. Prove that $\frac{r_{1}-r}{a}+\frac{r_{2}-r}{b}=\frac{c}{r_{3}}$
12. show that $r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}=s^{2}$

- Watch Video Solution

13. Show that $\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)=4 R s^{2}$

- Watch Video Solution

14. If $r_{1}+r_{2}+r=r_{3}$, then show that Δ is right angled.

- Watch Video Solution

15. In an equilateral triangle, the in-radius, circum-radius and one of the ex-radii are in the ratio

- Watch Video Solution

16. Show that $\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\left(\frac{1}{r_{2}}+\frac{1}{r_{1}}\right)\left(\frac{1}{r_{3}}+\frac{1}{r_{1}}\right)=\frac{64 R^{3}}{a^{2} b^{2} c^{2}}$

- Watch Video Solution

17. The exradii r_{1}, r_{2}, r_{3} of $\triangle A B C$ and in HP , show that a,b and c in AP

- Watch Video Solution

18. In a $\triangle A B C$, show that $r_{1} \cdot r_{2} \cdot r_{3} \cdot r=\Delta^{2}$.

- Watch Video Solution

19. If the angle opf a triangle are in the ratio $1: 2: 3$, then show that the sides opposite to the respective angle are in the ratio $1: \sqrt{3}: 2$.

- Watch Video Solution

20. Show that, $4 R r \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\Delta$

- Watch Video Solution

21. In $\triangle A B C$, if $(a-b)(s-c)=(b-c)(s-a)$ then r_{1}, r_{2}, r_{3} are in

- Watch Video Solution

22. In a triangle $A B C$,if $\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r^{2}}=$

(Watch Video Solution

23. $\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right)=4 R r^{2}$

- Watch Video Solution

24. Show that $\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\left(\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)\left(\frac{1}{r_{3}}+\frac{1}{r_{1}}\right)=\frac{64 R^{3}}{a^{2} b^{2} c^{2}}$
25.

Prove
$\left(r+r_{1}\right) \tan \left(\frac{B-C}{2}\right)+\left(r+r_{2}\right) \tan \left(\frac{C-A}{2}\right)+\left(r+r_{3}\right) \tan \left(\frac{A-B}{2}\right)$

(D) Watch Video Solution

26. Show that $\frac{b-c}{r_{1}}+\frac{c-a}{r_{2}}+\frac{c-a}{r_{3}}=0$.

- Watch Video Solution

27. If the sides be $\mathrm{a}, \mathrm{b}, \mathrm{c}$, than find $\left(r_{1}-r\right)\left(r_{2}+r_{3}\right)$.

- Watch Video Solution

28. If a,b,c are in AP, then show that r_{1}, r_{2}, r_{3} are in HP.
29. In $\triangle A B C$ with usual notation $\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$ is

- Watch Video Solution

30. Show that $r_{1}+r_{2}=c \cot \left(\frac{C}{2}\right)$

(Watch Video Solution

31. Show that $\operatorname{Rr}(\sin A+\sin B+\sin C)=\Delta$

- Watch Video Solution

32. Show that $16 R^{2} r r_{1} r_{2} r_{3}=a^{2} b^{2} c^{2}$

- Watch Video Solution

33. If $\frac{r}{r_{1}}=\frac{r_{2}}{r_{3}}$, then show that $c=90^{\circ}$.

- Watch Video Solution

Exercise For Sesssion 4

1. If H is the orthocentre of the $\triangle A B C$, then find AH .

D Watch Video Solution

2. Prove that $a \cos A+b \cos B+c \cos C=4 R \sin A \sin B \sin C$.

- Watch Video Solution

3. If the altitudes of a triangle be $2,4,6$, then find its in-radius.
4. In a $\triangle A B C$, if $a=3, b=4, c=5$, then find the distance between its incentre and circumcentre.

- Watch Video Solution

5. If p_{1}, p_{2}, p_{3} are respectively the perpendicular from the vertices of a triangle to the opposite sides, then find the value of $p_{1} p_{2} p_{3}$.

- Watch Video Solution

6. Prove that the distance between the circumcenter and the incenter of triangle ABC is $\sqrt{R^{2}-2 R r}$

- Watch Video Solution

7. In $\triangle A B C$ it is given distance between the circumcentre (0) and orthocentre (H) is $R \sqrt{1-8 \cos A \cos B \cos C}$. If Q is the midopoint of

OH , then AQ is

- Watch Video Solution

8. If in a $\triangle A B C, A D, B E$ and $C F$ are the altitudes and R is the circumradius, then find the radius of the DEF.

- Watch Video Solution

Exercise For Sesssion 5

1. Find the sum of the radii of the fcircles, which are respectively inscribed and circumscribed about the a regular polygon of n sides.

- Watch Video Solution

2. Find the radius of the circumscribing circle of a regular polygon of n sides each of length is a.

- Watch Video Solution

3. If A, A_{1}, A_{2} and A_{3} are the areas of the inscribed and escribed circles of a triangle, prove that $\frac{1}{\sqrt{A}}=\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}$

- Watch Video Solution

4. A polygon of nine sides, each side of length 2 , is inscribed in a circle. The radius of the circle is \qquad .

- Watch Video Solution

5. The area of the circle and the area of a regular polygon of n sides and of perimeter equal to that of the circle are in the ratio of $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$ (b) $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n} \frac{\sin \pi}{n}: \frac{\pi}{n}$ (d) $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$

- Watch Video Solution

6. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be the vertices of an n-sided regular polygon such that $\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}$. Find the value of n. Prove or disprove the converse of this result.

- Watch Video Solution

7. I_{n} is the area of n sided refular polygon inscribed in a circle unit radius and O_{n} be the area of the polygon circumscribing the given circle, prove that $I_{n}=\frac{O_{n}}{2}\left(1+\sqrt{1-\left(\frac{2 I_{n}}{n}\right)^{2}}\right)$

- Watch Video Solution

Exercise For Sesssion 6

1. The area of a cyclic quadrilateral ABCD is $\frac{3 \sqrt{3}}{4}$. The radius of the circle circumscribing cyclic quadrilateral is 1. If $A B=1$ and $B D=\sqrt{3}$, then $B C \cdot C D$ is equal to
2. If two adjacent sides of a cyclic quadrilateral aré 2 and 5 and the angle between them is 60°. If the third side is 3 , then the remaining fourth side is (a) 2 (b) 3 (c) 4 (d) 5

- Watch Video Solution

3. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is $3: 4$. Then the value of n is 6 (b) 4 (c) 8 (d) 12

- Watch Video Solution

4. A right angled trapezium is circumscribed about a circle. Find the radius of the circle. If the lengtyhs of the bases (i.e.parallel sides) are equal to a and b.
5. If A, B, C, D are the angles of quadrilateral, then find $\frac{\sum \tan A}{\sum \cot A}$.

- Watch Video Solution

Exercise For Sesssion 7

1. In triangle $A B C, a: b: c=(1+x): 1:(1-x)$ where $x \in(0,1)$ If $\angle A=\frac{\pi}{2}+\angle C$, then x equal to

- Watch Video Solution

2. In a $\Delta A B C, 2 s=$ perimeter and $\mathrm{R}=$ circumradius. Then, find $\frac{s}{R}$.

- Watch Video Solution

3. If in a $\triangle A B C, \angle C=90^{\circ}$, then the maximum value of $\sin A \sin B$ is

Watch Video Solution

4. If the area os a triangle is 81 square cm and its perimeter is 27 cm , then find its in-radius in centi-metres.

- Watch Video Solution

5. In a $\triangle A B C$, if $r_{1}=2 r_{2}=3 r_{3}$, then show that $\frac{a}{b}=\frac{5}{4}$.

- Watch Video Solution

6. The radius of the larger circle lying in the first quadrant and touching the line $4 x+3 y-12=0$ and the coordinate axes, is

- Watch Video Solution

7. In a $\triangle P Q R$ as show in figure given that $x: y: z:: 2: 3: 6$, then find value of $\angle Q P R$.

- Watch Video Solution

8. If the angle of a righta angled triangle are in A.P. then the ratio of the in -radius and the perimeter, is

- Watch Video Solution

9. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then the triangle is right angled (b) isosceles equilateral (d) none of these

- Watch Video Solution

Exercise For Sesssion 8

1. If a tower subtends angles $\theta, 2 \theta$ and 3θ at three points A, B, and C respectively, lying on the same side of a horizontal line through the foot of the tower, show that $\frac{A B}{B C} \frac{\cot \theta-\cot 2 \theta}{\cot 2 \theta-\cot 3 \theta}$.

- Watch Video Solution

2. A prson stands at a point A due south of a tower of height h and aboserves that its evelation is 60°. He then walks westwards towards B , where the elevation is 45°. At a point C on $A B$ produced, show that if he find it to be $30^{\circ} . O A, O B, O C$ are in GP.
3. A train travelling on one of two intersecting railway lines, subtends at a certain station on the other line, an/ angle α when the front of the carriage reaches the junction and an angle β when the end of the carriage reaches it. Then, the two lines are inclined to each other at an angle theta, show that $2 \cot \theta=\cot \alpha-\cot \beta \cot \alpha+\cot \beta$

- Watch Video Solution

4. The angle of elevation of the top of the tower observed from each of three points A, B, C on the ground, forming a triangle is the same angle α. If R is the circum-radius of the triangle ABC , then find the height of the tower

- Watch Video Solution

5. The length of the shadow of a pole inclined at 10° to the vertical towards the sun is 2.05 meters, when the elecation of the sun is 38°. Then, the length of the pole.

- Watch Video Solution

Exercise (Single Option Correct Type Questions)

1. In a $\triangle A B C$, if $a=13, b=14$ and $c=15$, then $\angle A$ is equal to (All symbols used have their usual meaning in a triangle.)
A. $\sin ^{-1} \frac{4}{5}$
B. $\sin ^{-1} \frac{3}{5}$
C. $\sin ^{-1} \frac{3}{4}$
D. $\sin ^{-1} \frac{2}{3}$

Answer: A

2. In a $\triangle A B C$, if $b=(\sqrt{3}-1) a$ and $\angle C=30^{\circ}$, then the value of ($\mathrm{A}-\mathrm{B}$) is equal to (All symbols used have usual meaning in the triangel.)
A. 30°
B. 45°
C. 60°
D. 75°

Answer: C

- Watch Video Solution

3. In $a \triangle A B C$, if $\angle C=105^{\circ}, \angle B=45^{\circ}$ and length of side $\mathrm{AC}=2$ units, then the length of th side $A B$ is equal to
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{2}+1$
D. $\sqrt{3}+1$

Answer: C

- Watch Video Solution

4. If P is a point on the altitude AD of the $\triangle A B C$ such that $\angle C B P=\frac{B}{3}$, then AP is equal to
A. $2 a \sin \frac{C}{3}$
B. $2 b \sin \frac{A}{3}$
C. $2 c \sin \frac{B}{3}$
D. $2 c \sin \frac{C}{3}$

Answer: C

5. In $\triangle A B C$, if $2 b=a+c$ and $A-C=90^{\circ}$, then $\sin \mathrm{B}$ equal All symbols used have usual meaning in $\triangle A B C$.]
A. $\frac{\sqrt{7}}{5}$
B. $\frac{\sqrt{5}}{8}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{5}}{3}$

Answer: C

- Watch Video Solution

6. Let $A B C$ be a right triangle with length of side $A B=3$ and hyotenus $A C=5$. If D is a point on BC such that $\frac{B D}{D C}=\frac{A B}{A C}$, then AD is equal to
A. $\frac{4 \sqrt{3}}{3}$
B. $\frac{3 \sqrt{5}}{2}$
C. $\frac{4 \sqrt{5}}{3}$
D. $\frac{5 \sqrt{3}}{4}$

Answer: B

- Watch Video Solution

7. Two medians draen form the acute angles of a right angled triangle intersefct at an angle $\frac{\pi}{6}$. If the length of the hypotenuse of the triangle is 3 units, then the area of the triangle (in sq units) is \sqrt{K}, then K is
A. 3
B. $\frac{3 \sqrt{5}}{2}$
C. $\sqrt{3}$
D. None of these

Answer: C

8. If in a right angle $\triangle A B C, 4 \sin A \cos B-1=0$ and $\tan \mathrm{A}$ is finite, then
A. angles are in AP
B. angles are in GP
C. angles are in HP
D. None of these

Answer: A

- Watch Video Solution

9. Let $A=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ 1 & 1 & 1\end{array}\right]$ and $B=A^{2}$

If
$(a-b)^{2}+(p-q)^{2}=25,(b-c)^{2}+(q-r)^{2}=36$ and $(c-a)^{2}+(r-p$ then $\operatorname{det} B$ is
A. 192
B. 864
C. 2456
D. $25 \times 36 \times 47$

Answer: B

- View Text Solution

10. If in a $\triangle A B C$, the incricle passing through the point of intersection of perpendicular bisector of sides BC, AB, then $4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ equal to
A. $\sqrt{2}$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\frac{1}{2}$

Answer: B

- View Text Solution

11. If two sides of a triangle are roots of the equation $x^{2}-7 x+8=0$ and the angle between these sides is 60° then the product of inradius and circumradius of the triangle is $\frac{8}{7}$ (b) $\frac{5}{3}$ (c) $\frac{5 \sqrt{2}}{3}$ (d) 8
A. $\frac{8}{7}$
B. $\frac{5}{3}$
C. $\frac{5 \sqrt{3}}{3}$
D. 8

Answer: B

- Watch Video Solution

12. If median $A D$ of a triangle $A B C$ makes angle $\frac{\pi}{6}$ with side $B C$, then the value of $(\cot B-\cot C)^{2}$ is equal to
A. 6
B. 9
C. 12
D. 15

Answer: C

- Watch Video Solution

13. If the perimeter of the triangle formed by feet of altitudes of the triangle $A B C$ is equal to four times the circumradius of $\triangle A B C$, then identify the type of $\triangle A B C$
A. isosceles triangle
B. equilateral triangle
C. right angled triangle
D. None of these

Answer: D

- Watch Video Solution

14. In a triangle with one angle $\frac{2 \pi}{3}$, the lengths of the sides form an A.P. If the length of the greatest side is 7 cm , the radius of the circumcircle of the triangle is
A. $\frac{7 \sqrt{3}}{3} \mathrm{~cm}$
B. $\frac{5 \sqrt{3}}{3} \mathrm{~cm}$
C. $\frac{2 \sqrt{3}}{3} \mathrm{~cm}$
D. $\sqrt{3} \mathrm{~cm}$

Answer: A

15. Sides of triangle ABC are in A.P. if $a<\min \{b, c\}$ then $\cos A$ is equal to
A. $\frac{3 c-4 b}{2 b}$
B. $\frac{3 c-4 b}{2 c}$
C. $\frac{4 c-3 b}{2 b}$
D. $\frac{4 c-3 b}{2 c}$

Answer: D

- Watch Video Solution

16. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Show that the tangents of the angles are the roots of the equation $q x^{3}-p x^{2}+(1+q) x-p=0$.

$$
\text { A. } q x^{2}-p x^{2}+(1-x) x-p=0
$$

B. $q x^{3}-p x^{2}-(1-q) x-p=0$
C. $q x^{3}-p x^{2}+(1+q) x-p=0$
D. None of these

Answer: A

- Watch Video Solution

17. Let C be incircle of $\triangle A B C$. If the tangenst of lengths t_{1}, t_{2} and t_{3} are drawn inside the given triangle parallel to sides a, b and c , respectively, then $\frac{t_{1}}{a}+\frac{t_{2}}{b}+\frac{t_{3}}{\circledR}$ is equal to
A. 0
B. 1
C. 2
D. 3
18. If the sine of the angles of $\triangle A B C$ satisfy the equation $c^{3} x^{3}-c^{2}(a+b+c) x^{2}+l x+m=0$
(where a,b,c are the sides of $\triangle A B C$), then $\triangle A B C$ is
A. always right angled for any I, m
B. right
angled
only
when
$l=c(a b+b c+c a)=c \sum a b, m=-a b c$
C. right angled only when $l=\frac{c \sum a b}{4}, m=-\frac{a b c}{8}$
D. never right angled

Answer: B

- View Text Solution

19. The rational number which equals the number 2.357 with recurring decimal is $\frac{2355}{1001}$ b. $\frac{2379}{997}$ c. $\frac{2355}{999}$ d. none of these

50
A. $\frac{50}{9}$
B. $\frac{25}{9}$
C. $\frac{25}{3}$
D. $\frac{27}{7}$

Answer: C

- Watch Video Solution

20. In a triangle $A B C, a \geq b \geq c$. If
$\frac{a^{3}+b^{3}+c^{3}}{\sin ^{3} A+\sin ^{3} B+\sin ^{3} C}=8, \quad$ then the maximum value of a $\sin ^{3} A+\sin ^{3} B+\sin ^{3} C$
A. $\frac{1}{2}$
B. 2
C. 8
D. 64

- Watch Video Solution

21. A triangle $A B C$ exists such that
A. $(b+c+a)(b+c-a)=5 b c$
B. the sides are of lengths $\sqrt{19}, \sqrt{38}, \sqrt{116}$
C. $\cos \left(\frac{b^{2}-c^{2}}{a^{2}}\right)+\left(\frac{c^{2}-a^{2}}{b^{2}}\right)+\left(\frac{a^{2}-b^{2}}{c^{2}}\right)=0$
D. $\cos \left(\frac{B-C}{2}\right)=(\sin B+\sin C) \cos \left(\frac{B+C}{2}\right)$

Answer: D

View Text Solution

22. In a $\delta A B C, \mathrm{a}, \mathrm{c}, \mathrm{A}$ are given and b_{1}, b_{2} are two values of third side b such that $b_{2}=2 b_{1}$. Then, the value of $\sin \mathrm{A}$.
A. $\sqrt{\frac{9 a^{2}-c^{2}}{8 a^{2}}}$
B. $\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$
C. $\sqrt{\frac{9 a^{2}-c^{2}}{8 b^{2}}}$
D. None of these

Answer: B

- Watch Video Solution

23.

In
a
triangle
ABC,
if
$\cot A=\left(x^{3}+x^{2}+x\right)^{\frac{1}{2}}, \cot B=\left(x+x^{-1}+1\right)^{\frac{1}{2}}$ and $\cot C=\underline{\left(x^{-3}+\right.}$
then the triangle is
A. equilateral
B. isosceles
C. right angled
D. obtuse anguled

Answer: C

D View Text Solution

24. In a $\triangle A B C, a, b, A$ are given and c_{1}, c_{2} are two valus of the third side
c. The sum of the areas two triangles with sides $\mathrm{a}, \mathrm{b}, c_{1}$ and a, b, c_{2} is
A. $\frac{1}{2} a^{2} \sin 2 A$
B. $\frac{1}{2} a^{2} \sin 2 A$
C. $b^{2} \sin 2 A$
D. None of these

Answer: A

- Watch Video Solution

25. In $\triangle A B C$, if a $=10$ and $b \cot B+c \cot C=2(r+R)$ then the maximum area of $\triangle A B C$ will be
A. 50
B. $\sqrt{50}$
C. 25
D. 5

Answer: C

- Watch Video Solution

26. Three circles touch one-another externally. The tangents at their point of contact meet at a point whose distance from a point contact is 4 . Then, the ratio of the product of the radii of the sum of the radii of circles is
A. 16: 1
B. 1: 16
C. $8: 1$
D. None of these

- Watch Video Solution

27. Let a, b, c be the sides of a triangle. No two of them are equal and $\lambda \in R$ If the roots of the equation
$x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real distinct, then
A. $\lambda<\frac{4}{3}$
B. $\lambda>\frac{5}{3}$
C. $\lambda \in\left(\frac{1}{3}, \frac{5}{3}\right)$
D. $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$

Answer: A

28. In triangle $A B C$, if P, Q, R divides sides $B C, A C$ and $A B$, respectively, in the ratio $\mathrm{k}, 1$ (in order). If the ratio $\left(\frac{\operatorname{area} \triangle P Q R}{\text { area } \triangle A B C}\right) i s \frac{1}{3}$, then k is equal to
A. $\frac{1}{3}$
B. 2
C. 3
D. None of these

Answer: B

- Watch Video Solution

29. Let $f(x+y)=f(x) . f(y)$ for all x and $\mathrm{y} f(1)=2$ If in a triangle $A B C, a=f(3), b=f(1)+f(3), c=f(2)+f(3)$,
A. C
B. 2C
C. 3 C
D. 4 C

Answer: A

- Watch Video Solution

30. Let $\mathrm{a}, \mathrm{b} \mathrm{c}$ be given positive numbers, then values of x, y and $z \in R^{+}$ which satisfies
equations
$x+y+z=a+b+x$ and $4 x y z=-\left(a^{2} x+b^{2}+c^{2} z\right)=$ abc are respectively.
A. $\frac{b+c}{2}, \frac{a+c}{2}, \frac{a+b}{2}$
B. $\frac{a}{2}, \frac{b}{2}, \frac{c}{2}$
C. $\frac{a+b}{2}, \frac{a+c}{2}, \frac{b+c}{2}$
D. None of these

Answer: A

31. If ' t_{1} ', ' t_{2} ' and ' t_{3} ' are the lengths of the tangents draen from centre of x -circle to the circumcircle of the $\triangle A B C$, then $\frac{1}{t_{1}^{2}}+\frac{1}{t_{2}^{2}}+\frac{1}{t_{3}^{2}}$ is equal to
A. $\frac{a b c}{a+b+c}$
B. $\frac{a+b+c}{a b c}$
C. $\frac{a+b+c}{2 a b c}$
D. $\frac{2 a b c}{a+b+c}$

Answer: B

D View Text Solution

32. In triangle $A B C, \angle A>\frac{\pi}{2} . A A_{1}$ and $A A_{2}$ are the medium and altitude, espectively. If $\angle B A A_{1}=\angle A_{1} A A_{2}=\angle A_{2} A C$, then $\sin ^{3} \frac{A}{3} \cdot \cos \frac{A}{3}$ is equal to
A. $\frac{3 a^{3}}{16 b^{2} c}$
B. $\frac{3 a^{3}}{64 b^{2} c}$
C. $\frac{3 a^{2}}{4 b^{2} c}$
D. $\frac{3 a^{3}}{12 b^{2} c}$

Answer: D

- View Text Solution

33. In an ambiguoa ambiguous case of solving a triangleshen $a=\sqrt{5}, b=2, \angle A=\frac{\pi}{6}$ and the two possible values of third side are c_{1} and c_{2}, then
A. $\left|c_{1}-c_{2}\right|=2 \sqrt{6}$
B. $\left|c_{1}-c_{2}\right|=4 \sqrt{6}$
C. $\left|c_{1}-c_{2}\right|=4$
D. $\left|c_{1}-c_{2}\right|=6$

Answer: C

D Watch Video Solution

34. If R_{1} is the circumradius of the pedal triangle of a given triangle $A B C, a n d R_{2}$ is the circumradius of the pedal triangle of the pedal triangle formed, and so on R_{3}, R_{4} then the value of $\sum_{i=1}^{\infty} R_{i}$, where R (circumradius) of $A B C$ is 5 is 8 (b) 10 (c) 12 (d) 15
A. 8
B. 10
C. 12
D. 15

Answer: B

- Watch Video Solution

35. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then the triangle is right angled (b) isosceles equilateral (d) none of these
A. right angled
B. isosceles
C. equilateral
D. None of these

Answer: A

- Watch Video Solution

36. If the median $A D$ of a triangle $A B C$ makes an angle θ with side, $A B$, then $\sin (A-\theta)$ is equal to
A. $\frac{b}{c} \sin \theta$
B. $\frac{c}{b} \sin \theta$
C. $\frac{c}{b} \cos \theta$
D. None of these

Answer: B

- Watch Video Solution

37. In a $\triangle A B C$, angles A, B, C are in AP, then $\lim _{A \rightarrow C} \frac{\sqrt{3-4 A \sin C}}{|A-C|}$ is
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

38. In a triangle $A B C,(a+b+c)(b+c-a)=\lambda b c$ if
A. $\lambda<0$
B. $\lambda>6$
C. $0<\lambda<4$
D. $\lambda>4$

Answer: C

- Watch Video Solution

39. In the triangle ABC , if $\left(a^{2}+b^{2}\right) \sin (A-B)=\left(a^{2}-b^{2}\right) \sin (A+B)$, then the triangle is
A. either isosceles or right angled
B. only right angled
C. only isosceles triangle
D. None of the above
40. In a sides a,b,c are inAP and $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{(2 b)!}$, then the maximum value of $\tan \mathrm{A} \tan \mathrm{B}$ is equal to
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: B

- View Text Solution

41. If a, b, c be the sides foi a triangle $A B C$ and if roots of equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=90 \quad$ are equal then $\frac{\sin ^{2} A}{2}, \sin ^{2}, \frac{B}{2}, \frac{\sin ^{2} C}{2}$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these
A. AP
B. GP
C. HP
D. AGP

Answer: C

- Watch Video Solution

42. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is $3: 4$. Then the value of n is 6 (b) 4 (c) 8 (d) 12
A. 6
B. 4
C. 8
D. 12

- Watch Video Solution

43. In any triangle $A B C \sum \frac{\sin ^{2} A+\sin A+1}{\sin A}$ is always greater than or equal
A. 9
B. 3
C. 27
D. None of these

Answer: C

Watch Video Solution
44. If the incircel of the triangle $A B C$, through it's circumcentre, then the $\cos A+\cos B+\cos C$ is
A. -2
B. $\sqrt{2}$
C. $-\sqrt{2}$
D. None of these

Answer: B

- Watch Video Solution

45. The perimeter of a triangle $A B C$ is saix times the arithmetic mean of the sines of its angles. If the side ais1 then find angle A.
A. 30°
B. 60°
C. 90°
D. 120°
46. If there are only two linear functions f and g which map $[1,2]$ on $[4,6]$ and in a $\Delta A B C, c=f(1)+g(1)$ and a is the maximum valur of r^{2}, where r is the distance of a variable point on the curve $x^{2}+y^{2}-x y=10$ from the origin, then $\sin \mathrm{A}: \sin \mathrm{C}$ is
A. 1:2
B. 2: 1
C. 1:1
D. None of these

Answer: C

- View Text Solution

47. A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in this circle is \qquad .
A. a^{2}
B. $\frac{a^{2}}{4}$
C. $\frac{a^{2}}{3}$
D. $\frac{a^{2}}{6}$

Answer: D

- Watch Video Solution

48. In any triangle $A B C$, if $\sin A, \sin B, \sin C$ are in $A P$, then the maximum value of $\tan \frac{B}{2}$ is
A. $-\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. None of these
49. In a $\triangle A B C, 2 \cos A=\frac{\sin B}{\sin C}$ and $2^{\tan ^{2} B}$ is a solution of equation $x^{2}-9 x+8=0$, then $\triangle A B C$ is
A. equilateral
B. isosceles
C. scalene
D. right angled

Answer: A

- View Text Solution

50. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3,4 and 5 units. Then area of the triangleis equal to:
A. $\frac{9 \sqrt{3}(1+\sqrt{3})}{\pi^{2}}$ unit
B. $\frac{3 \sqrt{3}(\sqrt{3}-1)}{\pi^{2}}$ sq unit
C. $\frac{9 \sqrt{3}(1+\sqrt{3})}{2 \pi^{2}}$ sq unit
D. $\frac{9 \sqrt{3}(\sqrt{3}-1)}{2 \pi^{2}}$ sq unit

Answer: A

- Watch Video Solution

51. If a, b and c are the sides of a traiangle such that $b . c=\lambda^{2}$, then the relation is a, λ and A is
A. $c \geq 2 \lambda \sin \left(\frac{C}{2}\right)$
B. $b \geq 2 \lambda \sin \left(\frac{A}{2}\right)$
C. $a \geq 2 \lambda \sin \left(\frac{A}{2}\right)$
D. None of these

- Watch Video Solution

52. In a triangle $A B C, A D$ is the altitude form- abcA (Fig. 12.9). Given $b>0,2 C=23^{\circ}$ and $A D=\frac{a b c}{b^{2}-c^{2}}$ then $\angle B$. is equal to
A. 110°
B. 113°
C. 120°
D. 130°

Answer: B

- Watch Video Solution

53. In triangle $A B C, a=5, b=4$ and $\cos (A+B)=\frac{31}{32}$ In this triangle,$c=$
A. 3
B. 6
C. 7
D. 9

Answer: B

- Watch Video Solution

54. In a $A B C$, if $A B=x, B C=x+1, \angle C=\frac{\pi}{3}$, then the least integer value of x is 6 (b) 7 (c) 8 (d) none of these
A. 6
B. 7
C. 8
D. None of these
55. In an equilateral triangle, three coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. The area of the triangle $A B C$ is
A. $(4+2 \sqrt{3}) \mathrm{cm}^{2}$
B. $\frac{1}{4}(12+7 \sqrt{3}) \mathrm{cm}^{2}$
C. $\frac{1}{4}(48+7 \sqrt{3}) \mathrm{cm}^{2}$
D. $(6+4 \sqrt{3}) \mathrm{cm}^{2}$

Answer: D

- Watch Video Solution

56. The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then $4(1-\cos A)(1-\cos C)$ is equal to
A. $\cos A-\cos C$
B. $\cos A \cos C$
C. $\cos A+\cos C$
D. $\cos C-\cos A$

Answer: C

D Watch Video Solution

57. If in $\triangle A B C, c(a+b) \cos \frac{B}{2}=b(a+c) \cos \frac{C}{2}$, the triangle is
A. isosceles
B. equilateral
C. right angled but not isosceles
D. right angled and isosceles

Answer: A

58. In a triangle $A B C$, the line joining the circumcentre and incentre is parallel to $B C$, then $\operatorname{Cos} B+\operatorname{Cos} C$ is equal to:
A. $\frac{3}{2}$
B. 1
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

59. In the given figure, $A B$ is the diameter of the circle, centered at 0 . If $\angle C O A=60^{\circ}, A B=2 r, A c=d$ and $C D=l$, then I is equal to

A. $d \sqrt{3}$
B. $\frac{d}{\sqrt{3}}$
C. $3 d$
D. $\frac{\sqrt{3} d}{2}$

Answer: A

- Watch Video Solution

60. If in a $\triangle A B C, A D, B E$ and $C F$ are the altitudes and R is the circumradius, then the radius of the circumcircle of $\triangle D E F$ is
A. 2 R
B. R
C. $\frac{R}{2}$
D. None of these

Answer: C

- Watch Video Solution

61. In a right angled triangle $A B C$, the bisector of the right angle C divides AB into segment x and y and $\tan \left(\frac{A-B}{2}\right)=t$, then $\mathrm{x}: \mathrm{y}$ is equal to
A. $(1+t)=(1-t)$
B. $(1-t):(t+1)$
C. 1: $(1+t)$
D. $(1-t): 1$

- View Text Solution

62. A variable triangle $A B C$ is circumscribed about a fixed circle of unit radius. Side $B C$ always touches the circle at D and has fixed direction. If B and C vary in such a way that $(B D) \cdot(C D)=2$, then locus of vertex A will be a straight line
A. parallel to side BC
B. right angle to side $B C$
C. making and angle $\frac{\pi}{6}$ with BC
D. making an angle $\sin ^{-1}\left(\frac{2}{3}\right)$ with $B C$

Answer: A

- Watch Video Solution

63. A tower of height b substends an angle at a point O on the leavel of the foot of the tower and at a distance a from the foot of the tower. If a
pole mounted on the lower also subtends an equal angle at O , the height of the pole is
A. $b\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
B. $b\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$
C. $a\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
D. $a\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$

Answer: B

- Watch Video Solution

64. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that at A. If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then find the height of balloon above the road.
B. $50 \sqrt{3} m$
C. $50 \sqrt{2} m$
D. None of these

Answer: D

- Watch Video Solution

65. A vertical pole (more than 100 m high) consists of two protions, the lower being one third or the whole. If the upper portion subtends an angle $\tan ^{-1}\left(\frac{1}{2}\right)$ at a point in a horizontal plance through the foot of the pole and distance 40 ft from it , then the height of the pole is
A. 100 gt
B. 120 ft
C. 150 ft
D. None of these :

Answer: B

D View Text Solution

Exercise (More Than One Correct Option Type Questions)

1. If the area of a triangle is given Δ and angle C is given and if the value of the side c opposite to angle C is minimum then
A. $a=\sqrt{\frac{2 \Delta}{\sin C}}$
B. $b=\sqrt{\frac{2 \Delta}{\sin C}}$
C. $a=\frac{4 \Delta}{\sin C}$
D. $b=\frac{4 \Delta}{\sin ^{2} C}$

Answer: A

- Watch Video Solution

2. If represents the area of acute angled triangle $A B C$, then $\sqrt{a^{2} b^{2}-4^{2}}+\sqrt{b^{2} c^{2}-4^{2}}+\sqrt{c^{2} a^{2}-4^{2}}=a^{2}+b^{2}+c^{2} \frac{a^{2}+b^{2}+c^{2}}{2}$ $a b \cos C+b o s A+c a \cos B a b \sin C+b c \sin A+c a \sin B$
A. $a^{2}+b^{2}+c^{2}$
B. $\frac{a^{2}+b^{2}+c^{2}}{2}$
C. $a b \cos C+b c \cos A+c a \cos B$
D. $a b \sin C+b c \sin A+c a \sin B$

Answer: C

- Watch Video Solution

3. In $\triangle A B C$, the value of $c \cos (A-\theta)+a \cos (C+\theta)=$

- Watch Video Solution

4. In $\triangle A B C, I f a c=3, b c=4$ and $(A-B)=\frac{3}{4}$, then
A. measuere of $\angle A i s p \frac{o}{2}$
B. measuere of $\angle B i s \frac{\pi}{2}$
C. $\cot \frac{C}{2}=\sqrt{7}$
D. circumradius of $\triangle A B C i s \frac{2}{7^{1 / 14}}$

Answer: B::C::D

- View Text Solution

5. If in $\triangle A B C, a=5, b=4$ and $\cos (A-B)=\frac{31}{32}$, then
A. The perimeter of $\triangle A B C$ equals $\frac{15}{2}$
B. The radius of circle inscribed in $\triangle A B C$ equals $\frac{\sqrt{7}}{2}$
C. The measure of $\angle C$ equals $\cos ^{-1} \frac{1}{8}$
D. The value of $R\left(b^{2} \sin 2 C+c^{2} \sin 2 B\right)$ equal 120

- Watch Video Solution

6. In which of the following situations, it is possible to have $a \Delta A B C$?
(All symbols used have usual meaning in a triangle)
A. $(a+c-b)(a-c+b)=4 b c$
B. $b^{2} \sin 2 C+\cos ^{2} \sin 2 B=a b$
C. $a=3, b=5, c=7$ and $C=\frac{2 \pi}{3}$
D. $\cos \left(\frac{A-C}{2}\right)=\cos \left(\frac{A+C}{2}\right)$

Answer: B::C

D View Text Solution

7. In a triangle $A B C$, let $B C=1, A C=2$ and measure of angle C is $30 \hat{A}^{\circ}$. Which of the following statement(s) is (are) correct? (A) $2 \sin A=\sin B$ (B) Length
of side $A B$ equals $5-2 \sqrt{3}$ (C) Measure of angle A is less than 30° (D) Circumradius of triangle $A B C$ is equal to length of side $A B$
A. $2 \sin A=\sin B$
B. Length of side $A B$ equals $5-2 \sqrt{3}$
C. measure of $\angle A$ is less than 30°
D. Circumradius of $a n l \geq A B C$ is equal to length of side $A B$

Answer: A::C::D

- Watch Video Solution

8. 6. Let one angle of a triangle be 60°, the area of triangle is $10 / 3$ and perimeter is 20 cm . $\mathrm{If} \mathrm{a}>\mathrm{b}>\mathrm{c}$ where a, b and e denote lengths of sides opposite to vertices A, B and C respectively, then which of the following is (are) correct? (A) Inradius of triangle is 3 (C (B) Length of longest side of triangle is 7) Circum radius oftriangle is (D) Radius of largest escribed circle is 12
A. Inradius of triangl is $\sqrt{3}$
B. Length of longest side of triangle is 7
C. Circum-radius of triangles is $\frac{7}{\sqrt{3}}$
D. Radius of largest escribed circle is / 12 12

Answer: A::C

- Watch Video Solution

9. In a triangle ABC , if $a=4, b=8, \angle C=60^{\circ}$, then which of the following relations is (are) correct? [Note: All symbols used have usual meaning in triangle $A B C$.]
A. The area of $\triangle A B C i s 8 \sqrt{3}$
B. The value of $\sum \sin ^{2} A=2$
C. Inradius of trianlgle $A B C i s \frac{2 \sqrt{3}}{3+\sqrt{3}}$
D. The length of internal angle bisector of $\angle C i s \frac{4}{\sqrt{3}}$.

- Watch Video Solution

10. Given an isosceles triangle with equal sides of length b, base angle $\alpha<\frac{\pi}{4}$ and R, r the radii and O, I the centres of the circumcircleand incircle, repsectively. Then
A. $R=\frac{1}{2} b \cos e c \alpha$
B. $\Delta=2 b^{2} \sin 2 \alpha$
C. $r=\frac{b \sin 2 \alpha}{2(1+\cos \alpha)}$
D. $O I\left|\frac{b \cos \left(\frac{3 \alpha}{2}\right)}{2 \sin \alpha\left(\frac{\alpha}{2}\right)}\right|$

Answer: A::C::D

- View Text Solution

11. There can exist a triangle $A B C$ satisfying the conditions:
A. $\tan A+\tan B+\tan C=0$
B. $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{7}$
C. $(a+b)^{2}=c^{2}+a b$ and $\sqrt{2}(\sin A+\cos A)=\sqrt{3}$
D.

$$
\sin A+\sin B=\left(\frac{\sqrt{3}+1}{2}\right) \cos A \cos B=\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}=\sin A \sin B
$$

Answer: C::D

- Watch Video Solution

12. Let a, b, c be the sides of triangl whose perimeter is P and area is A, then
A. $p^{3} \leq 27(b+c-a)(c+a-b)(a+b-c)$
B. $p^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)$
C. $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} A$
D. $p^{4} \leq 25<A$

Answer: B::C

- View Text Solution

13. If in $\triangle A B C, A=90^{\circ}$ and $\mathrm{c}, \sin \mathrm{B}$ and $\cos \mathrm{B}$ are rational number, then
A. a is rational
B. a is irrational
C. b is rational
D. b is irational

Answer: A:C

14. In $\triangle A B C$, which of the followinhg statemnts are ture
A. maximum valur of $\sin 2 A+\sin 2 B+\sin 2 C$ is same as the maximum valur of $\sin A+\sin B+\sin C$
B. $R \geq 2 r$, where R is circumradius and r is inradius
C. $R^{2} \geq \frac{a b c}{(a+b+c)}$
D. $\triangle A B C$ is right angled if $r+2 R,=s$, where s is semiperimter

Answer: A::B::C::D

- View Text Solution

15. Let 'I' is the length of median from the vertex A to the side $B C$ of a $\triangle A B C$. Then
A. $4 l^{2}=2 b^{2}+2 c^{2}-a^{2}$
B. $4 l^{2}=b^{2}+c^{2}+2 b c \cos A$
C. $4 l^{2}=b^{2}+4 b c \cos A$
D. $4 l^{2}-(2 s-a)^{2}-4 b c \sin ^{2}\left(\frac{A}{2}\right)$

Answer: A::B::C::D

- Watch Video Solution

16. If A, A_{1}, A_{2} and A_{3} are the areas of the inscribed and escribed circles of a triangle, prove that $\frac{1}{\sqrt{A}}=\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}$
A. $\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}=\sqrt{\pi}\left(r_{1}+r_{2}+r_{3}\right)$
B. $\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}=\frac{1}{\sqrt{A}}$
C. $\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}=\frac{s^{2}}{\sqrt{\pi} r_{1} r_{2} r_{3}}$
D. $\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}=\sqrt{\pi}(4 R+r)$

Answer: A::B::C::D

17. If a, b, A be given in a triangle and c_{1} and c_{2} be two possible value of the third side such that $c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}=a^{2}$, then a is equal to
A. 30°
B. 60°
C. 90°
D. 120°

Answer: B::C

- Watch Video Solution

18. D, E and F are the middle points of the sides of the triangle ABC , then
A. centroid of the triangle DEF is the same as that of ABC
B. orthocentre of the traiangl DRF is the circumcentre of ABC
C. orthocentre of the triangle DEF is the incentre of ABC
D. centroid of the triangle DEF is not the same as that of ABC

D View Text Solution

19. The sides of $A B C$ satisfy the equation $2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a$. Then the triangle is isosceles the triangle is obtuse $B=\cos ^{-1}\left(\frac{7}{8}\right)$ $A=\cos ^{-1}\left(\frac{1}{4}\right)$
A. the triangle is isosceles
B. the triangle is obtuse
C. $B=\cos ^{-1}\left(\frac{7}{8}\right)$
D. $A=\cos ^{-1}\left(\frac{1}{4}\right)$

Answer: A::C::D

D Watch Video Solution

20. If represents the area of acute angled triangle $A B C$, then $\sqrt{a^{2} b^{2}-4^{2}}+\sqrt{b^{2} c^{2}-4^{2}}+\sqrt{c^{2} a^{2}-4^{2}}=a^{2}+b^{2}+c^{2} \frac{a^{2}+b^{2}+c^{2}}{2}$ $a b \cos C+b o s A+c a \cos B a b \sin C+b c \sin A+c a \sin B$
A. $\left(a^{2}+b^{2}+c^{2}\right.$
B. $\frac{a^{2}+b^{2}+c^{2}}{2}$
C. $a b \cos C+b c \cos A+c a \cos B$
D. $a b \sin C+b c \sin A+c a \sin B$

Answer: B::C

- Watch Video Solution

21. In triangle, $A B C$ if $2 a^{2} b^{2}+2 b^{2} c^{2}=a^{2}+b^{4}+c^{4}$, then angle B is equal to 45^{0} (b) $135^{0} 120^{\circ}$ (d) 60^{0}
A. 45°
B. 135°
C. 120°
D. 60°

Answer: A: B

- Watch Video Solution

22. If H is the orthocentre of the triangle $A B C, R=$ circumradius and $P=A H+B H+C H$, then
A. $p=2(R+r)$
B. \max, of P is $3 R$
C. min. of P is $3 R$
D. $P=2(R-r)$

Answer: A: B

23. If inside a big circle exactly $n(n \leq 3)$ small circles, each of radius r, can be drawn in such a way that each small circle touches the big circle and also touches both its adjacent small circles, then the radius of big circle is $r\left(1+\cos e c \frac{\pi}{n}\right) \quad$ (b) $\left(\frac{1+\frac{\tan \pi}{n}}{\frac{\cos \pi}{\pi}}\right) r\left[1+\operatorname{cosec} \frac{2 \pi}{n}\right]$
$\frac{r\left[s \in \frac{\pi}{2 n}+\frac{\cos (2 \pi)}{n}\right]^{2}}{\frac{\sin \pi}{n}}$
A. $r\left(1+\cos e c \frac{\pi}{n}\right)$
B. $\left(\frac{1+\tan \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right)$
C. $r\left[1+\cos e c \frac{2 \pi}{n}\right]$
D. $\frac{r\left[\sin \frac{\pi}{2 n}+\cos \frac{2 \pi}{n}\right]^{2}}{\sin ^{\prime} \frac{\pi}{n}}$

Answer: A: D

- Watch Video Solution

24. If in triangle $\mathrm{ABC}, \mathrm{a}, \mathrm{c}$ and angle A are given and $c \sin A<a<c$, then (b_{1} and b_{2} are values of b)
A. $b_{1}+b_{2}=2 c \cos A$
B. $b_{1}+b+2=c \cos A$
C. $b_{1} b_{2}=c^{2}-a^{2}$
D. $b_{1} b_{2}=c^{2}+a^{2}$

Answer: A::C

- Watch Video Solution

Exercise (Statement I And li Type Questions)

1. In a triangle $A B C, a^{3}+b^{3}+c^{3}=c^{2}(a+b+c)$ (All symbol used have usual meaning in a triangle.) Statement-1: The value of $\angle C=60^{\circ}$. Statement-2: $\triangle A B C$ must be equilateral.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: C

- Watch Video Solution

2. In a triangle ABC , let $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$ [Note: All symbols used have usual meaning in a triangle.] .Statement 1: $\angle B=\frac{\pi}{2}$ Statement 2: $\sin A=\frac{2}{\sqrt{5}}$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: D

- Watch Video Solution

3. Statement I If in a triangle $A B C \sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$, then one of the angle must be 90°. Statement II In any triangles $A B C$ $\cos 2 A+\cos 2 B+\cos 2 C=-1-4 \cos A \cos B \cos C$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

- Watch Video Solution

4. Statement I if A, B, C, D are angles of a cyclic quadrilateral then
$\sum \sin A=0$.
Statement II If A, B, C, D are angles of cyclic quadrilateral then, $\sum \cos A=0$.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: D

5. Statement I In any triangle $A B C$, the square of the length of the bisector AD is $b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)$.

Statement II In any triangle $A B C$ length of bisector $A D$ is $\frac{2 b c}{(b+c)} \cos \left(\frac{A}{2}\right)$.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

- View Text Solution

6. Statement I If I is incentre of $\triangle A B C$ and I_{1} excentre opposite to A and P is intersection of $I I_{1}$ and BC , then $I P . I_{1} P=B p . P C$

Statement II In a $\Delta A B C, \mathrm{I}$ is incentre and I_{2} is excentre opposite to A , then IBI, I_{1}, C must be square.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: C

- View Text Solution

7. All the notations used in statemnt I and statement II are usual.

Statement I In triangle ABC , if $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$. then value of $\frac{r_{1}+r_{2}+r_{3}}{r}$ is equal to 9 .
Statement II If $\triangle A B C: \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$, where R is circumradius.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

8. Statement I In a triangle ABC if $\tan A: \tan B: \tan C=1: 2: 3$, then

$$
A=45^{\circ}
$$

Statement II If $p, q, r=1: 2: 3$, then $p=1$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: C

- Watch Video Solution

9. Statement I In any right angled triangle $\frac{a^{2}+b^{2}+c^{2}}{R^{2}}$ is always equal to 8 .

Statement II $a^{2}=b^{2}+c^{2}$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

10. Statement I perimeter of a regular pentagon inscribed in a circle with centre O and radius a cm equals $10 a \sin 36^{\circ} \mathrm{cm}$.

Statement II Perimeter of a regular polygon inscribed in a circle with centre O and radius a cm equals $(3 n-5) \sin \left(\frac{360^{\circ}}{2 n}\right) c m$, then it is n sided, where $n \geq 3$.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: C

- Watch Video Solution

11. Statement I In any triangle $A B C$
$a \cos A+b \cos B+c \cos C \leq s$.

Statement II In any triangle ABC
$\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right) \leq \frac{1}{8}$
A. Both Statement I and Statement II are correct and Statement II is
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

D View Text Solution

12.

$\Delta A B C$, if $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}=y\left(x^{2}+\frac{1}{x^{2}}\right)$ then the maximum value of yis $\frac{9}{8}$.
Statement II In a $\triangle A B C, \sin \frac{A}{2} \cdot \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{1}{8}$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

- View Text Solution

13. Statement I In any triangle
$a \cos A+b \cos B+c \cos C \leq s$
Statement II In any triangle $\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right) \leq \frac{1}{8}$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

D View Text Solution

14. Statement I In triangle $A B C, \frac{a^{2}+b^{2}+c^{2}}{\Delta} \geq 4 \sqrt{3}$

Statement II If $a_{i}>0, i=1,2,3 \ldots, n$ shich are not $\frac{a_{1}^{m}+a_{2}^{m}+\ldots+a_{n}^{m}}{n}>\left(\frac{a_{1}+a_{2}+\ldots++a_{n}}{n}\right)^{m}$, if $m<0$ or $m>1$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

15. Statement । $A A_{1}, B B_{1}, C C_{1}$ are the medians of triangle $A B C$ whose centroid is G . If the points A, C_{1}, G and B are concylic, then c^{2}, a^{2}, b^{2} are in AP.

Statement II $B G . C C_{1}=B C_{1} . B A$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: B

- View Text Solution

1. R is circumradii of $\triangle A B C, H$ is orthocentre, R_{1}, R_{2}, R_{3} are circumradii of $\triangle A H B, \Delta B H C$. If AH produced meet the circumradii of $A B C$ at M and intersect $B C$ at L,
$\angle A H B=180^{\circ}-C$
$\frac{c}{\sin \left(180^{\circ}-C\right)}=2 R_{1}$
$\frac{c}{\sin C}=2 R_{1}$
$R_{1}=R$
$R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}$ is equal to
A. $2 R^{2}$
B. $3 R^{2}$
C. $5 R^{2}$
D. R^{2}

Answer: B

2. R is circumradii of $\triangle A B C, H$ is orthocentre, R_{1}, R_{2}, R_{3} are circumradii of $\triangle A H B, \Delta B H C$. If AH produced meet the circumradii of $A B C$ at M and intersect $B C$ at L,
$\angle A H B=180^{\circ}-C$
$\frac{c}{\sin \left(180^{\circ}-C\right)}=2 R_{1}$
$\frac{c}{\sin C}=2 R_{1}$
$R_{1}=R$
Area of $\triangle A H B$
A. $2 R \cos A \cos B \cos C$
B. $R^{2} \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
C. $2 R^{2} \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
D. None of the above

Answer: C

3. R is circumradii of $\triangle A B C, H$ is orthocentre, R_{1}, R_{2}, R_{3} are circumradii of $\triangle A H B, \Delta B H C$. If AH produced meet the circumradii of $A B C$ at M and intersect $B C$ at L,
$\angle A H B=180^{\circ}-C$
$\frac{c}{\sin \left(180^{\circ}-C\right)}=2 R_{1}$
$\frac{c}{\sin C}=2 R_{1}$
$R_{1}=R$
Ratio of area of $\triangle A H B$ to $\triangle B M L$, is
A. $\cos B: 2 \cos A$
B. 2:1
C. $\cos A: \cos B \cos C$
D. None of these

Answer: C

4. Let ABC to be an acute triangle with $B C=a, C A=b$ and $A B=c$, where $a \neq b \neq c$. From any point ' p ' inside $\triangle A B C \leq t B, E, F$ denot foot of perpendiculars form ' p ' noto the sides, $B C, C A$ and $A B$, respectively. Now, answer the following equations.

All positions of point ' p ' for which $\triangle B E F$ is isosceles lie on
A. the incircle of $\triangle A B C$
B. line of intternal angle bisectors from A, B and C
C. arcs of 3 circles
D. None of the above

Answer: C

- View Text Solution

5. Let ABC to be an acute triangle with $B C=a, C A=b$ and $A B=c$, where $a \neq b \neq c$. From any point ' p ' inside $\triangle A B C \leq t B, E, F$ denot foot of perpendiculars form ' p ' noto the sides, $B C, C A$ and $A B$, respectively.

Now, answer the following equations.
Let $\quad(A(7,0), B(4,4)$ and $C(0,0)$ and $\Delta D E F$ is isosceles with $D E=D F$. Then, the curve on which 'P' may lie
A. $x=4$ or $x+y y=7$ or $4 x=3 y$
B. $x=4$ or $x^{2}+y^{2}=4 x+4 y$
C. $3\left(x^{2}+y^{2}\right)+196=49(x+y)$
D. None of the above

Answer: C

- View Text Solution

6. Let ABC to be an acute triangle with $B C=a, C A=b$ and $A B=c$, where $a \neq b \neq c$. From any point ' p ' inside $\triangle A B C \leq t B, E, F$ denot foot of perpendiculars form ' p ' noto the sides, $B C, C A$ and $A B$, respectively. Now, answer the following equations.

If $\triangle D E F$ is equilateral, then ' P '
A. coincides with incentre of $\triangle A B C$
B. coincides with orthocentre of $\triangle A B C$
C. lies on padal Δ of $\triangle A B C$
D. None of the above

Answer: D

- View Text Solution

7. In an acute angled triangle $A B C$, let $A D, B E$ and $C F$ be the perpendicular opposite sides of the triangle. The ratio of the product of the side lengths of the triangles $D E F$ and $A B C$, is equal to
A. $\frac{3(a b c)^{\frac{1}{3}}}{4(a+b+c)}$
B. $\frac{1}{4}$
C. $\cos A \cos B \cos C$
D. $\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$

Answer: C

D Watch Video Solution

8. In an acute angle $\triangle A B C$, let AD, BE and CF be the perpendicular from A, B and C upon the opposite sides of the triangle. (All symbols used have usual meaning in a tiangle.)

The orthocentre of the $\Delta A B C$, is the
A. centroid of the $\triangle D E F$
B. circum-centre of the $\triangle D E F$
C. incentre of the $\triangle D E F$
D. orthocentre of the $\Delta D E F$

Answer: C

- View Text Solution

9. In an acute angle $\triangle A B C$, let AD, BE and CF be the perpendicular from
A, B and C upon the opposite sides of the triangle. (All symbols used have usual meaning in a tiangle.)

The circum-radius of the $\triangle D E F$ can be equal to
A. $\frac{a b c}{8 \Delta}$
B. $\frac{a}{4 \sin A}$
C. $\frac{R}{2}$
D. $\frac{r}{8} \cos e c \frac{A}{2} \operatorname{cosec} \frac{B}{2} \cos e c \frac{C}{2}$

Answer: A::B::C::D

- View Text Solution

10. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides opposite to angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively in a $\triangle A B C \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, If $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$

Angle C is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{2 \pi}{3}$

Answer: B

- Watch Video Solution

11. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides opposite to angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively in a $\triangle A B C \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, If $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$

Area of the trianlge is equal to
A. 8
B. 9
C. 10
D. 11

- Watch Video Solution

12. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides opposite to angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively in a $\triangle A B C \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, If $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$

Valus of $\sin A$ is equal to
A. $\frac{1}{\sqrt{5}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{2 \sqrt{5}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

13. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case. In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a,b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c .

On the basis of above information, answer the following questions
Two different triangles are possible when
A. $b \sin A<a$
B. $b \sin A<a$ and $b>a$
C. $b \sin A<a$ and $b<a$
D. $b \sin A<a$ and $a=b$

Answer: B

14. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a,b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c .

On the basis of above information, answer the following questions The difference between two values of c is
A. $2 \sqrt{\left(a^{2}-b^{2}\right)}$
B. $\sqrt{\left(a^{2}-b^{2}\right)}$
C. $2 \sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$
D. $\sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$

Answer: B

15. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a,b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c .

On the basis of above information, answer the following questions The value of $c_{1}^{2}-2 c_{1} c_{2} \cos 2 A+c_{2}^{2}$ is
A. $4 a \cos A$
B. $4 a^{2} \cos A$
C. $4 a \cos ^{2} A$
D. $4 a^{2} \cos A$

Answer: D

- View Text Solution

16. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a,b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c .

On the basis of above information, answer the following questions If $\angle A=45^{\circ}$ and in ambiguous case (a,b, A are given) c_{91}), c_{2} are two values of c and if θ be the angle between the two positions of the ambiguous side c then $\cos \theta$ is
A. $\frac{c_{1} c_{2}}{c_{1}^{2}+c_{2}^{2}}$
B. $\frac{2 c_{1} c_{2}}{c_{1}^{2}+c_{2}^{2}}$
C. $\frac{\sqrt{c_{1} c_{2}}}{\left(c_{1}+c_{2}\right)}$
D. $\frac{2 \sqrt{c_{1} c_{2}}}{\left(c_{1}+c_{2}\right)}$

Answer: B

- View Text Solution

17. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case. In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a, b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c.

On the basis of above information, answer the following questions

If
$2 b=(m+1) a$ and $\cos A=\frac{1}{2} \sqrt{\left(\frac{(m+1)(m+3)}{m}\right)}$, where $1<m 3$, th ϵ is
A. m or $\frac{1}{m}$
B. $(m-1)$ or $\frac{1}{(m+3)}$
C. $(m+1)$ or $\frac{1}{(m+1)}$
D. $(m+3)$ or $\frac{1}{(m+3)}$

Answer: A

- View Text Solution

18. Consider a triangle $A B C$, where c, y, z are the length of perpendicular drawn from the vertices of the triangle to the opposite sides a, b, c respectively. Let the letters $R, r S, \Delta$ denote the circumradius, inradius semi-perimeter and area of the triangle respectively.
If $\frac{b x}{c}+\frac{c y}{a}+\frac{a z}{b}=\frac{a^{2}+b^{2}+c^{2}}{k}$, then the value of k is
A. R
B. S
C. 2 R
D. $\frac{3}{2} R$

Answer: C

- View Text Solution

19. Consider a triangle $A B C$, where c, y, z are the length of perpendicular drawn from the vertices of the triangle to the opposite sides a, b, c respectively. Let the letters $R, r S, \Delta$ denote the circumradius, inradius semi-perimeter and area of the triangle respectively.

If $\cot A+\cot B+\cot C=k\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)$, then the value of k is
A. R^{2}
B. rR
C. Δ
D. $a^{2}+b^{2}+c^{2}$

Answer: C

20. Consider a triangle $A B C$, where c, y, z are the length of perpendicular drawn from the vertices of the triangle to the opposite sides a, b, c respectively. Let the letters $R, r S, \Delta$ denote the circumradius, inradius semi-perimeter and area of the triangle respectively.

The valur of $\frac{c \sin B+b \sin C}{x}+\frac{a \sin C+c \sin A}{y}+\frac{b \sin A+a \sin B}{z}$ is equal to
A. $\frac{R}{r}$
B. $\frac{S}{R}$
C. 2
D. 6

Answer: D

D View Text Solution

21. $A L, B M$ and $C N$ are perpendicular from angular points of a triangle $A B C$ on the opposite sides BC, CA and AB respectively. Δ is the area of triangle $A B C,(r)$ and R are the inradius and circumradius.

If perimeters of $\Delta L M N$ and $\Delta A B C a n \lambda$ and μ, then the value of $\frac{\lambda}{\mu}$ is
A. $\frac{r}{R}$
B. $\frac{R}{r}$
C. $\frac{r R}{\Delta}$
D. $\frac{\Delta}{r R}$

Answer: B

- View Text Solution

22. AL, BM and CN are perpendicular from angular points of a triangle $A B C$ on the opposite sides $B C, C A$ and $A B$ respectively. Δ is the area of triangle $A B C,(r)$ and R are the inradius and circumradius.

IF areas of $\Delta^{\prime} s \mathrm{AMN}, \mathrm{BNL}$ and CLM are Δ_{1}, Δ_{2} and Δ_{3} respectively, then the valur of $\Delta_{1}+\Delta_{2}+\Delta_{3}$ is
A. $\Delta(2+2 \cos A \cos B \cos C)$
B. $\Delta(2+2 \sin A \sin B \sin C)$
C. $\Delta(1-2 \cos A \cos B \cos C)$
D. $\Delta(1-2 \sin A \sin B \sin C)$

Answer: C

- View Text Solution

23. AL, BM and CN are perpendicular from angular points of a triangle $A B C$ on the opposite sides $B C, C A$ and $A B$ respectively. Δ is the area of triangle $A B C,(r)$ and R are the inradius and circumradius. If area of $\Delta L M N i s \Delta^{\prime}$, then the value of $\frac{\Delta^{\prime}}{\Delta}$ is
A. $2 \sin A \sin B \sin C$
B. $2 \cos A \cos B \cos C$
C. $\sin A \sin B \sin C$
D. $\cos A \cos B \cos C$

Answer: D

- View Text Solution

24. AL, BM and CN are perpendicular from angular points of a triangle $A B C$ on the opposite sides $B C, C A$ and $A B$ respectively. Δ is the area of triangle $A B C,(r)$ and R are the inradius and circumradius.

Radius os the circum circle of $\triangle L M N$ is
A. 2 R
B. R
C. $\frac{R}{2}$
D. $\frac{R}{4}$

Answer: B

25. AL, BM and CN are perpendicular from angular points of a triangle $A B C$ on the opposite sides $B C, C A$ and $A B$ respectively. Δ is the area of triangle $A B C$, (r) and R are the inradius and circumradius.

If radis of the incircle of $\Delta L M N i s r^{\prime}$, then the valur of r ' $\sec \mathrm{A} \sec \mathrm{B} \sec$ C is
A. 4 R
B. 3 R
C. 2 R
D. R

Answer: A

1. If in $\triangle A B C, \angle C=\frac{\pi}{8}, a=\sqrt{2}$ and $b=\sqrt{2+\sqrt{2}}$ then find the measure of angle A (in degree).

- Watch Video Solution

2. If in $A B C, A=\frac{\pi}{7}, B=\frac{2 \pi}{7}, C=\frac{4 \pi}{7}$ then $a^{2}+b^{2}+c^{2}$ must be R^{2}
(b) $3 R^{2}$ (c) $4 R^{2}$ (d) $7 R^{2}$

- Watch Video Solution

3. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ the angles of an acute angled
$\Delta A B C$ and $D=\left|\begin{array}{cll}(\tan B+\tan C)^{2} & \tan ^{2} A & \tan ^{2} A \\ \tan ^{2} B & (\tan A+\tan C)^{2} & \tan ^{2} A \\ \tan ^{2} C & \tan ^{2} C & (\tan +\tan B)^{2}\end{array}\right|$,
then the least integral values of $\frac{D}{1000}$ is

- View Text Solution

4. In a $\triangle A B C P$ and Q are the mid-point or AB and AC , respectively. If O is the circume- centre of the $\triangle A B C$, then the value of $\left(\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle O P Q}\right) \cot B \cot C$ equal to

- View Text Solution

5. With usual notation in $\triangle A B C$, the numerical value of $\left(\frac{a+b+c}{r_{1}+r_{2}+r_{3}}\right)\left(\frac{a}{r_{1}}+\frac{b}{r_{2}}+\frac{c}{r_{3}}\right)$ is

- View Text Solution

6. D is midpoint of BC in $\triangle A B C$ such that AD and AC are perpendicular, Show that $\cos A \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$

- Watch Video Solution

7. In a triangle $A B C$, medians $A D$ and $C E$ are drawn. If $A D=5, \angle D A C=\frac{\pi}{8}$ and $\angle A C E=\frac{\pi}{4}$ then the area of the triangle $A B C$ is equal to $\frac{5 a}{b}$, then $a+b$ is equal to

- Watch Video Solution

8. In $\triangle A B C, \frac{r}{r_{1}}=\frac{1}{2}$, then the valur of $16\left(\sum \tan \left(\frac{A}{2}\right)\right)$ must be.

- View Text Solution

9. In a $\triangle A B C$, the maximum value of $120\left(\frac{\sum a \cos ^{2}\left(\frac{A}{2}\right)}{a+b+c}\right)$ must be

- View Text Solution

10. The sides of a triangle arr three consective natural numbers and its largest angle is twice the smallest one. Determine the sides of the
triangle.

- Watch Video Solution

11. In $\triangle A B C, \angle C=2 \angle A$, and $A C=2 B C$, then the value of $\frac{a^{2}+b^{2} c^{2}}{R^{2}}$ (where R is circumradius of triangle) is \qquad

- Watch Video Solution

12. If a, b and A are given in a triangle and c_{1}, c_{2} are possible values of the third side, then prove that $c_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos 2 A=4 a^{2} \cos ^{2} A$

- Watch Video Solution

13. In triangle ABC, $a=5, b=4, c=3 . G$ is the centroid of trianggle. If R_{1} be the circumradius of triangle GAB then the value of $\frac{a}{65} R_{1}^{2}$ must be

- Watch Video Solution

14. A triangle $A B C$ is inscribed in a circle with centre at O, The lines $A O, B O a n d C O$ meet the opposite sides at D, E, and F, respectively. Prove that $\frac{1}{A D}+\frac{1}{B E}+\frac{1}{C F}=\frac{a \cos A+b \cos B+\mathrm{os} C}{}$

- Watch Video Solution

15. In $\triangle A B C, a \geq b \geq c$ and if $\frac{a^{3}+b^{2}+c^{2}}{\sin ^{3} A \sin ^{3} B+\sin ^{3} C}=8$, that the maximum value of a is \qquad

- View Text Solution

16. In a cyclic quadrilateral $P Q R S, P Q=2$ units, $Q R=5$ units, $R S=3$ units and $\angle P Q R=60^{\circ}$, then what is the measure of SP ?

- Watch Video Solution

1. In a $\triangle A B C$, the angles A nad B are two values of θ satisfying $\sqrt{3} \cos \theta+\sin \theta=k$, where $|K|<2$, then show triangles is obtuse angled.

- Watch Video Solution

2. In an obtuse angled triangle, the obtuse angle is $\frac{3 \pi}{4}$ and the other two angles are equal to two values of θ satisfying $a \tan \theta+b \sec \theta=c$, where $|b| \leq \sqrt{a^{2}+c^{2}}$, then $a^{2}-c^{2}$ is equal to

- Watch Video Solution

3. In a $\delta A B C, \mathrm{a}, \mathrm{c}, \mathrm{A}$ are given and b_{1}, b_{2} are two values of third side b such that $b_{2}=2 b_{1}$. Then, the value of $\sin \mathrm{A}$.
4. If P is a point on the altitude AD of the $\triangle A B C$, such that $\angle C B P=\frac{B}{3}$, then find the value of AP.

- Watch Video Solution

5. If R denotes circumradius, then in $\Delta A B C, \frac{b^{2}-c^{2}}{2 a R}$ is equal to

- Watch Video Solution

6. In $\triangle A B C, A=\frac{2 \pi}{3}, b-c=3 \sqrt{3} \mathrm{~cm}$ and are $(\triangle A B C)=\frac{9 \sqrt{3}}{2} c m^{2}$. Solve for side a.

- Watch Video Solution

7. If $\Delta=a^{2}-(b-c)^{2}, \Delta$ is the area of the $\Delta A B C$ then $\tan A=$?
8. In a $\triangle A B C, B=90^{\circ}, A C=h$ and the length of perpendicular from B to AC is p such that $h=4 p$. If $A B<B C$, then measure $\angle C$.

- Watch Video Solution

9. If in a $\triangle A B C, \sin ^{3} A+\sin ^{3} B+\sin ^{3} C$
$=3 \sin A \cdot \sin B \cdot \sin C$, then find the valueof determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$.

- Watch Video Solution

10. In a $\triangle A B C$, the side a, b, and c are such that they are roots of $x^{3}-11 x^{2}+38 x-40=0 . \quad$ Then the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$.

- Watch Video Solution

11. If the sides a, b, c are in A.P., prove that $(\tan) \frac{A}{2}+(\tan) \frac{c}{2}=\frac{2}{3}(\cot) \frac{B}{2}$.

(Watch Video Solution

12. The side of a Δ are in AP. And its area is $\frac{3}{5} \times$ (area of an equilateral triangle of the same perimeter). Find the ratio of its sides.

- Watch Video Solution

13. If AD, BE and CF are the medians of a $\triangle A B C$, then evaluate $\left(A D^{2}+B E^{2}+C F^{2}\right):\left(B C^{2}+C A^{2}+A B^{2}\right)$.

(Watch Video Solution

14. AD is a median of the $\triangle A B C$. If AE are medians of the
$A D=m_{1}, A E=m_{2}, A F=m_{3}$, then find the value of $\frac{a^{2}}{8}$.

- View Text Solution

15. In

$$
\triangle A B C
$$

$x=\tan \left(\frac{B-C}{2}\right) \tan \left(\frac{A}{2}\right), y=\tan \left(\frac{C-A}{2}\right) \tan \left(\frac{B}{2}\right), \tan \left(\frac{A-B}{2}\right) \mathrm{t}$
, then $x+y+z$ (in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ only) is

- Watch Video Solution

16. In the given figure $\triangle A B C$ is equilateral on side $A B$ produced. We choose a point such that A lies between P and B . We now denote 'a' as the length of sides of $\triangle A B C, r_{1}$ as the radius of incircle $\triangle P A C$ and r_{2} as the ex-radius of $\triangle P B C$ with respect to side BC . Then $r_{1}+r_{2}$ is equal to

- Watch Video Solution

17. The base of a triangle is divided into three equal parts. If $\theta_{1}, \theta_{2}, \theta_{3}$ be thw angles subtended by these parts at the vertex, then prove that $\left(\cot \theta_{1}+\cot \theta_{2}\right)\left(\cot \theta_{2}+\cot \theta_{3}\right)=4 \operatorname{cosec}^{2} \theta_{2}$

- Watch Video Solution

18. If the circumradius of a triangle is $\frac{54}{\sqrt{1463}}$ and the sides are in G.P with common ratio $\frac{3}{2}$. then find the sides of the triangle.

- Watch Video Solution

19. If the angle at the vertex of an isosceles triangle having the maximum area for the given length of the median to one of its equal sides, is x then $5 \cos x$ is equal to

- Watch Video Solution

20. In an acute angle triangle $\mathrm{ABC}, \mathrm{AD}, \mathrm{BE}$ and CF are the altitudes, then $\frac{E F}{a}+\frac{F D}{b}+\frac{D E}{c}$ is equal to -

- Watch Video Solution

21. Let P be the point inside that $\triangle A B C$. Such that $\angle A P B=\angle B P C=\angle C P A$. Prove that
$P A+P B+P C=\sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}+2 \sqrt{3} \Delta}$, wherea, $b, c \Delta$ are the sides and the area of $\triangle A B C$.

- Watch Video Solution

Exercise (Questions Asked In Previous 13 Years Exam)

1. In a triangle XYZ, let x, y, z be the lengths of sides opposite to the angles $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, respectively, and $2 \mathrm{~s}=\mathrm{x}+\mathrm{y}+\mathrm{z}$. If $\frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}$ of incircle of the triangle $X Y Z$ is $\frac{8 \pi}{3}$
A. area of the $\triangle X Y Z$ is $6 \sqrt{6}$
B. the radius of circum-circle of the $\triangle X Y \operatorname{Zis} \frac{35}{6} \sqrt{6}$
C. $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2}=\frac{4}{35}$
D. $\sin ^{2}\left(\frac{X+Y}{2}\right)=\frac{3}{5}$

Answer: A::C::D

- Watch Video Solution

2. In a triangle the sum of two sides is x and the product of the same is y. If $x^{2}-c^{2}=y$ where c is the third side. Determine the ration of the inradius and circum-radius
A. $\frac{3 y}{2 x(x+c)}$
B. $\frac{3 y}{2 c(x+c)}$
C. $\frac{3 y}{4 x(x+c)}$
D. $\frac{3 y}{4 c(x+c)}$

Answer: B

- Watch Video Solution

3. Consider a triangle $A B C$ and let a, bandc denote the lengths of the sides opposite to vertices A, B, and C, respectively. Suppose $a=6, b=10$, and the area of triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtuse and if r denotes the radius of the incircle of the triangle, then the value of r^{2} is

- Watch Video Solution

4. In a triangle PQR, P is the largest angle and $\cos P=\frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)
A. 16
B. 18
C. 20
D. 22

Answer: A::B

- Watch Video Solution

5. Let $P Q R$ be a triangle of area Δ with $a=2, b=\frac{7}{2}$ and $c=\frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}$ equals
A. $\frac{3}{4 D e t l a}$
B. $\frac{45}{4 \Delta}$
c. $\left(\frac{3}{4 \Delta}\right)^{2}$
D. $\left(\frac{45}{4 \Delta}\right)^{5}$

Answer: B::C::D

6. If the angle $A, B a n d C$ of a triangle are in an arithmetic propression and if a, bandc denote the lengths of the sides opposite to $A, B a n d C$ respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\sqrt{3}$
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\sqrt{3}$

Answer: D

- Watch Video Solution

7. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, bandc denote the lengths of the side opposite to A, B, and C respectively. The value(s)
of x for which $a=x^{2}+x+1, b=x^{2}-1$, and $c=2 x+1$ is(are)
$-(2+\sqrt{3})$
(b) $1+\sqrt{3} 2+\sqrt{3}$ (d) $4 \sqrt{3}$
A. $-(2+\sqrt{3})$
B. $1+\sqrt{3}$
C. $2+\sqrt{3}$
D. $4 \sqrt{3}$

Answer: B

- Watch Video Solution

8. a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If $a, b a n d c$, denote the length of the sides of the triangle opposite to the angles A, B, and C, respectively, then $b+c=4 a(b) b+c=2 a$ the locus of point A is an ellipse the locus of point A is a pair of straight lines
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of point A is an ellipes
D. locus of point A is a pair of straight line

Answer: B::C

- Watch Video Solution

9. Let $A B C a n d A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

- Watch Video Solution

10. A straight line through the vertex P of a triangle $P Q R$ intersects the side $Q R$ at the point S and the circuecirele of the triangle $P Q R$ at the point T. If S is not the centre of the circumeircle, then
A. $\frac{1}{P S}+\frac{1}{S T}<\frac{2}{\sqrt{Q S \times S R}}$
B. $\frac{1}{P S}+\frac{1}{S T}>\frac{2}{\sqrt{Q S \times S R}}$
C. $\frac{1}{P S}+\frac{1}{S T}<\frac{4}{Q R}$
D. $\frac{1}{P S}+\frac{1}{S T}>\frac{4}{Q R}$

Answer: D

- Watch Video Solution

11. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and 4th quadrant, respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. 4
B. 3
C. $\frac{8}{3}$
D. 2

Answer: B

- Watch Video Solution

12. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and 4th quadrant,respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. 5
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: B

13. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and 4th quadrant,respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. $1: \sqrt{2}$
B. 1:2
C. 1:4
D. 1: 8

Answer: C

- Watch Video Solution

14. Internal bisector of $\angle A$ of triangle ABC meets side BC at D . A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and the side AB at F . If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ represent sides of $\triangle A B C$, then
A. $A E$ is $H M$ of b and a
B. $A D=\frac{2 b c}{b+c} \cos \frac{A}{2}$
C. $E F=\frac{4 b c}{b+c} \sin \frac{A}{2}$
D. $\triangle A E F$ is isosceles

Answer: A::B::C::D

D Watch Video Solution

15. Given an isosceles triangle, whose one angle is $-2 \frac{\pi}{3}$ and the radius of its incircle =sqrt3 Then find the area of the triangle
A. $4 \sqrt{3}$
B. $12-7 \sqrt{3}$
C. $12+7 \sqrt{3}$
D. None of the above

Answer: C

16. In $\triangle A B C$, which one is true among the following ?
A. $(b+c) \cos \frac{A}{2}=a \sin \left(\frac{B+C}{2}\right)$
B. $(b+c) \cos \left(\frac{B+C}{2}\right)=a \sin \frac{A}{2}$
C. $(b-c) \cos \left(\frac{B-C}{2}\right)=a \cos \left(\frac{A}{2}\right)$
D. $(b-c) \cos \frac{A}{2}=a \sin \left(\frac{B-C}{2}\right)$

Answer: D

- Watch Video Solution

17. Let a vertical tower $A b$ have its end A on the level ground. Let C be the mid point of $A B$ and P be a point on the ground such that $A P=2 A B$. If $\angle B P C=\beta$, then $\tan \beta$ is equal to : $\frac{2}{9}$ (2) $\frac{4}{9}$ (3) $\frac{6}{7}$ (4) $\frac{1}{4}$
A. $\frac{6}{7}$
B. $\frac{1}{4}$
C. $\frac{2}{9}$
D. $\frac{4}{9}$

Answer: C

- Watch Video Solution

18. ABCD is a trapezium such that $A B$ and $C D$ are parallel and $B C \perp C D$. If $/ \mathrm{ADB}=$ theta, $\mathrm{BC}=\mathrm{p}$ and $\mathrm{CD}=\mathrm{q}^{\prime}$, then AB is equal to
A. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$
B. $\frac{p^{2}+q^{2} \cos \theta}{p \cos \theta+q \sin \theta}$
C. $\frac{p^{2}+q^{2}}{p^{2} \cos \theta+q^{2} \sin \theta}$
D. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{(p \cos \theta+\sin \theta)^{2}}$

Answer: A

19. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$ (17) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$ (30) There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$ (47) There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$ (60)
A. there is a regular polygon with $\frac{r}{R}=\frac{1}{2}$
B. there is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$
C. there is a regular plygon with $\frac{r}{R}=\frac{2}{3}$
D. there is a regular plygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$

Answer: A::B::D

- Watch Video Solution

20. In triangle $A B C$, let $\angle c=\frac{\pi}{2}$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to $a+b$ (b) $b+c$
$c+a$ (d) $a+b+c$
A. $c+a$
B. $a+b+c$
C. $a+b$
D. $b+c$

Answer: A

- Watch Video Solution

21. If in a $\triangle A B C$, the altitudes from the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on opposite sides are in $H . P$, then $\sin A, \sin B, \sin C$ are in
A. HP
B. AGP
C. AP
D. GP

Answer: C

Watch Video Solution

