©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

THE STRAIGHT LINES

Examples

1. Find the inclination of the line whose slope is $-\frac{1}{\sqrt{3}}$

O
 Watch Video Solution

2. Find the slope of the line through the points $(4,-6)(-2,-5)$

-
 Watch Video Solution

3. Determine x so that 2 is the slope of the line through $(2,5)$ and $(x, 3)$.

- Watch Video Solution

4. Show that the line joining $(2,-3)$ and $(-5,1)$ is parallel to the line joining (7,-1) and (0,3).

- Watch Video Solution

5.

Find
whether
the
points
$(-a,-b),[-(s+1) a,-(s+1) b]$ and $[(t-1) a,(t-1) b] \quad$ are collinear?

Watch Video Solution

6. For what value of k are the points
$(k, 2-2 k)(-k+1,2 k) \operatorname{and}(-4-k, 6,6-2 k)$ are collinear?
7. Find the angle between the lines joining the point $(0,0),(2,3)$ and the points $(2,-2),(3,5)$.

- Watch Video Solution

8. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

- Watch Video Solution

9. Without using pythagoras theorem, show that the points $A(-1,3), B(0,5)$ and $C(3,1)$ are the vertices of a right angled triangle

- Watch Video Solution

10. A line passes through the points $A(2,-3)$ and $B(6,3)$. Find the slopes of the lines which are,
(i) parallel to $A B$ (ii) perpendicular to $A B$

- Watch Video Solution

11. Show that the triangle which has one of the angles as 60° can not have all verticles with integral coordinates.

- Watch Video Solution

12. Find the equation of the straight line parallel to Y - axis and at a distance (i) 3 units to the right (ii) 2 units to the left

- Watch Video Solution

13. Write down the equation of a line parallel to the x-axis
(i) at a distance of 5 units above the x-axis.
(ii) at a distance of 4 units below the x -axis.

- Watch Video Solution

14. Find the equation of the straight line which passes through the point
$(2,-3)$ and is
(i) parallel to the X -axis, perpendicular to the X -axis

Watch Video Solution

15. Find the equation of a line which is equidistant from the lines $x=-\frac{7}{2}$ and $x=\frac{15}{2}$

- Watch Video Solution

16. If the straight line $\mathrm{y}=m x+c$ passes through the points $(2,4)$ and $(-3,6)$, find the values of m and c.
17. What are the inclination to the X - axis and intercept on Y - axis of the line
$3 y=\sqrt{3} x+6 ?$

- Watch Video Solution

18. The equation of line cutting of an intercept -3 from the y-axis and inclined at an angle $\tan ^{-1}\left(\frac{3}{5}\right)$ to the x-axis is:

- Watch Video Solution

19. Find the equation to the straight line cutting off an intercept of 5 units on negative direction of Y - axis and being equally inclined to the axes.
20. Find the equation of the bisectors of the angles between the coordinate axes.

- Watch Video Solution

21. Find the equation of a line which makes an angle of 135° with the x axis and passes through the point $(3,5)$.

- Watch Video Solution

22. Find the equation of the straight line bisecting the segment joining the points $(5,3)$ and $(4,4)$ and making an angle of 45° with the positive direction of X-axis.

- Watch Video Solution

23. Find the equation of the right bisector of the line segment joining the points (3,4) and ($-1,2$).

- Watch Video Solution

24. Find the equation of the straight lines passing through the following pair of point: $\left(a t_{1}, a / t_{1}\right)$ and $\left(a t_{2}, a / t_{2}\right)$

- Watch Video Solution

25. If the coordinates of the points A, B, C be $(-1,5),(0,0)$ and $(2,2)$ respectively, and D be the middle point of $B C$, then the equation of the perpendicular drawn from B to the line $A D$ is

- Watch Video Solution

26. The vertices of a triangle are $A(10,4), B(-4,9)$ and $C(-2,-1)$. Find the equation of the altitude through A.

- Watch Video Solution

27. If $\mathrm{A}(-1,6), \mathrm{B}(-3,-9)$ and $\mathrm{C}(5,-8)$ are the vertices of a $\triangle A B C$, find the equations of its medians.

- Watch Video Solution

28. In what ratio is the line joining the pints $(2,3)$ and $(4,-5)$ divided by the line passing through the points $(6,8)$ and $(-3,-2)$.

- Watch Video Solution

29. Find the equation of the line through $(2,3)$ so that the segment of the line intercepted between the axes is bisected at this point.

- Watch Video Solution

30. Find the equation of the straight line passing through $(3,4)$ and has intercepts on the axes (i) equal in magnitude but opposite in sign (ii) such that their sum is 14 .

- Watch Video Solution

31. Find the equation of the straight line through the point $P(a, b)$ parallel to the line $\frac{x}{a}+\frac{y}{b}=1$ also find the intercepts made by it on the axes.

- Watch Video Solution

32. The length of perpendicular from the origin to a line is 9 and the line makes an angle of 120° witth the positive direction of Y - axes. Find the equation of the line.

- Watch Video Solution

33. Find the equation of the straight line on which the perpendicular from origin makes an angle 30° with positive x-axis and which foms a triangle of area $\frac{50}{\sqrt{3}}$ sq, units with the co-ordinates axis.

- Watch Video Solution

34. Reduce $x+\sqrt{3} y+4=0$ to the : Slope intercepts form and find its slope and y -intercept.

- Watch Video Solution

35. Reduce $x+\sqrt{3} y+4=0$ to the : Slope intercepts form and find its slope and y -intercept.

- Watch Video Solution

36. Reduce $x+\sqrt{3 y}+4=0$ to the :
(iii) Normal form and find the values of p and α

- Watch Video Solution

37. Find the measure of the angle of intersection of the lines whose equations are $3 x+4 y+7=0$ and $4 x-3 y+5=0$

- Watch Video Solution

38. Find the angle between the lines, $\left(a^{2}-a b\right) y=\left(a b+b^{2}\right) x+b^{3}$, and $\left(a b+b^{2}\right) y=\left(a b-a^{2}\right) x+a^{3}$ where $a<b<0$
39. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.

- Watch Video Solution

40. The slope of a straight line through $A(3,2) i s 3 / 4$ Find the coordinates of the points on the line that are 5units away from A.

- Watch Video Solution

41. Find the direction in which a straight line must be drawn through the point $(1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance $\frac{1}{3} \sqrt{6}$ from this point
42. A line $(2,3)$ makes an angle $\frac{3 \pi}{4}$ with the negative direction of X - axis . Find the length of the line segment cut off between $(2,3)$ and the line $x+y-7=0$

- Watch Video Solution

43. Find the distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along the line $2 x-2 y+5=0$

- Watch Video Solution

44. If the line $y-\sqrt{3} x+3=0$ cuts the parabola $y^{2}=x+2$ at P and Q then $A P . A Q$ is equal to

- Watch Video Solution

45. The line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of 15°. find the equation of line in the new position. If b goes to c in the new position what will be the coordinates of C .

- Watch Video Solution

46. The center of a square is at the origin and its one vertex is $A(2,1)$.

Find the coordinates of the other vertices of the square.

- Watch Video Solution

47. The experimities of the diagonal of a square are $(1,1),(-2,-1)$
.Obtain the other two vertices and the equation of the other diagonal .

- Watch Video Solution

48. Are the points $(2,1)$ and $(-3,5)$ on the same or opposite side of the line $3 x-2 y+1=0$?

Watch Video Solution

49. Is the point $(2,-7)$ lies on origin side of the line $2 x+y+2=0$?

- Watch Video Solution

50. A canal is $4 \frac{1}{2} \mathrm{kms}$ from a place and the shortest route from this place to the cenal is exactly north-east. A village is 3 kms north and 4 kms east from the place. Does it lie on canal?

- Watch Video Solution

51. For what values of the parameter t does the point $P(t, t+1)$ lies inside the triangle $A B C$ where
$A=(0,3), B=(-2,0)$ and $C=(6,1)$.

- Watch Video Solution

52. Find λ if $(\lambda, 2)$ is an interior point of $\triangle A B C$ formed by $x+y=4,3 x-7 y=8$ and $4 x-y=31$

- Watch Video Solution

53. Determine all the values of α for which the point $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines. $2 x+3 y-1=0 x+2 y-3=0$ $5 x-6 y-1=0$

- Watch Video Solution

54. Find the general equation of the line which is parallel to $3 x-4 y+5=0$. Also find such line through the point $(-1,2)$
55. Find the general equation of the line which is perpendicular to $x+y+4=0$. Also find such line through the point $(1,2)$

- Watch Video Solution

56. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a$ is

- Watch Video Solution

57. The absolute value of the sum of the abscissas of all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is \qquad
58. If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are $x \sec \theta+y \cos e c \theta=a$ and $x \cos \theta-y \sin \theta a=\cos 2 \theta$, then $4 p^{2}+q^{2}$ is equal to

Watch Video Solution

59. if P is the length of perpendicular from origin to the line $\frac{x}{a}+\frac{y}{b}=1$ then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

60. Number of lines that can be drawn through the point $(4,-5)$ so that its distance from $(-2,3)$ will be equal to 12 is equal to

- Watch Video Solution

61. The distance between two parallel lines $5 x-12 y+2=0$ and $5 x-12 y-3=0$ is given by

- Watch Video Solution

62. The equation $n s$ of the lines parallel to $5 x-12 y+26=0$ and at a distance of 4 units from it are: $5 x-12 y-26=05 x-12 y+26=0$ $5 x-12 y-78=0$ (d) $5 x-12 y+78=0$

- Watch Video Solution

63. Show that the area of the parallelogram formed by the lines $x+3 y-a=0,3 x-2 y+3 a=0, x+3 y+4 a=0$ and $3 x+2 y+7 a=$ is $\frac{20}{11} a^{2}$ sq units/

- Watch Video Solution

64. Prove that the area of the parallelogram formed by the lines $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y s \in \alpha=q, x \cos \beta+y \sin \beta=$ rand \cos,

Watch Video Solution

65. Prove that the diagonals of the parallelogram formed by the lines $\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=2$ and $\frac{x}{b}+\frac{y}{a}=2$ are at right angles. Also find its area $(a \neq b)$

- Watch Video Solution

66. Area of the rhombus bounded by the four lines, $a x \pm b y \pm c=0$ is

- Watch Video Solution

67. Show that the lines
$2 x+3 y-8=0, x-5 y+9=0$ and $3 x+4 y-11=0$

- Watch Video Solution

68. If the lines $a x+y+1=0, x+b y+1=0 a n d x+y+c=0(a, b, c$ being distinct and different from 1) are concurrent, then prove that $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$.

- Watch Video Solution

69. Show that the three straight lines $2 x-3 y+5=0,3 x+4 y-7=0$ and $9 x-5 y+8=0$ meet in a point

- Watch Video Solution

70. Find the equation of the straight line passing through the point $(2,1)$ and through the point of intersection of the lines
$x+2 y=3$ and $2 x-3 y=4$

- Watch Video Solution

71. The fix point through which the line $x(a+2 b)+y(a+3 b)=a+b$ always passes for all values of a and b, is-

- Watch Video Solution

72. If $3 a+2 b+6 c=0$ the family of straight lines $a x+b y=c=0$ passes through a fixed point. Find the coordinates of fixed point.

- Watch Video Solution

73. If $4 a^{2}+9 b^{2}-c^{2}+12 a b=0$ then the family of straight lines $a x+b y+c=0$ is concurrent at : (A) $(-3,2)$ or $(2,3)$
$(-2,3)$ or $(2,-3)$
(C)
$(3,2)$ or $(-3,-2)$
$(2,3)$ or $(-2,-3)$
74. Find the equation of the line passing through the point of intersection of the lines $x+5 y+7=0$ and $3 x+2 y-5=0$
(a) parallel to the line $7 x+2 y-5=0$

- Watch Video Solution

75. Find the equation of the line passing through the point of intersection of the lines $x+5 y+7=0$ and $3 x+2 y-5=0$
(b) perpendicular to the line $7 x+2 y-5=0$

- Watch Video Solution

76. Find the equation of the line passing through the intersection of the lines $3 x-4 y+1=0$ and $5 x+y-1=0$ and which cuts off equal intercepts from the axes.
77. If t_{1} and t_{2} are roots of the equation $t^{2}+\lambda t+1=0$ where λ is an arbitrary constant. Then the line joining the points $\left(\left(a t_{1}\right)^{2}, 2 a t_{1}\right)$ and $\left(a\left(t_{2}\right)^{2}, 2 a t_{2}\right)$ always passes through a fixed point then find that point.

- Watch Video Solution

78. A variable line through the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ meets the coordinate axes in A and B. Show that the locus of the midpoint of $A B$ is the curve $2 x y(a+b)=a b(x+y)$.

- Watch Video Solution

79. Find the coordinates of the circumcenter of the triangle whose vertices are $(A(5,-1), B(-1,5)$, and $C(6,6)$. Find its radius also.
80. The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$, is

- Watch Video Solution

81. Find the orthocentre of the triangle $A B C$ whose abgular points are $A(1,2), B(2,3)$ and $C(4,3)$

- Watch Video Solution

82. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is (1,1). Find the equation of the third side.

- Watch Video Solution

83. If the otrhocentre of the triangle formed by the lines $2 x+3 y-1=0, x+2 y-1=0, a x+b y-1=0$ is at the origin then (a, b) is given by.

- Watch Video Solution

84. Find $e q^{n s}$ of lines passing through the point $(2,3)$ and inclined at an angle $\frac{\pi}{4}$ to the line $2 x+3 y=5$

- Watch Video Solution

85. A vertex of an equilateral triangle is 2,3 and the opposite side is $x+y=2$. Find the equations of other sides.

- Watch Video Solution

86. The st. lines $3 x+4 y=5$ and $4 x-3 y=15$ interrect at a point $A(3,-1)$. On these linepoints B and C are chosen so that $A B=A C$. Find the possible eqns of the line $B C$ pathrough the point $(1,2)$

- Watch Video Solution

87. Find the equation of a straight line passing through the point $(4,5)$ and equally inclined to the lines $3 x=4 y+7$ and $5 y=12 x+6$.

- Watch Video Solution

88. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.

- Watch Video Solution

89. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

- Watch Video Solution

90. Find the equations of angular bisector bisecting the angle containing the origin and not containing the origin of the lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$

- Watch Video Solution

91. The equations of the bisector of the agle between the line $2 x+y-6=0$ and $2 x-4 y+7=0$ which contains the point $(1,2)$ is.

- Watch Video Solution

92. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

- Watch Video Solution

93. Find the bisector of acute angle between the lines $x+y-3=0$ and $7 x-y+5=0$

- Watch Video Solution

94. The vertices of $\triangle A B C$ are $A(0,6), B(8,12)$ and $C(8,0)$. The cordinates of the incentre are:

- Watch Video Solution

95. Find the coordinates of the foot of the perpendicular drawn from the point (2,3) to the line $y=3 x+4$
96. Find the image of the point $(4,-13)$ in the line $5 x+y+6=0$.

- Watch Video Solution

97. Find the image of the $(-2,-7)$ under the transformations (x, y) to $(x-2 y,-3 x+y)$.

- Watch Video Solution

98. The image of the point $A(1,2)$ by the line mirror $y=x$ is the point B and the image of B by the line mirror $\mathrm{y}=0$ is the point (α, β), then a . $\alpha=1, \beta=-2 \mathrm{~b} . \alpha=, \beta=0 \mathrm{c} . \alpha=, \beta=-1 \mathrm{~d}$. none of these

- Watch Video Solution

99. The point $(4,1)$ undergoes the following three transformations successively: (a) Reflection about the line $\mathrm{y}=\mathrm{x}$ (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.

- Watch Video Solution

100. Find the equations of the sides of the triangle having $(3,-1)$ as a vertex, $x-4 y+10=0$ and $6 x+10 y-59=0$ being the equations of an angle bisector and a median respectively drawn from different vertices.

- Watch Video Solution

101. If $P=(1,1), Q=(3,2)$ and R is a point on x-axis then the value of $P R+R Q$ will be minimum at
102. Find a point P on the line $3 x+2 y+10=0$ such that $|P A-P B|$ is minimum where A is $(4,2)$ and B is $(2,4)$

Watch Video Solution

103. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of the line containing the reflected ray.

- Watch Video Solution

104. A light beam, emanating from the point $(3,10)$ reflects from the straight line $2 x+y-6=0$ and then passes through the point $B(7,2)$. Find the equations of the incident and reflected beams.
105. A ray of light is sent along the line $x-6 y=8$ After refracting across the line $x+y=1$ it enters the opposite side after turning by 15° away from the line $x+y=1$. Find the equation of the line along which the refracted ray travels .

- Watch Video Solution

106. If the points $\left(\frac{a^{3}}{a-1}, \frac{a^{2}-3}{a-1}\right),\left(\frac{b^{3}}{b-1}, \frac{b^{2}-3}{b-1}\right)$, $\left(\frac{c^{3}}{c-1}, \frac{c^{2}-3}{c-1}\right)$ are collinear for 3 distinct values a, b, c and $a \neq 1, b \neq 1, c \neq 1$, then find the value of $a b c-(a b+b c+c a)+3(a+b+c)$.

- Watch Video Solution

107. A rectangle $A B C D$ has its side $A B$ parallel to line $y=x$, and vertices A, BandD lie on $y=1, x=2$, and $x=-2$, respectively. The locus of vertex C is $x=5$ (b) $x-y=5 y=5$ (d) $x+y=5$
A. $x=5$
B. $x-y=5$
C. $y=5$
D. $x+y=5$

Answer:

- Watch Video Solution

108. The line $(k+1) x+k y-2 k^{2}-2=0$ passes through a point regardless of the value k. Which of the following is the line with slope 2 passing through the point?
A. $y=2 x-8$
B. $y=2 x-5$
C. $y=2 x-4$
D. $y=2 x+8$

D Watch Video Solution

109. A man starts from the point $P(-3,4)$ and reaches the point $Q(0,1)$ touching the x -axis at $R(\alpha, 0)$ such that $P R+R Q$ is minimum. Then $5|\alpha|=$ \qquad
A. $\left(\frac{3}{5}, 0\right)$
B. $\left(-\frac{3}{5}, 0\right)$
C. $\left(-\frac{2}{5}, 0\right)$
D. $(-2,0)$

Answer:

110. If the point $P\left(a, a^{2}\right)$ lies completely inside the triangle formed by the lines $x=0, y=0$, and $x+y=2$, then find the exhaustive range of values of a.
A. $(0,1)$
B. $(1, \sqrt{2})$
C. $(\sqrt{2}-1,1)$
D. $(\sqrt{2}-1,2)$

Answer:

- Watch Video Solution

111. If $5 a+4 b+20 c=\mathrm{t}$ then the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point is
A. ,0
B. 20
C. 30
D. None of these

Answer:

- Watch Video Solution

112. If the straight lines. $a x+a m y+1=0, b x+(m+1) b y+1=0$ and $c x+(m+2) c y+1=0, m \neq 0$ are concurrent then a,b.c are in:
(A) A.P. only for $m=1$ (B) A.P. for all m (C) G.P. for all m (D) H.P. for all m
A. AP only for $m=1$
B. AP for all m
C. GP for all m
D. HP for all m

Answer:

113. If a ray travelling the line $\mathrm{x}=1$ gets reflected the line $x+y=1$ then the equation of the line along which the reflected ray travels is
A. $y=0$
B. $x-y=1$
C. $x=0$
D. None of these

Answer:

- Watch Video Solution

114. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none

$$
\text { A. } \alpha \beta
$$

B. $2 \alpha \beta$
C. $4 \alpha \beta$
D. $8 \alpha \beta$

Answer:

- Watch Video Solution

115. The coordinates of the point P on the line $2 x+3 y+1=0$ such that $|P A-P B|$ is maximum where A is $(2,0)$ and B is $(0,2)$ is
A. $(5,-3)$
B. $(7,-5)$
C. $(9,-7)$
D. $(11,-9)$

Answer:

116. Equation of the straight line which belongs to the system of straight lines $a(2 x+y-3)+b(3 x+2 y-5)=0$ and is farthest from the pint $(4,-3)$ is
A. $4 x+11 y-15=0$
B. $3 x-4 y+1=0$
C. $7 x+y-8=0$
D. None of these

Answer:

- Watch Video Solution

117. Find the coordinates of the vertices of a square inscribed in the triangle with vertices $A(0,0), B(2,1)$ and $C(3,0)$, given that two of its vertices are on the side AC'.
A. $\left(\frac{3}{2}, 0\right)$
B. $\left(\frac{3}{2}, \frac{3}{4}\right)$
C. $\left(\frac{9}{4}, \frac{3}{4}\right)$
D. $\left(\frac{9}{4}, 0\right)$

Answer:

- Watch Video Solution

118. Line $\frac{x}{a}+\frac{y}{b}=1$ cuts the coordinate axes at $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(0,0)$ and the line $\frac{x}{a}+\frac{y}{b}=-1$ at $A^{\prime}\left(-a^{\prime}, 0\right)$ and $B^{\prime}\left(0,-b^{\prime}\right)$. If the points $\mathrm{A}, \mathrm{B} \mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ are concyclic , then the orthocentre of the triangle $\mathrm{ABA} A^{\prime}$ is
A. $(0,0)$
B. $(0, b)$
C. $\left(0, \frac{-a a}{b}\right)$
D. $\left(0, \frac{\mathrm{bb}^{\prime}}{a}\right)$

- Watch Video Solution

119. Two straight lines $u=0 a n d v=0$ pass through the origin and the angle between them is $\tan ^{-1}\left(\frac{7}{9}\right)$. If the ratio of the slope of $v=0$ and $u=0$ is $\frac{9}{2}$, then their equations are $y+3 x=0 \operatorname{and} 3 y+2 x=0$
$2 y+3 x=0 a n d 3 y+2 x=02 y=3 x a n d 3 y=x y=3 x a n d 3 y=2 x$
A. $y=3 x$ and $3 y=2 x$
B. $2 y=3 x$ and $3 y=x$
C. $y+3 x=0$ and $3 y+2 x=0$
D. $2 y+3 x=0$ and $3 y+x=0$

Answer:

- Watch Video Solution

120. A and B are two fixed points whose coordinates $(3,2)$ and $(5,4)$ respectively. The coordinates of a poin if $A B P$ is an equilateral triangle, are
A. $(4-\sqrt{3}, 3+\sqrt{3})$
B. $(4+\sqrt{3}, 3-\sqrt{3})$
C. $(3-\sqrt{3}, 4+\sqrt{3})$
D. $(3+\sqrt{3}, 4-\sqrt{3})$

Answer:

- Watch Video Solution

121. $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is called a natural point if $\mathrm{x}, y \in N$. The total number of points lying inside the quadrilateral formed by the lines $2 x+y=2, x=0, y=0$ and $x+y=5$ is
122. The distance of the point (x, y) from the origin is defined as $d=\max$. $\{|x|,|y|\}$. Then the distance of the common point for the family of lines $x(1+\lambda)+\lambda y+2+\lambda=0(\lambda$ being parameter) from the origin is

- Watch Video Solution

123. statement 1: incentre of the triangle formed by the lines whose $3 x+4 y=0,5 x-12 y=0$ and $y-15=0$ is the point P whose coordinates are $(1,8)$.Statement- 2 : Point P is equidistant from the 3 lines forming the triangle.

- Watch Video Solution

124. x coordinates of two points B and C are the roots of equation $x^{2}+4 x+3=0$ and their y coordinates are the roots of equation $x^{2}-x-6=0$. If x coordinate of B is less than the x coordinate of C and y coordinate of B is greater than the y coordinate of C and
coordinates of a third point A be $(3,-5)$, find the length of the bisector of the interior angle at A .

- Watch Video Solution

125. The vertices $B a n d C$ of a triangle $A B C$ lie on the lines $3 y=4 x a n d y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

- Watch Video Solution

126. The ends A and B of a straight line segment of constant length c slide upon the fixed rectangular axes OX and OY , respectively. If the rectangle OAPB be completed, then the locus of the foot of the perpendicular drawn from P to $A B$ is
127. A square lies above the X - axis and has one vertex at the origin . The side passing through the origin makes an angle $\alpha(o<\alpha<\pi / 4)$ with the positive direction of the X - axis. Prove that the equation of its diagonals are ,
$y(\cos \alpha-\sin \alpha)=x(\sin \alpha+\cos \alpha)$,
and $y(\sin \alpha+\cos \alpha)+x(\cos \alpha-\sin \alpha)=a$
where, is the length of each side of the square

- Watch Video Solution

128. In a $\triangle A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)$ and point A lies on the line $\mathrm{y}=2 \mathrm{x}+3$ where $\alpha, \beta \in l$. If the area of $\triangle A B C$ be such that $[\Delta]=2$, where [.] denotes the greatest integer function, find all possible coordinates of A .

- Watch Video Solution

129. Find the values of non-negative real number $h_{1}, h_{2}, h_{3}, k_{1}, k_{2}, k_{3}$ such that the algebraic sum of the perpendiculars drawn from the points $\left.\left(2, k_{1}\right),\left(3, k_{2}\right), \cdot 7, k_{3}\right),\left(h_{1}, 4\right),\left(h_{2}, 5\right),\left(h_{3},-3\right)$ on a variable line passing through $(2,1)$ is zero.

- Watch Video Solution

130. Let (h, k) be a fixed point, where $h>0, k>0$. A straight line passing through this point cuts the positive direction of the coordinate axes at the point $\operatorname{Pand} Q$. Find the minimum area of triangle $O P Q, O$ being the origin.

- Watch Video Solution

131. The distance between two parallel lines is unity. A point P lies between the lines at a distance a from one of them. Find the length of a side of an equilateral triangle $P Q R$ vertex Q of which lies on one of the parallel lines and vertex R lies on the other line.

(D) Watch Video Solution

132. Consider two lines L_{1} and L_{2} given by $x-y=0$ and $x+y=0$, respectively, and a moving point $P(x, y)$. Let $d\left(P, L_{1}\right), i=1,2$, represents the distance of point P from the line L_{i}. If point P moves in a certain region R in such a way that $2 \leq d\left(P, P_{1}\right)+d\left(P, L_{1}\right) \leq 4$, find the area of region R.

- Watch Video Solution

133. A rectangle PQRS has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q and S on the lines $\mathrm{y}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ and $x=-b$ respectively . Find the locus of the vertex R.

- Watch Video Solution

134. For points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)$ is defined by $d(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

Let $O(0,0)$ and $A=(3,2)$. Prove that the set of points in the first quadrant which are equidistant (wrt new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.

- Watch Video Solution

135. A line through the variable point $A(k+1,2 k)$ meets the lines $7 x+y-16=0,5 x-y-8=0, x-5 y+8=0 \quad$ at $\quad B, C, D$, respectively. Prove that $A C, A B, A D$ are in HP.

(D) Watch Video Solution

Exercise For Session 1

1. Find the distance of the point $(3,5)$ from the line $2 x+3 y=14$ measured parallel to the line $x-2 y=1$.
A. $\frac{7}{\sqrt{5}}$
B. $\frac{7}{\sqrt{13}}$
C. $\sqrt{5}$
D. $\sqrt{13}$

Answer: C

- Watch Video Solution

2. The lines $x \cos \alpha+y \sin \alpha=P_{1}$ and $x \cos \beta+y \sin \beta=P_{2}$ will be perpendicular, if:
A. $\alpha=\beta$
B. $|\alpha-\beta|=\pi / 2$
C. $\alpha=\pi / 2$
D. $\alpha \pm \beta=\pi / 2$

Answer: B

3. If each of the points $(x-1,4),\left(-2, y_{1}\right)$ lies on the line joining the points $(2,-1) \operatorname{and}(5,-3)$, then the point $P\left(x_{1}, y_{1}\right)$ lies on the line.
$6(x+y)-25=0 \quad 2 x+6 y+1=0 \quad 2 x+3 y-6=0$
$6(x+y)+25=0$
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

Answer: B

- Watch Video Solution

4. The equation of the straight line passing through the point (4.3) and making intercepts on the co ordinate axes whose sum is -1 , is
A. $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
D. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D

- Watch Video Solution

5. If the straight lines $a x+b y+c=0$ and $x \cos \alpha+y \sin \alpha=c$ enclose an angle $\pi / 4$ between them and meet the straight line $x \sin \alpha-y \cos \alpha=0$ in the same point , then
A. $a^{2}+b^{2}=c^{2}$
B. $a^{2}+b^{2}=2$
C. $a^{2}+b^{2}=2 c^{2}$
D. $a^{2}+b^{2}=4$

- Watch Video Solution

6. The angle between the straight lines
$2 x-y+3=0$ and $x+2 y+3=0$ is-
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

7. (i) Find the gradient of a straight line which is passes through the point
(-3.6) and the mid point of ($4,-5$) and ($-2,9$)
A. $\pi / 4$
B. $\pi / 2$
C. $3 \pi / 4$
D. π

Answer: C

- Watch Video Solution

8. A square of side a lies above the X - axis and has one vertex at the origin . The side passing through the origin makes an angle $\pi / 6$ with the positive direction of X -axis .The equation of its diagonal not passing through the origin is
A. $y(\sqrt{3}-1)-x(1-\sqrt{3})=2 a$
B. $y(\sqrt{3}+1)+x(1-\sqrt{3})=2 a$
C. $y(\sqrt{3}+1)+x(1+\sqrt{3})=2 a$
D. $y(\sqrt{3}+1)+x(\sqrt{3}-1)=2 a$

Answer: D

D View Text Solution

9. $A(1,3)$ and $C(7,5)$ are two opposite vertices of a square. The equation of a side through A is
A. $x+2 y-7=0$
B. $x-2 y+5=0$
C. $2 x+y-5=0$
D. $2 x-y+1=0$

Answer: A::D

D Watch Video Solution

10. Find the equation of a straight line passing through the point $(-5,4)$ and which cuts off an intercept of $\sqrt{2}$ units between the lines
$x+y+1=0$ and $x+y-1=0$.
A. $x-2 y+13=0$
B. $2 x-y+14=0$
C. $x-y+9=0$
D. $x-y+10=0$

Answer: C

- Watch Video Solution

11. Equation to the straight line cutting off an intercept 2 from negative direction of the axis of y and inclined at 30° to the positive direction of axis of x is:
A. $y+x-\sqrt{3}=0$
B. $y-x+2=0$
C. $y-x \sqrt{3}-2=0$
D. $y \sqrt{3}-x+2 \sqrt{3}=0$

Answer: D

- Watch Video Solution

12. What is the value of y so that the line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6)$?

- Watch Video Solution

13. A straight line drawn through the point $P(2,3)$ and is incline at an angle of 30^{0} with the x-axis. Find the coordinates of two points on it a distance 4 from P on either side of P.

- Watch Video Solution

14. If the straight line through the point $(3,4)$ makes an angle $\frac{\pi}{6}$ with x axis and meets the line $12 x+5 y+10=0$ at Q, Then the length of $P Q$ is :

- Watch Video Solution

15. The distance of a point (2,3) from the line $2 x-3 y+9=0$ measured along a line $x-y+1=0$ is :

- Watch Video Solution

16. A line is such that its segment between the lines $5 x y+4=0$ and $3 x+4 y 4=0$ is bisected at the point $(1,5)$. Obtain its equation.

- Watch Video Solution

17. The sides $A B$ and $A C$ of a triangle $A B C$ are respectively $2 x+3 y=29$ and $x+2 y=16$ respectively. If the mid-point of $B C$ is
$(5,6)$ then find the equation of $B C$

- Watch Video Solution

18. A straight line through $A(-15-10)$ meets the lines $x-y-1=0$, $x+2 y=5$ and $x+3 y=7$ respectively at A, B and C. If $\frac{12}{A B}+\frac{40}{A C}=\frac{52}{A D}$ prove that the line passes through the origin.

- Watch Video Solution

Exercise For Session 2

1. The number of lines that are parallel to $2 x+6 y-7=0$ and have an intercept 10 between the coordinate axes is
A. 1
B. 2
C. 4
D. infinitely many

Answer: B

- Watch Video Solution

2. The distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$ is
A. $\frac{7}{2}$
B. $\frac{7}{5}$
C. $\frac{7}{10}$
D. $\frac{9}{10}$

Answer: C

- Watch Video Solution

3. Let the algebraic sum of the perpendicular distances from the points $(2,0),(0,2) \operatorname{and}(1,1)$ to a variable straight line be zero. Then the line pass through a fixed point whose coordinates are $(1,1)$ b. $(2,2)$ c. $(3,3)$ d. $(4,4)$
A. $(1,1)$
B. $(-1,1)$
C. $(-1,-1)$
D. $(1,-1)$

Answer: A

- Watch Video Solution

4. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0, a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=$ has perpendicular diagonals, then $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$ $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2} a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$ (d) none of these
A. $b^{2}+c^{2}=b^{2}+c^{2}$
B. $c^{2}+a^{2}=c^{2}+a^{2}$
C. $a^{2}+b^{2}=a^{2}+b^{2}$
D. None of these

Answer: C

- Watch Video Solution

5. The area of the parallelogram formed by the lines
$3 x-4 y+1=0,3 x-4 y+3=0,4 x-3 y-1=0$
and
$4 x-3 y-2=0$, is (A) $\frac{1}{7}$ squnits (B) $\frac{2}{7}$ squnits (C) $\frac{3}{7}$ squnits (D) 4 $\frac{4}{7}$ squnits
A. $\frac{1}{7}$ squints
B. $\frac{2}{7}$ sq units
C. $\frac{3}{7}$ sq units
D. $\frac{4}{7}$ sq units

Answer: B

D Watch Video Solution

6. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x+1$ equals to
A. $\frac{|m+n|}{(m+n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$

Answer: D

- Watch Video Solution

7. The co-ordinates of a point on the line $y=x$ where perpendicular distance from the line $3 x+4 y=12$ is 4 units, are :
A. $\left(\frac{3}{7}, \frac{5}{7}\right)$
B. $\left(\frac{3}{2}, \frac{3}{2}\right)$
C. $\left(-\frac{8}{7},-\frac{8}{7}\right)$
D. $\left(\frac{32}{7},-\frac{32}{7}\right)$

Answer: C::D

- Watch Video Solution

8. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y-intercept is
A. $-\frac{2}{3}$
B. $\frac{2}{3}$
C. $-\frac{4}{3}$
D. $\frac{4}{3}$
9. If the point $(1,2)$ and (34) were to be on the same side of the line $3 x-5 y+a=0$ then
A. $7<a<11$
B. $a=7$
C. $a=11$
D. $a<7$ or $a>11$

Answer: D

- Watch Video Solution

10. The lines $\mathrm{y}=\mathrm{mx}, y+2 x=0, y=2 x+k$ and $y+m x=k$ form a rhombus if m equals
A. -1
B. $\frac{1}{2}$
C. 1
D. 2

Answer: D

D Watch Video Solution

11. What are the points on the x-axis whose perpendicular distance from the line $\frac{x}{a}+\frac{y}{b}=1$ is a
A. $\frac{b}{a}\left(a \pm \sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$
B. $\frac{a}{b}\left(b \pm \sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$
C. $\frac{b}{a}(a+b, 0)$
D. $\frac{a}{b}\left(a \pm \sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$

Answer: B

12. The three sides of a triangle are given by $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$. If the points $(-2, a)$ lies inside and $(b, 1)$ lies outside the triangle, then
A. $a \in\left(2, \frac{10}{3}\right), b \in(-1,1)$
B. $a \in\left(-2, \frac{10}{3}\right), b \in\left(-1, \frac{9}{2}\right)$
C. $a \in\left(1, \frac{10}{3}\right), b \in(-3,5)$
D. None of these

Answer: D

- Watch Video Solution

13. Are the points $(3,4)$ and $(2,-6)$ on the same or opposite sides of the line $3 x-4 y=8$?

- Watch Video Solution

14. If the point as $(4,7)$ and $(\cos \theta, \sin \theta)$, where ${ }^{\circ} 0$

- Watch Video Solution

15. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

- Watch Video Solution

16. If the area of the parallelogram formed by the lines $2 x-3 y+a=0,3 x-$ $2 y-a=0,2 x-3 y+3 a=0$ and $3 x-2 y-2 a=0$ is 10 square units, then $a=$

- Watch Video Solution

17. A line L is a drawn from $P(4,3)$ to meet the lines $L-1$ and L_{2} given by $3 x+4 y+5=0$ and $3 x+4 y+15=0$ at points $A a n d B$, respectively. From A, a line perpendicular to L is drawn meeting the line
L_{2} at A_{1}. Similarly, from point B_{1}. Thus, a parallelogram $\forall_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram $\forall_{1} B B_{1} \quad$ is the least is $\quad x-7 y+17=0 \quad 7 x+y+31=0$ $x-7 y-17=0 x+7 y-31=0$

- Watch Video Solution

18. The vertices of a $\triangle O B C$ are $O(0,0), B(-3,-1), C(-1,-3)$.

Find the equation of the line parallel to $B C$ and intersecting the sides $O B$ and OC and whose perpendicular distance from the origin is $\frac{1}{2}$.

- Watch Video Solution

Exercise For Session 3

1. Locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=a(\alpha \in R)$ is
A. $2\left(x^{2}+y^{2}\right)=a^{2}+b^{2}$
B. $x^{2}-y^{2}=a^{2-b^{2}}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}+b^{2}$

Answer: C

D Watch Video Solution

2. If a, c, b are in AP the family of line $a x+b y+c=0$ passes through the point.
A. a straight line
B. a family of concurrent lines
C. a family of parallel lines
D. None of these

Answer: D

3. if the lines $x+2 a y+a=0, x+3 b y+b=0$ and $x+4 c y+c=0$ are concurrent, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in: (1) A.P.(2) G.P.(3) H.P.(4) A.G.P.
A. AP
B. GP
C. HP
D. AGP

Answer: B

- Watch Video Solution

4. The set of lines $a x+b y+c=0$, where $3 a+2 b+4 c=0$, is concurrent at the point:
A. $\left(\frac{3}{4}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{3}{4}\right)$
C. $\left(-\frac{3}{4},-\frac{1}{2}\right)$
D. $\left(-\frac{1}{2},-\frac{3}{4}\right)$

Answer: B

- Watch Video Solution

5. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0$ (a, b and c being distinct and different from 1) are concurrent the value of $\frac{a}{a-1}+\frac{b}{b-1}+\frac{c}{c-1}$ is
A. -2
B. -1
C. 1
D. 2

Answer: C

6. If $u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is the same straight line u different straight line not a straight line none of these
A. $u=0$
B. a family of concurrent lines
C. a family of parallel lines
D. None of these

Answer: B

- Watch Video Solution

7. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point (a, b) (b) $(b, a)(-a,-b)$ (d) none of these
A. (a, b)
B. (b, a)
C. $(a,-b)$
D. $(-a, b)$

Answer: C

- Watch Video Solution

8. If the straight lines $x+y-2-0,2 x-y+1=0 \quad$ and $a x+b y-c=0$ are concurrent, then the family of lines $2 a x+3 b y+c=0(a, b, c)$ are nonzero) is concurrent at (2,3) (b) $\left(\frac{1}{2}, \frac{1}{3}\right)\left(-\frac{1}{6},-\frac{5}{9}\right)$ (d) $\left(\frac{2}{3},-\frac{7}{5}\right)$
A. $\left(-\frac{1}{6},-\frac{5}{9}\right)$
B. $\left(\frac{1}{2}, \frac{1}{3}\right)$
C. $\left(-\frac{1}{6},-\frac{5}{9}\right)$
D. $\left(\frac{2}{3},-\frac{7}{5}\right)$

- Watch Video Solution

9. The straight line through the point of intersection of $a x+b y+c=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime}=0$ are parallel to the y-axis has the equation
A. $x\left(a b^{\prime}-a^{\prime} b\right)+\left(c b^{\prime}-c^{\prime} b\right)=0$
B. $x\left(a b^{\prime}+a^{\prime} b\right)+\left(c b^{\prime}+c^{\prime} b\right)=0$
C. $y\left(a b^{\prime}-a^{\prime} b\right)+\left(c^{\prime} a-c a^{\prime}\right)=0$
D. $y\left(b^{\prime}+a^{\prime} b\right)+\left(c^{\prime} a+c a^{\prime}\right)=0$

Answer: A

D Watch Video Solution

10. If the equations of three sides of a triangle are $x+y=1,3 x+5 y=2$ and $x-y=0$ then the orthocentre of the
triangle lies on the line/lines
A. $5 x-3 y=1$
B. $5 y-3 x=1$
C. $2 x-3 y=1$
D. $5 x-3 y=2$

Answer: A: B

- Watch Video Solution

11. Find the equations of the line through the intersection of $2 x-3 y+4=0$ and $3 x+4 y-5=0$ and perpendicular to $6 x-7 y+c=0$
A. $119 y+20 x=125$
B. $199 y-120 x=125$
C. $119 x+102 y=125$
D. $119 x-102 y=125$

Answer: C

- Watch Video Solution

12. The locus of point of intersection of the lines $\frac{x}{a}-\frac{y}{b}=m$ and $\frac{x}{a}+\frac{y}{b}=\frac{1}{m}$ (i) a circle (ii) an ellipse (iii) a hyperbola (iv) a parabola
A. a circle
B. an ellipse
C. a hyperbola
D. a parabola

Answer: C

- Watch Video Solution

13. The condition on a and b, such that the portion of the line $a x+b y-1=0$ intercepted between the lines $a x+y=0$ and $x+b y=0$ subtends a right angle at the origin, is

- Watch Video Solution

14. If the lines
$(a-b-c) x+2 a y+2 a=0,2 b x+(b-c-a) y+2 b=0$ and $(2 c+1) x$ are concurrent , then the prove that either
$a+b+c=0$ or $(a+b+c)^{2}+2 a=0$

- Watch Video Solution

15. Find the equation of the straight line which passes through the intersection of the lines $x-y-1=0 \operatorname{and} 2 x-3 y+1=0$ and parallel
(i) $x-a \xi s(i i) y-a \xi s(i i i) 3 x+4 y=14$.
16. Let a, b, c be parameters. Then the equation $a x+b y+c=0$ will represent a family of straight lines passikng through a fixed point iff there exists a linear relation between a, b, and .

- Watch Video Solution

17. Prove that the family of lines represented by $x(1+\lambda)+y(2-\lambda)+5=0, \lambda$ being arbitrary, pass through a fixed point. Also find the fixed point.

- Watch Video Solution

Exercise For Session 4

1.

Three straight
$2 x+11 y-5=0,24 x+7 y-20=0$ and $4 x-3 y-2=0$
A. form a triangle
B. are only concurrent
C. are concurrent with one line bisecting the angle between the other two
D. None of the above

Answer: C

- Watch Video Solution

2. the line $x+3 y-2=0$ bisects the angle between a pair of straight lines of which one has equation $x-7 y+5=0$. The equation of the other line is : (A) $3 x+3 y-1=0 \quad$ (B) $\quad x-3 y+2=0$
$5 x+5 y-3=0$ (D) None of these
A. $3 x+3 y-1=0$
B. $x-3 y+2=0$
C. $5 x+5 y+3=0$
D. $5 x+5 y-3=0$

- Watch Video Solution

3. P is a point on either of the two lines $y-\sqrt{3}|x|=2$ at a distance 5 units from their point of intersection The coordinates of the foot of the perpendicular from P on the bisector of the angle between them are
A. $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$ or $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$ depending on which the point P is taken
B. $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$
c. $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$
D. $\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$

Answer: B

- Watch Video Solution

4. In a $\triangle A B C$ the bisector of angles B and C lie along the lines $x=y$ and $y=0$. If A is $(1,2)$, then $\sqrt{10} d(A, B C)$ where d (A, $B C$)represents distance of point A from side $B C$
A. $2 x+y=1$
B. $3 x-y=5$
C. $x-2 y=3$
D. $x+3 y=1$

Answer: B

- Watch Video Solution

5. In $\triangle A B C$, the coordinates of the vertex A are,$(4,-1)$ and lines $x-y-1=0$ and $2 x-y=3$ are the internal bisectors of angles B and C. Then the radius of the circles of triangle $A b C$ is
A. $\frac{5}{\sqrt{5}}$
B. $\frac{3}{\sqrt{5}}$
C. $\frac{6}{\sqrt{5}}$
D. $\frac{7}{\sqrt{5}}$

Answer: C

- Watch Video Solution

6. The equation of the straight line which bisects the intercepts between the axes of the lines $x+y=2$ and $2 x+3 y=6$ is
A. $2 x=3$
B. $y=1$
C. $2 y=3$
D. $x=1$

Answer: B

7. The equation of the bisector of the acute angle between the lines
$2 x-y+4=0$ and $x-2 y=1$ is $x-y+5=0 \quad x-y+1=0$ $x-y=5$ (d) none of these
A. $x+y+5=0$
B. $x-y+1=0$
C. $x-y=5$
D. $x-y+5=0$

Answer: C

- Watch Video Solution

8. The equation of the bisector of that angle between the lines $x+y=3$ and $2 \mathrm{x}-\mathrm{y}=2$ which contains the point $(1,1)$ is
A. $(\sqrt{5}-2 \sqrt{2}) x+(\sqrt{5}+\sqrt{2}) y=3 \sqrt{5}-2 \sqrt{2}$
B. $(\sqrt{5}+2 \sqrt{2}) x+(\sqrt{5}-\sqrt{2}) y=3 \sqrt{5}+2 \sqrt{2}$
C. $3 x=10$
D. $3 x-5 y+2=0$

Answer: A

- Watch Video Solution

9. The equation of two straight lines through $(7,9)$ and making an angle of 60° with the line $x-\sqrt{3} y-2 \sqrt{3}=0$ is

- Watch Video Solution

10. Equation of the base of an equilateral triangle is $3 x+4 y=9$ and its vertex is at point (1,2).Find the equations of the other sides and the length of each side of the triangle .

- Watch Video Solution

11. Find the coordinates the those point on the line $3 x+2 y=5$ which are equisdistant from the lines $4 x+3 y-7=0$ and $2 y-5=0$

Watch Video Solution

12. Two sides of a rhombus ABCD are parallel to the lines $y=x+2$ and $y=$ $7 x+3$ If the diagonals of the rhombus intersect at the point $(1,2)$ and the vertex A is on the y-axis, then vertex A can be

- Watch Video Solution

13. The bisector of two lines L and L are given by $3 x^{2}-8 x y-3 y^{2}+10 x+20 y-25=0$. If the line L_{1} passes through origin, find the equation of line L_{2}.

- Watch Video Solution

14. The equation of the bisector of that angle between the lines $x+2 y-11=0,3 x-6 y-5=0$ which contains the point $(1,-3)$ is ($3 x=19$ (b) $3 y=73 x=19 a n d 3 y=7$ (d) None of these

- Watch Video Solution

15. Find the equation of thebisector of the angle between the lines $2 x-3 y-5=0$ and $6 x-4 y+7=0$ which is the supplement of the angle containing the point $(2,-1)$

- Watch Video Solution

Exercise For Session 5

1. The coordinates of the foot of the perpendicular from $(2,3)$ to the line
$3 x+4 y-6=0$ are
A. $\left(-\frac{14}{25},-\frac{27}{25}\right)$
B. $\left(\frac{14}{15},-\frac{17}{25}\right)$
C. $\left(-\frac{14}{25}, \frac{17}{25}\right)$
D. $\left(\frac{14}{25}, \frac{27}{25}\right)$

Answer: D

- Watch Video Solution

2. If the foot of the perpendicular from the origin to a straight line is at
$(3,-4)$, then find the equation of the line.
A. $3 x-4 y=25$
B. $3 x-4 y+25=0$
C. $4 x+3 y-25=0$
D. $4 x-3 y+25=0$

Answer: A

3. The coordinates of the foot of the perpendicular from $(a, 0)$ on the line $y=m x+\frac{a}{m}$ are
A. $\left(0,-\frac{1}{a}\right)$
B. $\left(0, \frac{a}{m}\right)$
c. $\left(0,-\frac{a}{m}\right)$
D. $\left(0, \frac{1}{a}\right)$

Answer: B

- Watch Video Solution

4. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of $\quad c \quad$ is $\quad a a 2-a 22+b 12-b 22 \quad \sqrt{a 12+b 12-a 22-b 22}$ $\frac{1}{2}(a 12+a 22+b 12+b 22) \frac{1}{2}(a 22+b 22-a 12-b 12)$
A. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\sqrt{\left(a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}\right)}$
C. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
D. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$

Answer: D

- Watch Video Solution

5. Write the coordinates of the image of the point $(3,8)$ in the lines $x+3 y-7=0$.
A. $(1,4)$
B. $(3,4)$
C. $(-1,4)$
D. $(-4,-1)$
6. The image of the point $(4,-3)$ with respect to the line $x-y=0$ is,
A. $(-4,-3)$
B. $(3,4)$
C. $(-4,3)$
D. $(-3,4)$

Answer: D

- Watch Video Solution

7. The coordinates of the image of the origin O with respect to the line
$x+y+1=0$ are
A. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
B. $(-2,-2)$
C. $(1,1)$
D. $(-1,1)$

Answer: D

- Watch Video Solution

8. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then L is:
A. $6 x-4 y-7=0$
B. $2 x-3 y-5=0$
C. $3 x-2 y+5=0$
D. $3 x-2 y+10=0$

Answer: C

9. The image of $P(a, b)$ on the line $y=-x$ is Q and the image of Q on the line $y=x$
A. $(a+b, a+b)$
B. $\left(\frac{a+b}{2}, \frac{b+2}{2}\right)$
C. $(a-b, b-a)$
D. $(0,0)$

Answer: D

- Watch Video Solution

10. The nearest point on the line $3 x-4 y=25$ from the origin is
A. $(3,4)$
B. $(3,-4)$
C. $(3,5)$
D. $(-3,5)$

D Watch Video Solution

11. Consider the points $A(0,1)$ and $B(2,0)$, and P be a point on the line $4 x+3 y+9=0$. The coordinates of P such that $|P A-P B|$ is maximum are
A. $\left(-\frac{12}{5}, \frac{17}{5}\right)$
B. $\left(-\frac{84}{5}, \frac{13}{5}\right)$
C. $\left(-\frac{6}{5}, \frac{17}{5}\right)$
D. $(0,-3)$

Answer: B

12. Consider the point $A=(3,4), B(7,13)$. If P be a point on the line $y=x$ such that $P A+P B$ is minimum then coordinates of P is
A. $\left(\frac{12}{7}, \frac{12}{7}\right)$
B. $\left(\frac{13}{7}, \frac{13}{7}\right)$
C. $\left(\frac{31}{7}, \frac{31}{7}\right)$
D. $(0,0)$

Answer: C

- Watch Video Solution

13. the image of the point $A(2,3)$ by the line mirror $\mathrm{y}=\mathrm{x}$ is the point B and the image of B by the line mirror $\mathrm{y}=\mathrm{O}$ is the point (α, β), find α and β

- Watch Video Solution

14. The equations of the perpendicular bisectors of the sides $A B a n d A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.

- Watch Video Solution

15. In a triangle, $A B C$, the equation of the perpendicular bisector of $A C$ is $3 x-2 y+8=0$. If the coordinates of the points A and B are $(1,-1) \&(3,1)$ respectively, then the equation of the line BC \& the centre of the circum-circle of the triangle $A B C$ will be

- Watch Video Solution

16. Is there a real value of λ for which the image of the point $(\lambda, \lambda-1)$ by the line mirror $3 x+y=6 \lambda$ is the point $\left(\lambda^{2}+1, \lambda\right)$ If so find λ.,

- Watch Video Solution

1. A ray of light passing through the point $(1,2)$ reflects on the xaxis at point A and the reflected ray passes through the point $(5,3)$. Find the coordinates of A.
A. 3
B. $\frac{13}{3}$
C. $\frac{13}{5}$
D. $\frac{13}{4}$

Answer: C

- Watch Video Solution

2. The equation of the line $A B$ is $y=x$. If A and B lie on the same side of the line mirror $2 x-y=1$, then the equation of the image of $A B$ is (a) $x+y-2=0$ (b) $8 x+y-9=0$ (c) $7 x-y-6=0$ (d) 'None of these
A. $x+y=2$
B. $8 x+y=9$
C. $7 x-y=6$
D. None of these

Answer: C

- Watch Video Solution

3. A ray of light travelling along the line $x+y=1$ is incident on the X axis and after refraction the other side of the X - axis by turning $\pi / 6$ by turning away from the X - axis. The equation of the line along which the refracted ray travels is
A. $x+(2-\sqrt{3}) y=1$
B. $x(2+\sqrt{3})+y=2+\sqrt{3}$
C. $(2-\sqrt{3}) x+y=1$
D. $x+(2+\sqrt{3}) y=(2+\sqrt{3})$

- Watch Video Solution

4. All of the points lying inside thr triangle formed by the points $(0,4)(2,5)$ and $(6,2)$ satisfy
A. $3 x+2 y+8 \geq 0$
B. $2 x+y-10 \geq 0$
C. $2 x-3 y-11 \geq 0$
D. $-2 x+y-3 \geq 0$

Answer: A

D Watch Video Solution

5. Let O be the origin. If $A(1,0)$ and $B(0,1) \operatorname{and} P(x, y)$ are points such that $x y>0 a n d x+y<1$, then P lies either inside the triangle $O A B$
or in the third quadrant. P cannot lie inside the triangle $O A B P$ lies inside the triangle $O A B P$ lies in the first quadrant only
A. P lies either inside in $\triangle O A B$ or in third quadrant
B. P cannot be inside in $\triangle O A B$
C. P lies inside the $\triangle O A B$
D. None of these

Answer: A

- Watch Video Solution

6. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then, $a=\frac{64}{115}, b=\frac{112}{15} \quad a=\frac{14}{15}, b=-\frac{8}{115} \quad a=\frac{64}{115}, b=-\frac{8}{115}$ $a=\frac{64}{15}, b=\frac{14}{15}$
A. $a=\frac{64}{115}, b=\frac{112}{15}$
B. $a=-\frac{64}{115}, b=\frac{8}{115}$
C. $a=\frac{64}{115}, b=\frac{8}{115}$
D. $a=-\frac{64}{115}, b=\frac{-8}{115}$

Answer: C

- Watch Video Solution

7. Two sides of a triangle have the joint equation $x^{2}-2 x y-3 y^{2}+8 y-4=0$ The third side, which is variable always passes through the point $(-5,-1)$.Find the range of values of the slope of the third side, so that the origin is an interior point of the triangle .

- Watch Video Solution

8. Determine the range of values of $0 \in[0,2 \pi]$ for which $(\cos \theta, \sin \theta)$ lies inside the triangle formed by the lines $x+y-2=0, x-y-1=0$ and $6 x+2 y-\sqrt{10=0}$
9. Let $\mathrm{P}(\sin \theta, \cos \theta)$ (θ belongs to 0 to 2π) be apoint and OAB be a triangle with vertices $(0,0),\left(\sqrt{\frac{3}{2}}, 0\right)$ and $\left(0, \sqrt{\frac{3}{2}}, 0\right)$. Find θ if P lies inside the AQAB.

- Watch Video Solution

10. Find all the values of θ for which the point $\left(\sin ^{2} \theta, \sin \theta\right)$ lies inside the square formed by the line $x y=0$ and $4 x y-2 x-2 y+1=0$.

- Watch Video Solution

11. ermine whether the point $(-3,2)$ lies inside or outside the triangle whose sides are given by the equations $x+y-4 x+8-0,4 x-y-31-0$.

- Watch Video Solution

12. A ray of light is sent along the line $x-2 y+5=0$ upon reaching the line $3 x-2 y+7=0$ the ray is reflected from it . Find the equation of the containing the reflected ray .

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. The straight line $y=x-2$ rotates about a point where it cuts x-axis and become perpendicular on the straight line $a x+b y+c=0$ then its equation is
A. $a x+b y+2 a=0$
B. $a y-b x+2 b=0$
C. $a x+b y+2 b=0$
D. None of these

Answer: B

2. If $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{2}{a!}$, then orthocentre of the triangle having sides $x-y+1=0, x+y+3=0$ and $2 x+5 y-2=0$ is
A. $(2 m-2 n, m-n)$
B. $(2 m-2 n, n-m)$
C. $(2 m-n, m+n)$
D. $(2 m-n, m-n)$

Answer: A

- Watch Video Solution

3. If $f(x+y)=f(x) . f(y)$ for all x and $y . f(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is (A) $f(5)$ sq. units (B) $f(6)$ sq. units (C) $\frac{1}{3} f(6)$ sq. units (D) $f(4)$ sq. units
A. $f(4)$ sq units
B. $\frac{1}{2} f(6)$ sq units
C. $\frac{1}{3} f(6)$ sq units
D. $\frac{1}{3} f(5)$ sq units

Answer: C

- Watch Video Solution

4. The graph of the function, $\cos x \cos (x+2)-\cos ^{2}(x+1)$ is
A. a straight line passing through $\left(0-\sin ^{2} 1\right)$ with slope 2
B. a straight line passing through $(0,0)$
C. a parabola with vertex $\left(1-\sin ^{2} 1\right)$
D.a straight line passing through the point $\left(\frac{\pi}{2},-\sin ^{2} 1\right)$ are parallel to the X-axis

Answer: D

5. A straight line passing through the point $(2,2)$ and the axes enclose an area λ. The intercepts on the axes made by the line are given by the two roots of:
(A) $x^{2}-2|\lambda| x+|\lambda|=0$
(B) $x^{2}+|\lambda| x+2|\lambda|=0$
(C) $x^{2}-|\lambda| x+|2 \lambda|=0$
(D) None of these
A. $x^{2}-2|\lambda| x+|\lambda|=0$
B. $x^{2}+|\lambda| x+2|\lambda|=0$
C. $x^{2}-|\lambda| x+2|\lambda|=0$
D. None of these

Answer: C

- Watch Video Solution

6. The set of values of b for which the origin and the point $(1,1)$ lie on the same side of the straight line, $a^{2} x+a b y+1=0 \forall a \in R, b>0$ are(A)
$b \in(2,4)$ (B) $b \in(0,2)$ (C) $b \in[0,2]$ (D) $(2, \infty)$
A. $b \in(2,4)$
B. $b \in(0,2)$
C. $b \in[0,2]$
D. None of these

Answer: B

- Watch Video Solution

7. Line L has intercepts a and b on the coordinate axes. When, the axes area rotated through a given angle, keeping the origin fixed, the same line L has intercepts p and q, then
A. $a^{2}+b^{2}=p^{2}+q^{2}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. $a^{2}+p^{2}=b^{2}+q^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Answer: B

- Watch Video Solution

8. If the distance of any point (x, y) from origin is defined as $d(x, y)=\max \{|x|,|y|\}$, then the locus of the point (x, y) where $d(x, y)=1$ is
A. a circle
B. a straight line
C. a square
D. a triangle

Answer: B

- Watch Video Solution

9. If p_{1}, p_{2}, p_{3} be the length of perpendiculars from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$ and $\left(m^{\prime 2}, 2 m^{\prime}\right)$ respectively on the line $x \cos \alpha+y \sin \alpha+\frac{\sin ^{2} \alpha}{\cos \alpha}=0$ then p_{1}, p_{2}, p_{3} are in:

- Watch Video Solution

10. $A B C D$ is a square whose vertices are $A(0,0), B(2,0), C(2,2)$, and $D(0,2)$. The square is rotated in the $X Y$ - plane through an angle 30° in the anticlockwise sense about an axis passing though A perpendicular to the $X Y$ - plane. Find the equation of the diagonal $B D$ of this rotated square.
A. $\sqrt{3} x+(1-\sqrt{3})=y=\sqrt{3}, x^{2}+y^{2}=4$
B. $(1+\sqrt{3}) x-(1-\sqrt{2}) y=2, x^{2}+y^{2}=9$
C. $(2-\sqrt{3}) x+y=2(\sqrt{3}-1), x^{2}+y^{2}-x \sqrt{3}-y=0$
D. None of the above
11. The point $(4,1)$ undergoes the following three successive transformations,
reflection about the line $y=x-1$
translation through a distance 1 unit along the positive direction rotation thrpough an angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction

Then the coordinates of the final point are,
A. $(4,3)$
B. $\left(\frac{7}{2}, \frac{7}{2}\right)$
C. $(0,3 \sqrt{2})$
D. $(3,4)$

Answer: C

- Watch Video Solution

12. If the square ABCD , where $A(0,0), B(2,0) C(2,2)$ and $D(0,2)$ undergoes the following three transformations successively
(i) $f_{1}(x, y) \rightarrow(y, x)$
(ii) $f_{2}(x, y) \rightarrow(x+3 y, y)$
(iii) $f_{3}(x, y) \rightarrow\left(\frac{x-y}{2}, \frac{x+y}{2}\right)$
then the final figure is a
A. square
B. parallelogram
C. rhombus
D. None of these

Answer: B

- Watch Video Solution

13. The line $x+y=a$ meets the axes of x and y at A and B respectively. A triangle AMN is inscribed in the triangle $O A B$, o being the origin, with right angle at N, M and N lie respectively on $O B$ and $A B$. If the area of the
triangle AMN is $\frac{3}{8}$ of the area of the triangle $O A B$, then $\frac{A N}{B M}$ is equal to:
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

14. If $P(1,0), Q(-1,0)$ and $R(2,0)$ are three given points, then the locus of the point S satisfying the relation $(S Q)^{2}+(S R)^{2}=2(S P)^{2}$
A. a straight line parallel to X-axis
B. a circle through the origin
C. a circle with centre at the origin
D. a straight line parallel to Y-axis

Answer: D

- Watch Video Solution

15. If $A\left(\frac{\sin \alpha}{3}-1, \frac{\cos \alpha}{2}-1\right)$ and $\mathrm{B}(1,1) \alpha \in[-\pi, \pi]$ are two points on the same side of the line $3 x-2 y+1=0$ then α belongs to the interval
A. $\left(-\pi,-\frac{3 \pi}{4}\right) \cup\left(\frac{\pi}{4}, \pi\right)$
B. $[-\pi, \pi]$
C. ϕ
D. None of these

Answer: A

16. The line $x+y=1$ meets X -axis at A and Y -axis at B, P is the mid-point of $A B, P_{1}$ is the foot of perpendicular from P to $O A, M_{1}$ is that of P_{1} from $O P, P_{2}$ is that of M_{1} from $O A, M_{2}$ is that of P_{2} from $O P, P_{3}$ is that of M_{2} from OA and so on. If P_{n} denotes theb nth foot of the perpendicular on OA , then find $O P_{n}$

A. $\frac{1}{2 n}$
B. $\frac{1}{2^{n}}$
C. $2^{n}-1$
D. $2^{n}+3$

Answer: B

- Watch Video Solution

17. The line $x=c$ cuts the triangle with corners $(0,0),(1,1)$ and $(9,1)$ into two regions .For the area of the two regions to the same, then c must be equal to
A. $\frac{5}{2}$
B. 3
C. $\frac{7}{2}$
D. 3 or 15

Answer: B

- Watch Video Solution

18. If the straight lines $x+2 y=9,3 x-5 y=5$ and $a x+b y=1$ are concurrent, then the straight line $5 x+2 y=1$ passes through the point
A. $(a,-b)$
B. $(-a, b)$
C. (a, b)
D. $(-a,-b)$

Answer: C

- Watch Video Solution

19. If the ends of the base of an isosceles triangle are at $(2,0)$ and $(0,1)$, and the equation of one side is $x=2$, then the orthocenter of the triangle is
A. $\left(\frac{3}{4}, \frac{3}{2}\right)$
B. $\left(\frac{5}{4}, 1\right)$
C. $\left(\frac{3}{4}, 1\right)$
D. $\left(\frac{4}{3}, \frac{7}{12}\right)$

Answer: B

- Watch Video Solution

20. Let m, n are integers with `o
A. $2 m(m+n)$
B. $m(m+3 n)$
C. $m(2 m+3 n)$
D. $2 m(m+3 n)$

Answer: B

21. A straight line I with negative slope passes through $(8,2)$ and cuts the coordinate axes at P and Q . Find absolute minimum value of "OP+OQ where O is the origin-
A. 10
B. 18
C. 16
D. 12

Answer: B

- Watch Video Solution

22. Drawn from origin are two mutually perpendicular lines forming an isosceles triangle together with the straight line $2 x+y=a$ then the area of this triangle is
A. $\frac{a^{2}}{2}$ sq units
B. $\frac{a^{2}}{3}$ sq units
C. $\frac{a^{2}}{5}$ sq units
D. None of these

Answer: C

D Watch Video Solution

23. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is 2 (b) 0 (c) 4 (d) 1
A. 2
B. 0
C. 4
D. 1
24. A ray of light coming fromthe point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point (5,3). The coordinates of the point A is :
A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. None of these

Answer: A

- Watch Video Solution

25. Consider the family of lines $5 x+3 y-2+\lambda(3 x-y-4)=0$ and $x-y+1+\mu(2 x-y-2)=0$ Equation of straight line that belong to both families is $a x+b y-7=0$ then $a+b$ is
A. 1
B. 3
C. 5
D. 7

Answer: B

- Watch Video Solution

26. In $\triangle A B C$ equation of the right bisectors of the sides Ab and AC are $x+y=0$ and $x-y=0$ respectively .If $\mathrm{A}=(5,7)$ then equation of side $B C$ is
A. $7 y=5 x$
B. $5 x=y$
C. $5 y=7 x$
D. $5 y=x$

D Watch Video Solution

27. Two particles start from point (2, -1), one moving two units along the line $x+y=1$ and the other 5 units along the line $x-2 y=4$, If the particle move towards increasing y, then their new positions are:
A. $(2-\sqrt{2}, \sqrt{2}-1),(2 \sqrt{5}+2, \sqrt{5}-1)$
B. $(2 \sqrt{2}+2, \sqrt{5}-1),(2 \sqrt{2}, \sqrt{2}+1)$
C. $(2+\sqrt{2}, \sqrt{2}+1),(2 \sqrt{2}+2, \sqrt{5}+1)$
D. $(2-\sqrt{2} \sqrt{5}-1),(\sqrt{2}-1,2 \sqrt{2}+2)$

Answer: A

- Watch Video Solution

28. Let P be $(5,3)$ and a point R on $y=x$ and Q on the X - axis be such that $P Q+Q R+R P$ is minimum ,then the coordinates of Q are
A. $\left(\frac{17}{8}, 0\right)$
B. $\left(\frac{17}{4}, 0\right)$
C. $\left(\frac{17}{2}, 0\right)$
D. $(17,0)$

Answer: B

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lies on

$$
\text { A. } x-y=0
$$

B. $(x+y)(a+b)=2 a b$
C. $(l x+m y)(a+b)=2 a b$
D. $(l x-m y)(a+b)=(l-m) a b$

Answer: A::B::D

- Watch Video Solution

2. The area of a triangle is 5 units. Two of its certices are $(2,1)$ and $(3,-2)$. The third vertex lies on $\mathrm{y}=\mathrm{x}+3$. Find the coordinates of the third vertex of the triangle.
A. $b=c$
B. $c=a$
C. $a=b$
D. $a+b+c=0$
3. The area of a triangle is 5 units. Two of its certices are $(2,1)$ and $(3,-2)$. The third vertex lies on $\mathrm{y}=\mathrm{x}+3$. Find the coordinates of the third vertex of the triangle.
A. $\left(\frac{-3}{2}, \frac{3}{2}\right)$
B. $\left(\frac{3}{4}, \frac{-3}{2}\right)$
C. $\left(\frac{7}{2}, \frac{13}{2}\right)$
D. $\left(\frac{-1}{4}, \frac{11}{4}\right)$

Answer: A:C

- Watch Video Solution

4. If the lines $x-2 y-6=0,3 x+y-4$ and $\lambda x+4 y+\lambda^{2}=0$ are concurrent, then
A. $\lambda=2$
B. $\lambda=2$
C. $\lambda=4$
D. $\lambda=-4$

Answer: A::D

- Watch Video Solution

5. Equation of a straight line passing through the point of intersection of $x-y+1=0$ and $3 x+y-5=0$ are perpendicular to one of them is
A. $x+y+3=0$
B. $x+y-3=0$
C. $x-3 y-5=0$
D. $x-3 y+5=0$
6. If one vertex of an equilateral triangle of side 'a' lie at the origin and the other lies on the line $x-\sqrt{3} y=0$, the co-ordinates of the third vertex are:
A. $(0, a)$
B. $\left(\frac{\sqrt{3 a}}{2}, \frac{-a}{2}\right)$
C. $(0,-a)$
D. $\left(\frac{-\sqrt{3} a}{2}, \frac{a}{2}\right)$

Answer: A::B::C::D

- Watch Video Solution

7.

If
the
lines
$a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0(a, b, c \quad$ being
distinct) are concurrent, then (A) $a+b+c=0$ (B) $a+b+c=0$
$a b+b c+c a=1$ (D) $a b+b c+c a=0$
A. $a^{3}+b^{3}+c^{3}-3 a b c=0$
B. $a=b$
C. $a=b=c$
D. $a^{2}+b^{2}+c^{2}-b c-c a-a b=0$

Answer: A::C::D

- Watch Video Solution

8. $A(1,3)$ and $C(7,5)$ are two opposite vertices of a square. The equation of a side through A is
A. $x+2 y-7=0$
B. $x-2 y+5=0$
C. $2 x+y-5=0$
D. $2 x-y+1=0$

Answer: A::D

- Watch Video Solution

9. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$ then the family of lines $a x+b y+c=0,|a|+|b| \neq 0$ can be concurrent at concurrent (A) $(-2,3)$
(B) $(3,-1)(C)(2,3)(D)(-3,1)$
A. $(-2,-3)$
B. $(3,-1)$
C. $(2,3)$
D. $(-3,1)$

Answer: A: B

- Watch Video Solution

10. Consider the straight lines $x+2 y+4=0$ and $4 x+2 y-1=0$. The line $6 x+6 y+7=0$ is
A. bisector of the angle including origin
B. bisector of acute angle
C. bisector of obtuse angle
D. None of these

Answer: A: B

- Watch Video Solution

11. Two roads are represented by the equations $y-x=6$ and $x+y=8$ An inspection bungalow has to be so constructed that it is at a distance of 100 from each of the roads . Possible location of the bungalow is given by
A. $(100 \sqrt{2}+1,7)$
B. $(1-100 \sqrt{2}, 7)$
C. $(1,7+100 \sqrt{2})$
D. $(1,7-100 \sqrt{2})$

Answer: A::B::C::D

- Watch Video Solution

12. If (a, b) be an end of a diagonal of a square and the other diagonal has the equation $x-y=a$, then another vertex of the square can be
A. $(a-b, a)$
B. $(a, 0)$
C. $(0,-a)$
D. $(a+b, b)$

Answer: B::D

13. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If mand_{1} are fixed and different lines are drawn for different values of y_{1}, then the lines will pass through a fixed point there will be a set of parallel lines all the lines intersect the line $x=x_{1}$ all the lines will be parallel to the line $y=x_{1}$
A. the lines will pass through a fixed point
B. there will be a set of parallel lines
C. all the lines intersect the lines $x=x_{1}$
D. all the lines will be parallel to the line $y=x_{1}$

Answer: A::B::C::D

- Watch Video Solution

14. Let $L_{1} \equiv a x+b y+a \sqrt[3]{b}=0$ and $L_{2} \equiv b x-a y+b \sqrt[3]{a}=0$ be two straight lines. The equatins of the bisectors of the angle formed by the foci whose equations are
$\lambda_{1} L_{1}-\lambda_{2} L_{2}=0$ and $\lambda_{1} l_{1}+\lambda_{2}=0, \lambda_{1}$ and λ_{2} being non - zero real numbers ,are given by
A. $L_{1}=0$
B. $L_{2}=0$
C. $\lambda_{1} L_{1}+\lambda_{2} L_{2}=0$
D. $\lambda_{2} L_{1}-\lambda_{1} L_{2}=0$

Answer: A::B

- View Text Solution

15. The equation of the bisectors of the angles between the two intersecting lines $\frac{x-3}{\cos \theta}=\frac{y+5}{\sin \theta}$ and $\frac{x-3}{\cos \theta}=\frac{y+5}{\sin \theta} \quad$ are $\frac{x-3}{\cos \alpha}=\frac{y+5}{\sin \alpha}$ and $\frac{x-3}{\beta}=\frac{y+5}{\gamma}$, then
A. $\alpha=\frac{\theta+\phi}{2}$
B. $\beta=-\sin \alpha$
C. $\gamma=\cos \alpha$
D. $\beta=\sin \alpha$

Answer: A::B::C::D

- View Text Solution

Exercise Passage Based Questions

1. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane , a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $\mathrm{d}(\mathrm{P}, \mathrm{Q})=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ Let $O \equiv(0,0), A \equiv(1,2) B \equiv(2,3)$ and $C \equiv(4,3)$ are four fixed points on x - y plane

Let $R(x, y)$ such that R is equisdistant from the point O and A with respect to new distance and if $0 \leq x<1$ and $0 \leq y<2$, then R lie on a line segment whose equation is
A. $x+y=3$
B. $x+2 y=3$
C. $2 x+y=3$
D. $2 x+2 y=3$

Answer: D

- View Text Solution

2. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $\mathrm{d}(\mathrm{P}, \mathrm{Q})=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ Let $O \equiv(0,0), A \equiv(1,2) B \equiv(2,3)$ and $C \equiv(4,3)$ are four fixed points on x - y plane

Let $\mathrm{S}(\mathrm{x}, \mathrm{y})$ such that S is equisdistant from points O and B with respect to new and if $x \geq 2$ and $0 \leq y<3$ then locus of S is
A. a line segment of infinite length
B. a line of infinite length
C. a ray of finite length
D. a ray of infinite length

Answer: D

- View Text Solution

3. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane , a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $\mathrm{d}(\mathrm{P}, \mathrm{Q})=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ Let $O \equiv(0,0), A \equiv(1,2) B \equiv(2,3)$ and $C \equiv(4,3)$ are four fixed points on x - y plane

Le $\mathrm{T}(\mathrm{x}, \mathrm{y})$ such that T is equisdistant from point O and C with respect to new distance and if T lie in first quadrant, then T consists of the union of a line segment of finite length and an infinite ray whose labelled diagram is
A.
B. . ${ }^{2}$
C.
D.

Answer: A

4. In a triangle $A b C$, if the equation of sides $A B, B C$ and $C A$ are $2 x-y+4=0, x-2 y-1=0$ and $x+3 y-3=0$ respectively, Tangent of internal angle A is equal to
A. -7
B. -3
C. $\frac{1}{2}$
D. 7

Answer: A

- Watch Video Solution

5. In a triangle $A B C$, if the equation of sides $A B, B C$ and $C A$ are $2 x-y+4=0, x-2 y-1=0$ and $x+3 y-3=0$ respectively, The equation of external bisector of angle B is
A. $x-y-1=0$
B. $x-y+1=0$
C. $x+y-5=0$
D. $x+y+5=0$

Answer: D

- Watch Video Solution

6. In a triangle $A B C$, if the equation of sides $A B, B C$ and $C A$ are $2 x-y+4=0, x-2 y-1=0$ and $x+3 y-3=0$ respectively, The image of point b w.r.t the side $c A$ is
A. $\left(-\frac{3}{5}, \frac{26}{5}\right)$
B. $\left(-\frac{3}{5},-\frac{26}{5}\right)$
C. $\left(\frac{3}{5},-\frac{26}{5}\right)$
D. $\left(\frac{3}{5}, \frac{26}{5}\right)$

D Watch Video Solution

7. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$.
A. $7 x+3 y-4=0$
B. $7 x+3 y+4=0$
C. $7 x-3 y+4=0$
D. $7 x-3 y-4=0$

Answer: B

- Watch Video Solution

8. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$.
A. $\left(\frac{3}{10}, \frac{17}{10}\right)$
B. $\left(\frac{17}{10}, \frac{3}{10}\right)$
C. $\left(-\frac{5}{2}, \frac{9}{2}\right)$
D. $\left(\frac{9}{2},-\frac{5}{2}\right)$

Answer: C

- Watch Video Solution

9. $A(1,3)$ and $c\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a $\triangle A B C$ and the equation of the angle bisector of $\angle A B C$ is $x+y=2$.
A. $3 x+7 y=24$
B. $3 x+7 y+24=0$
C. $13 x+7 y+8=0$
D. $13 x-7 y+8=0$

(D) Watch Video Solution

10. In a $\triangle A B C$ the equation of the side BC is $2 x-y=3$ and its circumcentre and orthocentre are $(2,4)$ and $(1,2)$ respetively. Circumradius of $\triangle A B C$ is
A. $\sqrt{\frac{61}{5}}$
B. $\sqrt{\frac{51}{5}}$
C. $\sqrt{\frac{41}{5}}$
D. $\sqrt{\frac{43}{5}}$

Answer: A

- View Text Solution

11. In a $\triangle A B C$ the equation of the side BC is $2 x-y=3$ and its circumcentre and orthocentre are $(2,4)$ and $(1,2)$ respetively.
$\sin B \cdot \sin C=$
A. $\frac{9}{2 \sqrt{61}}$
B. $\frac{9}{4 \sqrt{61}}$
C. $\frac{9}{\sqrt{61}}$
D. $\frac{9}{5 \sqrt{61}}$

Answer: A

- View Text Solution

12. In a $\triangle A B C$ the equation of the side BC is $2 x-y=3$ and its circumcentre and orthocentre are $(2,4)$ and $(1,2)$ respetively. The distnce of orthocentre from vertex A is
A. $\frac{1}{\sqrt{5}}$
B. $\frac{6}{\sqrt{5}}$
C. $\frac{3}{\sqrt{5}}$
D. $\frac{2}{\sqrt{5}}$

Answer: B

D View Text Solution

Exercise Single Integer Answer Type Questions

1. The number of possible straight lines passing through $(2,3)$ and forming a triangle with the coordinate axes, whose area is 12 sq. units, is one (b) two (c) three (d) four

(Watch Video Solution

2. The portion of the line $x+3 y-1=0$ intersepted between the lines $a x+y+1=0$ and $x+3 y=0$ subtend a right angle at origin , then the value of $|a|$ is

- Watch Video Solution

3. Let ABC be a triangle and $A \equiv(1,2), y=x$ be the perpendicular bisector of AB and $x-2 y+1=0$ be the perpendicular bisector of $\angle C$. If the equation of BC is given by $a x+b y-5=0$ then the value of $a-2 b$ is

- Watch Video Solution

4. A lattice point in a plane is a point for which both coordinates are integers. If n be the number of lattice points inside the triangle whose sides are $x=0, y=0$ and $9 x+22 \quad 3 y=2007$ then tens place digit in n is:

- Watch Video Solution

5. The number of triangles that the four lines $y=x+3, y=2 x+3, y=3 x+2$, and $y+x=3$ form is (a) 4 (b) 2 (c) 3 (d) 1
6. In a plane there are two families of lines $y=x+r, y=-x+r$, where $r \in\{0,1,2,3,4\}$. The number of squares of diagonals of length 2 formed by the lines is:

- Watch Video Solution

7. Two $A(0,0)$ and $B(x, y)$ with $x \in(0,1)$ and $y>0$. Let the slope of line $A B$ be m_{1} Point C lies on line $x=1$ such that the slope of $B C$ is equal to m_{2}, where ${ }^{\circ} 0$

- Watch Video Solution

8. Find λ if $(\lambda, \lambda+1)$ is an interior point of $\triangle A B C$ where, $A \equiv(0,3), B \equiv(-2,0)$ and $C \equiv(5,1)$.

- Watch Video Solution

9. For all real values of $a a n d b$, lines
$(2 a+b) x+(a+3 b) y+(b-3 a)=0 \quad$ and $\quad m x+2 y+6=0 \quad$ are concurrent. Then $|m|$ is equal to \qquad

- Watch Video Solution

10. If from point $P(4,4)$ perpendiculars to the straight lines $3 x+4 y+5=0$ and $y=m x+7$ meet at Q and R area of triangle $P Q R$ is maximum, then m is equal to

- Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement I: The lines $x(a+2 b)+y(a+3 b)=a+b$ are concurrent at the point $(2,-1)$

Statement II: The lines $x+y-1=0$ and $2 x+3 y-1=0$ intersect at the point $(2,-1)$
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: A

- Watch Video Solution

2. Statement I The points (3,2) and (1,4) lie on opposite side of the line $3 x-2 y-1=0$

Statement II The algebraic perpendicular distance from the given the point to the line have opposite sign
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct
explanation for statement I
C. Statement I is true, statement II is false
D. Statement I is false ,statement II is true

Answer: A

- Watch Video Solution

3. Statement I If sum of algebraic distances from points $A(1,2), B(2,3), C(6,1)$ is zero on the line $a x+b y+c=0$ then $2 a+3 b+c=0$,

Statement II The centroid of the triangle is $(3,2)$
A. Statement I is true ,statement II is true, statement II is a correct
explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: D

- Watch Video Solution

4. Statement I Let $A \equiv(0,1)$ and $B \equiv(2,0)$ and P be a point on the line $4 x+3 y+9=0$ then the co- ordinates of P such that $|P A-P B|$ is maximum is $\left(-\frac{12}{5}, \frac{17}{5}\right)$

Statement II $|P A-P B| \leq|A B|$
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: D

D Watch Video Solution

5. Statement I The incentre of a triangle formed by the line $x \cos \left(\frac{\pi}{9}\right)+y \sin \left(\frac{\pi}{9}\right)=\pi$
$x \cos \left(\frac{8 \pi}{9}\right)+y \sin \left(\frac{8 \pi}{9}\right)$
$=\pi$ and $x \cos \left(\frac{13 \pi}{9}\right)+y \sin \left(\frac{13 \pi}{9}\right)=\pi$ is $(0,0)$
Statement if Any point equisdistant from the given three non concurrent straight lines in the plane is the incentre of the triangle .
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: C

D View Text Solution

6. Statement I Reflection of the point (5,1) in the line $x+y=0 i s(-1,-5)$

Statement II Reflection of a point $P(\alpha, \beta)$ in the line $a x+b y+c=0$ is $Q\left(\alpha^{\prime} \beta^{\prime}\right)$ if $\left(\frac{\alpha+\alpha^{\prime}}{2}, \frac{\beta+\beta^{\prime}}{2}\right)$ lies on the line .
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: B

7. Statement 1: The internal angle bisector of angle C of a triangle $A B C$ with sides $A B, A C, \quad$ and $\quad B C \quad$ as $\quad y=0,3 x+2 y=0, \quad$ and $2 x+3 y+6=0$, respectively, is $5 x+5 y+6=0$ Statement 2: The image of point A with respect to $5 \mathrm{x}+5 \mathrm{y}+6=0$ lies on the side $B C$ of the triangle.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: B

- Watch Video Solution

8. Statement 1:If the point $\left(2 a-5, a^{2}\right)$ is on the same side of the line $x+y-3=0$ as that of the origin, then $a \in(2,4)$ Statement 2: The points $\left(x_{1}, y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ lie on the same or opposite sides of the line $a x+b y+c=0$, as $a x_{1}+b y_{1}+c$ and $a x_{2}+b y_{2}+c$ have the same or opposite signs.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: D

- Watch Video Solution

1. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of the triangle then show that:'

- Watch Video Solution

2. Find the coordinates of the point at unit distance from the lines $3 x-4 y+1=0,8 x+6 y+1=0$

- View Text Solution

3. A variable line makes intercepts on the coordinate axes the sum of whose squares is constant and is equal to a. Find the locus of the foot of the perpendicular from the origin to this line.

- Watch Video Solution

4. A variable line cuts n given concurrent straight lines at $A_{1}, A_{2} \ldots A_{n}$ such that $\sum_{i=1}^{n} \frac{1}{O A_{i}}$ is a constant. Show that $\mathrm{A}, \mathrm{A}, \mathrm{A}$ such it always passes through a fixed point, O being the point of intersection of the lines

- Watch Video Solution

5. P is any point on the $x-a=0$. If $A=(a, 0)$ and PQ , the bisector of $\angle O C A$ meets the x-axis in Q prove that the locus of the foot of prependicular from Q on Op is $(x-a)^{2}\left(x^{2}+y^{2}\right)=a^{2} y^{2}$

- Watch Video Solution

6. Having given the bases and the sum of the areas of a number of triangles which have a common vertex, show that the locus of the vertex is a straight line.

- Watch Video Solution

7. A variable line is drawn through O to cut two fixed straight lines L_{1} and L_{2} in R and S . A point P is chosen the variable line such $\frac{m+n}{O P}=\frac{m}{O R}+\frac{n}{O S}$ Find the locus of P which is a straight ine passing through the point of intersection of L_{1} and L_{2}

- Watch Video Solution

8. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0 a n d x-y-5=0 \quad$ at \quad the points $B, C a n d D$ rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

- Watch Video Solution

9. Two fixed straight lines X - axis and $y=m x$ are cut by a variable line in the points $A(a, 0)$ and $B(b, m b)$ respectively. P and Q are the feet of the perpendiculars drawn from A and B upon the lines $y=m x$ and X - axis
,Show that ,if AB passes through a fixed point (h, k) then PQ will also pass through a fixed point .Find the fixed point

- View Text Solution

10. Find the equation of straight lines passing through point $(2,3)$ and having intersept of length 2 units between $(2,3)$ and having an intercept of length 2 units between the straight lines $2 x+y=3,2 x+y=5$

- Watch Video Solution

11. Let $O(0,0), A(2,0)$, $\operatorname{and} B\left(1 \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which satisfy $d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.
12. The lines parallel ot the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0 \quad$ [where $(a, b) \neq(0,0)]$ is-
A. below the X - axis at a distance of $\frac{3}{2}$ from it
B. below the X -axis at a distance of $\frac{2}{3}$ from it
C. above the X-axis at a distance of $\frac{3}{2}$ from it
D. above the X - axis at a distance of $\frac{2}{3}$ from it

Answer: A

- Watch Video Solution

2. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is :

$$
\text { A. } x+y=7
$$

B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$

Answer: C

- Watch Video Solution

3. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines $y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to the interval
A. $\left(0, \frac{1}{2}\right)$
B. $(2, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

4. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle between L_{1} and L_{2} intersect L_{3} at R .

Statement 1 : The ratio PR : RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles .
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: C

5. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle PQR
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

6. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k$,
3) has yintercept -4 . Then a possible value of k is (1) 1 (2) 2 (3) $-2(4)-4$
A. 1
B. 2
C. -2
D. -4

Answer: A

- Watch Video Solution

7. The lines $p\left(p^{2}+1\right) x-y+q=0 \quad$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
A. exactly one values of p
B. exactly two values of p
C. more than two values of p
D. no values of p

Answer: A

- Watch Video Solution

8. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ Then the distance between L and K is (1) $\sqrt{17}$ (2) $\frac{17}{\sqrt{15}}$ (3) $\frac{23}{\sqrt{17}}$ (4) $\frac{23}{\sqrt{15}}$
A. $\sqrt{17}$
B. $\frac{17}{\sqrt{15}}$
C. $\frac{23}{\sqrt{17}}$
D. $\frac{23}{\sqrt{15}}$

Answer: C

- Watch Video Solution

9. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x -axis then the equation of L is
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y=\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: B

- Watch Video Solution

10. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle between L_{1} and L_{2} intersect L_{3} at R.

Statement 1 : The ratio PR: RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles .
A. Statement I is true ,statement II is true, statement II is a not correct explanation for statement I
B. Statement I is true , statement II is false .
C. Statement I is false ,statement II is true
D. Statement I is true ,statement II is true, statement II is a correct explanation for statement I

Answer: B

D Watch Video Solution

11. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals
A. $\frac{29}{5}$
B. 5
C. 6
D. $\frac{11}{5}$

Answer: C

12. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x axis, the equation of the reflected ray is
A. $y=x+\sqrt{5}$
B. $(\sqrt{3} y=x-\sqrt{3}$
C. $y=\sqrt{3} x-\sqrt{3}$
D. $\sqrt{3} y=x-1$

Answer: B

- Watch Video Solution

13. For $a>b>c>0$ if the distance between (1,1) and the point of intersection of the lines $a \mathrm{a}+\mathrm{by}+\mathrm{c}=0$ and $\mathrm{bx}+\mathrm{ay}+\mathrm{c}=0$ is less than $2 \sqrt{2}$ then
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

- Watch Video Solution

14. Let $P S$ be the median of the triangle with vertices $P(2,2)$, $Q(6,-1)$ and $R(7,3)$ Then equation of the line passing through (1, -1) and parallel to $P S$ is
A. $4 x+7 y+3=0$
B. $2 x-9 y-11=0$
C. $4 x-7 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

15. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then
A. $3 b c-2 a d=0$
B. $3 b c+2 a d=0$
C. $2 b c-3 a d=0$
D. $2 b c+3 a d=0$

Answer: A

(D) Watch Video Solution

16. For a point P in the plane let $d_{1}(P)$ and d_{2} be the distance of the point P from the lines $x-y=0 \mathrm{R}$ consisting of all points P lying in the first quadrant of the plane and satisfying $2 \geq d_{1}(P)+d_{2}(P) \geq 4$, is
17. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$ is
A. 820
B. 780
C. 901
D. 861

Answer: B

- Watch Video Solution

18. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
A. $\left(\frac{1}{3}-\frac{8}{3}\right)$

$$
\begin{aligned}
& \text { B. }\left(-\frac{10}{3},-\frac{7}{3}\right) \\
& \text { C. }(-3,-9) \\
& \text { D. }(-3,-8)
\end{aligned}
$$

Answer: A

- Watch Video Solution

