© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

VECTOR ALGEBRA

Example

1. Classify the following measures as scalars and vectors
(i) 20 m north-west
(ii) 10 newton
(iii) $30 \mathrm{~km} / \mathrm{h}$
(iv) $50 \mathrm{~m} / \mathrm{s}$ towards north
(v) 10^{-19} coloumb
2. Represent graphically
(i) a displacement of $60 \mathrm{~km}, 40^{\circ}$ east of north
(ii) A displacement of 50 km south-east.

- Watch Video Solution

3. In the following figure, which of the vectors are:
(i) Collinear
(ii) Equal
(iii) Co-initial
(iv) collinear but not equal .

Watch Video Solution
4. Find a unit vector parallel to the vector $-3 \hat{i}+4 \hat{j}$.
5. Let $a=12 \hat{i}+n \hat{j}$ and $|a|=13$, find th value of n .

- Watch Video Solution

6. Write two different vectors having same magnitude.

Watch Video Solution

7. If one side of a squre be represented by the vectors $3 \hat{i}+4 \hat{j}+5 \hat{k}$, then the area of the square is
A. 12
B. 13
C. 25
D. 50

Answer: D

8. The direction cosines of the vector $3 \hat{i}-4 \hat{j}+5 \hat{k}$ are
A. $\frac{3}{5}, \frac{-4}{5}, \frac{1}{5}$
B. $\frac{3}{5 \sqrt{2}}, \frac{-4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. $\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$.

Answer: B

- Watch Video Solution

9. Show that the vector $i+j+k$ is equally inclined with the axes $O X, O Y$ and $O Z$.

- Watch Video Solution

10. Let $A B$ be a vector in two dimensional plane with the magnitude 4 units and making an angle of 30° with X -axis and lying in the first quadrant. Find the components of $A B$ along the two axes off coordinates. Hence, represent $A B$ in terms of unit vectors \hat{i} and \hat{j}.

- Watch Video Solution

11. Find the unit vector parallel to the resultant vector of $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

12. If a, b, c be the vectors represented by the sides of a triangle taken in order, then $a+b+c=0$

- Watch Video Solution

13. If S is the mid-point of side QR of a $\triangle P Q R$, then prove that $P Q+P R=2 P S$.

- Watch Video Solution

14. If $A B C D E F$ is a regular hexagon, prove that $A D+E B+F C=4 A B$.

- Watch Video Solution

15. If $A=(0,1) B=(1,0), C=(1,2), D=(2,1)$, prove that $\vec{A} B=\vec{C} D$.

- Watch Video Solution

16. If the position vectors of A and B respectively $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$, then find AB
17. Vectors drawn the origin O to the points $A, B a n d C$ are respectively \vec{a}, \vec{b} and $\overrightarrow{4} a-\overrightarrow{3} b$. find \vec{A} Cand $\vec{B} C$.

- Watch Video Solution

18. Find the direction cosines of the vector joining the points $A(1,2,3)$ and $B(1,2,1)$, directed from A to B .

- Watch Video Solution

19. Let α, β, γ be distinct real numbers. The points with position vectors $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}, \beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}, \gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}$
A. are collinera
B. form an equilateral triangle
C. form a scalene triangle
D. form a right angled triangle

- Watch Video Solution

20. If the position vectors of the vertices of a triangle be
$2 \hat{i}+4 \hat{j}-\hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}$ and $3 \hat{i}+6 \hat{j}-3 \hat{k}$, then the triangle is
A. right angled
B. isosceles
C. equilateral
D. none of these

Answer: A: B

- Watch Video Solution

21. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is

- Watch Video Solution

22. If \vec{a}, \vec{b} are any two vectors, then give the geometrical interpretation of g relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$

- Watch Video Solution

23. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

- Watch Video Solution

24. If \vec{a} is a non zero vecrtor iof modulus \vec{a} and m is a non zero scalar such that $m a$ is a unit vector, write the value of m.
A. $m= \pm 1$
B. $m=|a|$
C. $m=\frac{1}{|a|}$
D. $m= \pm 2$

Answer: C

- Watch Video Solution

25. For a non-zero vector a, the set of real number, satisfying $|(5-x) a|<|2 a|$ consists of all x such that
A. $0<x<3$
B. $3<x<7$
C. $-7<x<-3$
D. $-7<x<3$
26. Find a vector of magnitude ($5 / 2$) units which is parallel to the vector $3 \hat{i}+4 \hat{j}$.

- Watch Video Solution

27. if D, E and F are the mid-points of the sides $B C, C A$ and $A B$ respectively of the $\triangle A B C$ and O be any points, then prove that $O A+O B+O C=O D+O E+O F$

- Watch Video Solution

28. Find the position vectors of the points which divide the join of the points $2 \vec{a}-3 \vec{b}$ and $3 \vec{a}-2 \vec{b}$ internally and externally in the ratio $2: 3$.

- Watch Video Solution

29. The position vectors of the vertices A, B and C of a triangle are $\hat{i}-\hat{j}-3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $-5 \hat{i}+2 \hat{j}-6 \hat{k}$, respectively. The length of the bisector AD of the $\angle B A C$, where D is on the segment BC , is
A. $\frac{3}{4} \sqrt{3}$
B. $\frac{1}{4}$
C. $\frac{11}{2}$
D. None of these

Answer: A

- Watch Video Solution

30. The median $A D$ of the triangle $A B C$ is bisected at E and $B E$ meets $A C$ at F. Find AF:FC.
A. $3 / 4$
B. $1 / 3$
C. $1 / 2$
D. $1 / 4$

Answer: B

- Watch Video Solution

31. The sum of the magnitudes of two forces acting at a point is 16 N . The resultant of these forces is perpendicular to the smaller force has a magnitude of 8 N . If the smaller force is magnitude x , then the value of x is (A) $2 \mathrm{~N}(\mathrm{~B}) 4 \mathrm{~N}(\mathrm{C}) 6 \mathrm{~N}(\mathrm{D}) 7 \mathrm{~N}$
A. 13,5
B. 12,6
C. 14,4
D. 11,7

Answer: A

32. The length of longer diagonal of the parallelogram constructed on $5 a+2 b$ and $a-3 b$. If it is given that $|a|=2 \sqrt{2},|b|=3$ and angle between a and b is $\frac{\pi}{4}$ is
A. 15
B. $\sqrt{113}$
C. $\sqrt{593}$
D. $\sqrt{369}$

Answer: C

- Watch Video Solution

33. The vector \vec{c}, directed along the internal bisector of the angle between
$\vec{c}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is
A. $\frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$
B. $\frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k})$
C. $\frac{5}{3}(\hat{i}+7 \hat{j}+2 \hat{k})$
D. $\frac{5}{3}(-5 \hat{i}+5 \hat{j}+2 \hat{k})$

Answer: A

- Watch Video Solution

34. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

35. Prove that the ponts $A(1,2,3), B(3,4,7), C(-3-2,-5)$ are collinear and find the ratio in which B divides $A C$.
36. If the position vectors off A, B, C and D are $2 \hat{i}+\hat{j}, \hat{i}-3 \hat{j}, 3 \hat{i}+2 \hat{j}$ and $\hat{i}+\lambda \hat{j}$, respectively and $A B|\mid C D$, then λ will be
A. -8
B. -6
C. 8
D. 6

Answer: B

- Watch Video Solution

37. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear iff (A) $a=-40$ (B)
$a=40$ (C) $a=20$ (D) none of these
B. 40
C. 20
D. none of these

Answer: A

- Watch Video Solution

38. If a, b and c are three non-zero vectors such that no two of these are collinear. If the vector $a+2 b$ is collinear with c and $b+3 c$ is collinear with $a($ λ being some non-zero scalar), then $a+2 b+6 c$ is equal to
A. 0
B. λb
C. λc
D. λa
39. Check whether the given three vectors are coplnar or non- coplanar :
$-2 \hat{i}-2 \hat{j}+4 \hat{k},-2 \hat{i}+4 \hat{j}-2 \hat{k}, 4 \hat{i}-2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

40. If the vectors $4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\hat{i}+5 \hat{j}+4 \hat{k}$ are coplanar, then m is equal to
A. 38
B. 0
C. 10
D. -10

Answer: C

41. If a, b and c are non-coplanar vectors, prove that $3 a-7 b-4 c, 3 a-2 b+c$ and $\mathrm{a}+\mathrm{b}+2 \mathrm{c}$ are complanar.

- Watch Video Solution

42. The value of λ for which the four points
$2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\hat{i}-\lambda \hat{j}+6 \hat{k}$ are coplanar.
A. 8
B. 0
C. -2
D. 6

Answer: C

43.

$P(a+2 b+c), Q(a-b-c), R(3 a+b+2 c)$ and $S(5 a+3 b+5 c)$ are coplanar given that a, b and c are non-coplanar.

- Watch Video Solution

44. Show that the vectors
$\hat{i}-3 \hat{i}+2 \hat{k}, 2 \hat{i}-4 \hat{j}-\hat{k}$ and $3 \hat{i}+2 \hat{j}-\hat{k}$ and linearly independent.

- Watch Video Solution

45. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. `alpha=1,beta=+-1
D. $\alpha \pm 1, \beta=1$

Answer: D

- Watch Video Solution

46. The non-zero vectors are \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: C

- Watch Video Solution

47. A unit vector \widehat{a} makes an angle $\frac{\pi}{4}$ with z-axis, if $\hat{a}+\hat{i}+\hat{j}$ is a unit vector then \widehat{a} is equal to (A) $\hat{i}+\hat{j}+\frac{\hat{k}}{2}$ (B) $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
$-\frac{\hat{i}}{2}-\hat{\jmath} 2+\frac{\hat{k}}{\sqrt{2}}$ (D) $\frac{\hat{i}}{2}-\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
A. $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}+\frac{\hat{k}}{\sqrt{2}}$
B. $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. $-\frac{\hat{i}}{2}-\frac{\hat{j}}{2}+\frac{\hat{k}}{\sqrt{2}}$
D. none of these

Answer: C

- Watch Video Solution

48. If the resultannt of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7} Q$, then P / Q is
A. 1
B. $\frac{3}{2}$
C. 2
D. 4

Answer: C

- Watch Video Solution

49. The vector \vec{a} has the components $2 p$ and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components $(p+1)$ and 1 , then p is equal to $\mathrm{a} .-4 \mathrm{~b} .-1 / 3 \mathrm{c} .1 \mathrm{~d}$. 2
A. $p=0$
B. $\mathrm{p}=1$ or $p=-\frac{1}{3}$
C. $\mathrm{p}=-1$ or $p=\frac{1}{3}$
D. $\mathrm{p}=1$ or $p=-1$
50. $A B C$ is an isosceles triangle right angled at A. forces of magnitude $2 \sqrt{2}, 5$ and 6 act along BC, CA and AB respectively. The magnitude of their resultant force is
A. 4
B. 5
C. $11+2 \sqrt{2}$
D. 30

Answer: B

- Watch Video Solution

51. A line segment has length 63 and direction ratios
are $3,-2,6$. The components of the line vector are
A. $-27,18,54$
B. $27,-18,54$
C. $27,-18,-54$
D. $-27,-18,-54$

Answer: B

- Watch Video Solution

52. If the vectors $6 \hat{i}-2 \hat{j}+3 \hat{k} k, 2 \hat{i}+3 \hat{j}-6 \hat{k}$ and $3 \hat{i}+6 \hat{j}-2 \hat{k}$ form a triangle, then it is
A. right angled
B. obtuse angled
C. equilateral
D. isosceles
53. The position vectors of the points A, B, C are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively. These points
A. form an isosceles triangle
B. form a right angled triangle
C. are collinear
D. form a scalene triangle

Answer: C

- Watch Video Solution

54. The position vector of a point C with respect to B is $\hat{i}+\hat{j}$ and that of B with respect to A is $\hat{i}-\hat{j}$. The position vector of C with respect to A is
A. $2 \hat{i}$
B. $2 \hat{j}$
C. $-2 \hat{j}$
D. $-2 \hat{i}$

Answer: A

- Watch Video Solution

55. In a $\triangle A B C$, if $2 \mathrm{AC}=3 \mathrm{CB}$, then $2 \mathrm{OA}+3 \mathrm{OB}$ is equal to
A. 50 C
B. $-O C$
C. $O C$
D. none of these

Answer: A

56. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vector of point A, B, C and D, respectively referred to the same origin O such that no three of these point are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, than prove that quadrilateral $A B C D$ is a parallelogram.
A. square
B. rhombus
C. rectangle
D. parallelogram

Answer: D

- Watch Video Solution

57. P is a point on the side BC off the $\triangle A B C$ and Q is a point such that $P Q$ is the resultant of $A P, P B$ and $P C$. Then, $A B Q C$ is a
A. square
B. rectangle
C. parallelogram
D. trapezium

Answer: C

- Watch Video Solution

58. If $A B C D$ is a parallelogram and the position vectors of A, B and C are $\hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $7 \hat{i}+7 \hat{j}+7 \hat{k}$, then poisition vector of D will be
A. $7 \hat{i}+5 \hat{j}+3 \hat{k}$
B. $7 \hat{i}+9 \hat{j}+11 \hat{k}$
C. $9 \hat{i}+11 \hat{j}+13 \hat{k}$
D. $8 \hat{i}+8 \hat{j}+8 \hat{k}$

Answer: B

59. $A B C D$ is a parallelogram whose diagonals meet at P . If O is a fixed point, then $\overline{O A}+\overline{O B}+\overline{O C}+\overline{O D}$ equals :
A. OP
B. 2OP
C. 30P
D. 40 P

Answer: D

Watch Video Solution

60. If C is the middle point of $A B$ and P is any point outside $A B$, then
A. $P A+P B=P C$
B. $P A+P B=2 P C$
C. $P A+P B+P C=0$
D. $P A+P B+2 P C=0$

Answer: B

D Watch Video Solution

61. Let O, O^{\prime} and G be the circumcentre, orthocentre and centroid of a
$\Delta A B C$ and S be any point in the plane of the triangle.
Statement -1: $\overrightarrow{O^{\prime} A}+\overrightarrow{O^{\prime} B}+\overrightarrow{O^{\prime} C}=2 \overrightarrow{O^{\prime} O}$
Statement -2: $\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}=3 \overrightarrow{S G}$
A. $O O^{\prime}$
B. $2 O^{\prime} O$
C. 200^{\prime}
D. 0

Answer: B

62. Five points given by A, B, C, D and E are in a plane. Three forces $A C, A D$ and AE act at A annd three forces CB, DB and EB act B . then, their resultant is
A. 2AC
B. 3 AB
C. 3DB
D. 2 BC

Answer: B

- Watch Video Solution

63. In a \quad regular \quad hexagon \quad ABCDEF,
$\vec{A} B=a, \vec{B} C=b$ and $\vec{C} D=c$. Then, $\vec{A} E=$
A. $2 b-a$
B. $b-a$
C. $2 a-b$
D. $a+b$

Answer: A

- Watch Video Solution

64. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

65. If a, b are the position vectors of A, B respectively and C is a point on $A B$ produced such that $A C=3 A B$ then the position vector of C is
A. $3 a-b$
B. $3 b-a$
C. $3 a-2 b$
D. $3 b-2 a$

Answer: D

- Watch Video Solution

66. Let A and B be points with position vectors \vec{a} and \vec{b} with respect to origin O. If the point C on $O A$ is such that $2 \overrightarrow{A C}=\overrightarrow{C O}, \overrightarrow{C D}$ is parallel to $\overrightarrow{O B}$ and $|\overrightarrow{C D}|=3|\overrightarrow{O B}|$ then $\overrightarrow{A D}$ is (A) $\vec{b}-\frac{\vec{a}}{9}$ (B) $3 \vec{b}-\frac{\vec{a}}{3}$
$\vec{b}-\frac{\vec{a}}{3}$ (D) $\vec{b}+\frac{\vec{a}}{3}$
A. $3 b-\frac{a}{2}$
B. $3 b+\frac{a}{2}$
C. $3 b-\frac{a}{3}$
D. $3 b+\frac{a}{3}$

Answer: C

- Watch Video Solution

67. If the position vector of a point A is $\vec{a}+2 \vec{b}$ and \vec{a} divides AB in the ratio $2: 3$, then the position vector of B , is
A. $2 a-b$
B. $b-2 a$
C. $a-3 b$
D. b
68. If D, E and F are respectively, the mid-points of $A B, A C$ and $B C$ in
$\Delta A B C$, then $\mathrm{BE}+\mathrm{AF}$ is equal to
A. DC
B. $\frac{1}{2} B F$
C. $2 B F$
D. $\frac{3}{2} B F$

Answer: A

- Watch Video Solution

69. In a quadrilateral $P Q R S, \vec{P} Q=\vec{a}, \vec{Q} R, \vec{b}, \vec{S} P=\vec{a}-\vec{b}, M$ is the midpoint of \vec{Q} Rand X is a point on $S M$ such that $S X=\frac{4}{5} S M$. Prove that $P, X a n d R$ are collinear.
A. $P X=\frac{1}{5} P R$
B. $P X=\frac{3}{5} P R$
C. $P X=\frac{2}{5} P R$
D. none of these

Answer: B

- Watch Video Solution

70. Orthocenter of an equilateral triangle $A B C$ is the origin O. If $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$, then $\overrightarrow{A B}+2 \overrightarrow{B C}+3 \overrightarrow{C A}=$
A. 3c
B. 3 a
C. 0
D. 3b

Answer: B

71. If \vec{a}, \vec{b} and \vec{c} are position vectors of A, B, and C respectively of $\triangle A B C$ and if $|\vec{a}-\vec{b}|,|\vec{b}-\vec{c}|=2,|\vec{c}-\vec{a}|=3$, then the distance between the centroid and incenter of $\triangle A B C$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

72. Let position vectors of point A, B and C of triangle $A B C$ represents be $\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$. Let $l_{1}+l_{2}$ and l_{3} be the length of perpendicular drawn from the orthocenter ' O ' on the sides $A B, B C$ and CA , then $\left(l_{1}+l_{2}+l_{3}\right)$ equals
A. $\frac{2}{\sqrt{6}}$
B. $\frac{3}{\sqrt{6}}$
C. $\frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{6}}{3}$.

Answer: C

- Watch Video Solution

73. $A B C D E F$ is a regular hexagon in the x - y plance with vertices in the anticlockwise direction. If $\vec{A} B=2 \hat{i}$, then $\vec{C} D$ is
A. $\hat{i}+3 \hat{j}$
B. $\hat{i} 9+2 \hat{j}$
C. $-\hat{i}+3 \hat{j}$
D. none of these
74. The vertices of a triangle are $A(1,1,2), B(4,3,1)$ and $C(2,3,5)$. The vector representing internal bisector of the angle A is
A. $\hat{i}+\hat{j}+2 \hat{k}$
B. $2 \hat{i}-2 \hat{j} j+\hat{k}$
C. $2 \hat{i}+2 \hat{j}+\hat{k}$
D. none of these

Answer: C

- Watch Video Solution

75. Let $\vec{a}=(1,1,-1), \vec{b}=(5,-3,-3)$ and $\vec{c}=(3,-1,2)$. If \vec{r} is collinear with \vec{c} and has length $\frac{|\vec{a}+\vec{b}|}{2}$, then \vec{r} equals
A. $\pm 3 c$
B. $\pm \frac{3}{2} c$
C. $\pm c$
D. $\pm \frac{2}{3} c$

Answer: C

- Watch Video Solution

76. In a trapezium $A B C D$ the vector $B \vec{C}=\lambda \overrightarrow{A D}$. If $\vec{p}=A \vec{C}+\overrightarrow{B D}$ is coillinear with $\overrightarrow{A D}$ such that $\vec{p}=\mu \overrightarrow{A D}$, then
A. $\mu=\lambda+1$
B. $\lambda=\mu+1$
C. $\lambda+\mu=1$
D. $\mu=2+\lambda$

Answer: A

77. If the position vectors of the points A, B and C be $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $a \hat{i}+b \hat{j}+c \hat{k}$ respectively, then the points A, B and C are collinear, if
A. $a=b=c=1$
B. $a=1, b$ and c are arbitrary scalars
C. $a b=c=0$
D. $c=0, a=1$ and b is arbitrary scalars

Answer: D

- Watch Video Solution

78. Let a, b and c be distinct non-negative numbers and the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$ lie in a plane, then the quadratic equation $a x^{2}+2 c x+b=0$ has
A. real annd equal roots
B. real and unequal roots
C. unreal roots
D. both roots real and positive

Answer: A

- Watch Video Solution

79. The number of distinct real values of λ for which the vectors $\vec{a}=\lambda^{3} \hat{i}+\hat{k}, \vec{b}=\hat{i}-\lambda^{3} \hat{j}$ and $\vec{c}=\hat{i}+(2 \lambda-\sin \lambda) \hat{i}-\lambda \hat{k}$ are coplanar is
A. 0
B. 1
C. 2
D. 3
80. The coplanar points A, B, C, D are
$(2-x, 2,2),(2,2-y, 2),(2,2,2-z)$ and $(1,1,1)$ respectively then
A. $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
B. $x+y+z=1$
C. $\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}=1$
D. none of these

Answer: A

- Watch Video Solution

81. $p=2 a-3 b, q=a-2 b+c$ and $r=-3 a+b+2 c$, where a, b, c being non-coplanar vectors, then the vector $-2 a+3 b-c$ is equal to
A. $p-4 q$
B. $\frac{-7 q+r}{5}$
C. $2 p-3 q+r$
D. $4 p-2 r$

Answer: B

- Watch Video Solution

82. If a_{1} and a_{2} are two values of a for which the unit vector $a \vec{i}+b \vec{j}+\frac{1}{2} \vec{k}$ is linearly dependent with $\vec{i}+2 \vec{j}$ and $\vec{j}-2 \vec{k}$, then $\frac{1}{a_{1}}+\frac{1}{a_{2}}$ is equal to
A. 1
B. $\frac{1}{8}$
C. $\frac{-16}{11}$
D. $\frac{-11}{16}$
83. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then values of x are
(A) $-\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2
A. 1
B. $\frac{-2}{3}$
C. 2
D. $\frac{4}{3}$

Answer: B::C

- Watch Video Solution

84. $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. If three vectors \vec{p}, \vec{q}, and \vec{r} are parallel to \vec{a}, \vec{b}, and \vec{c}, respectively, and have integral but different magnitudes,
then among the following options, $|\vec{p}+\vec{q}+\vec{r}|$ can take a value equal to a. 1 b. 0 c. $\sqrt{3}$ d. 2
A. 1
B. 0
C. $\sqrt{3}$
D. 2

Answer: C::D

- Watch Video Solution

85. A, B and $C D$ are four points such that $\overrightarrow{A B}=m(2 \hat{i}-6 \hat{j}+2 \hat{k}) \overrightarrow{B C}=(a h t i-2 \hat{j})$ and $\overrightarrow{C D}=n(-6 \hat{i}+15 \hat{j}-$
. If $C D$ intersects $A B$ at some points E, then
A. $m \geq \frac{1}{2}$
B. $n \geq \frac{1}{3}$
C. $m=n$
D. $m<n$

Answer: A::B

- Watch Video Solution

86. If non-zero vectors \vec{a} and \vec{b} are equally inclined to coplanar vector \vec{c}, then \vec{c} can be
A. $\frac{|a|}{|a|=2|b|} a+\frac{|b|}{|a|+|b|} b$
B. $\frac{|b|}{|a|+|b|} a+\frac{|a|}{|a|+|b|} b$
C. $\frac{|a|}{|a|+|b|} a+\frac{|b|}{|a|+2|b|} b$
D. $\frac{|b|}{2|a|+|b|} a+\frac{|a|}{2|a|+|b|} b$

Answer: B::D

- Watch Video Solution

$x \hat{i}+(x+1) \hat{j}+(x+2) \hat{k},(x+3) \hat{i}+(x+4) \hat{j}+(x+5) \hat{k}$ and $(x+6) \hat{i}$ are coplanar if x is equal to
A. 1
B. -3
C. 4
D. 0

Answer: A: B::C::D

- Watch Video Solution

88. Given three vectors \vec{a}, \vec{b} and \vec{c} are non-zero and non-coplanar vectors. Then which of the following are coplanar.
A. $a+b, b+c, c+a$
B. $a-b, b+c, c+a$
C. $a+b, b-c, c+a$
D. $a+b, b+c, c-a$

Answer: B::C::D

- Watch Video Solution

89. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{l}, and $a_{1}, a_{2}, a_{3}, a_{4}$ are four non-zero vectors such that no vector can be expressed as a linear combination of other $(\lambda-1)\left(a_{1}-a_{2}\right)+\mu\left(a_{2}+a_{3}\right)+\gamma\left(a_{3}+a_{4}-2 a_{2}\right)+a_{3}+\delta a_{4}=0$, then
A. $\lambda=1$
B. $\mu=-\frac{2}{3}$
C. $\gamma=\frac{2}{3}$
D. $\delta=\frac{1}{3}$

- Watch Video Solution

$$
\begin{aligned}
& \text { Statement } \\
& |\vec{a}|=3,|\vec{b}|=\text { and }|\vec{a}+\vec{b}|=5 \text {, then }|\vec{a}-\vec{b}|=5 \text {. Statement }
\end{aligned}
$$

The length of the diagonals of a rectangle is the same.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: A

- Watch Video Solution

91. Statement 1: If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then \vec{a} and $\vec{b} \quad$ are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: A

- Watch Video Solution

92. Assertion: If l is the incentre of $\triangle A B C$, then $|\operatorname{vec}(B C)| \operatorname{vec}(I A)+|\operatorname{vec}(C A)| \operatorname{vec}(I B)+|\operatorname{vec}(A B)| \operatorname{vec}(I C)=0$

Reason: IfOisthe or $i g \in$, thentheposition \longrightarrow rofcentroidof $/ _$ABCis $(\overrightarrow{O A})+\overrightarrow{O B}+\overrightarrow{O C} \frac{)}{3}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: B

- Watch Video Solution

93. Statement 1: If \vec{u} and \vec{v} are unit vectors inclined at an angle $\alpha a n d \vec{x}$ is a unit vector bisecting the angle between them, then
$\vec{x}=(\vec{u}+\vec{v}) /(2 \sin (\alpha / 2)$. Statement 2: If Delta $A B C$ is an isosceles triangle with $A B=A C=1$, then the vector representing the bisector of angel A is given by $\vec{A} D=(\vec{A} B+\vec{A} C) / 2$.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: D

- Watch Video Solution

94. Statement I: If $a=2 \hat{i}+\hat{k}, b=3 \hat{j}+4 \hat{k}$ and $c=\lambda a+\mu b$ are coplanar, then $c=4 a-b$.

Statement II: A set vector $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is said to be linearly
independent, if every relation of the form

$$
\begin{array}{ll}
l_{1} a_{1}+l_{2} a_{2}+l_{3} a_{3}+\ldots+l_{n} a_{n}=0 & \text { implies } \\
l_{1}=l_{2}=l_{3}=\ldots=l_{n}=0 \text { (scalar). } &
\end{array}
$$

A. Statement-I and statement II ar correct and Statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: B

- Watch Video Solution

95. Statement 1 : Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that $\vec{a}=2 \hat{i}+\hat{k}, v e b=3 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=-\hat{i}+7 \hat{j}-5 \hat{k}$. Then OABC is tetrahedron.

Statement 2 : Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that vectors \vec{a}, \vec{b} and \vec{c} are non-coplanar. Then OABC is a tetrahedron, where O is the origin.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: A

- Watch Video Solution

96. Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points $A, B, C a n d D$ and $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$. Then points $A, B, C, a n d D$ are coplanar. Statement 2: Three non-zero, linearly
dependent coinitial vector $(\vec{P} Q, \vec{P} \operatorname{Rand} \vec{P} S)$ are coplanar. Then $\vec{P} Q=\lambda \vec{P} R+\mu \vec{P} S$, where $\lambda a n d \mu$ are scalars.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: A

- Watch Video Solution

97. $A B C D$ is a parallelogram. L is a point on $B C$ which divides $B C$ in the ratio 1:2. AL intersects $B D$ at P.M is a point on $D C$ which divides $D C$ in the ratio 1:2 and AM intersects BD in Q.

Point P divides AL in the ratio
A. $1: 2$
B. 1: 3
C. $3: 1$
D. 2:1

Answer: C

- Watch Video Solution

98. $A B C D$ is a parallelogram. L is a point on $B C$ which divides $B C$ in the ratio 1:2. AL intersects $B D$ at P.M is a point on $D C$ which divides $D C$ in the ratio 1:2 and AM intersects BD in Q.

Point Q divides DB in the ratio
A. 1:2
B. 1: 3
C. 3:1
D. 2:1

- Watch Video Solution

99. $A B C D$ is a parallelogram. L is a point on $B C$ which divides $B C$ in the ratio 1:2. AL intersects $B D$ at P.M is a point on $D C$ which divides $D C$ in the ratio 1:2 and AM intersects BD in Q.
$P Q: D B$ is equal to
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: B

100. Let A, B, C, D, E represent vertices of a regular pentangon $A B C D E$. Given the position vector of these vertices be $\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{b}, \lambda a$ and λb respectively.
Q. AD divides EC in the ratio
A. $1-\cos \frac{3 \pi}{5}: \cos \frac{3 \pi}{5}$
В. $1+2 \cos \frac{2 \pi}{5}: \cos \frac{\pi}{5}$
C. $1+2 \cos \frac{\pi}{5}: 2 \cos \frac{\pi}{5}$
D. none of these

Answer: C

- Watch Video Solution

101. Let A, B, C, D, E represent vertices of a regular pentangon $A B C D E$. Given the position vector of these vertices be $\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{b}, \lambda a$ and λb respectively.
Q. AD divides EC in the ratio
A. $\cos \frac{2 \pi}{5}: 1$
B. $\cos \frac{3 \pi}{5}: 1$
C. $1: 2 \cos \frac{\pi}{5}$
D. 1:2

Answer: C

- Watch Video Solution

102. In a parallelogram $O A B C$, vectors $\vec{a}, \vec{b}, \vec{c}$ are respectively the positions of vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side $B C$ which divide the line 2:1 internally. Also the line segment AE intersect the line bisecting the angle O internally in point P. If CP, when extended meets $A B$ in point F. Then The position vector of point P, is
A. $\frac{|a||c|}{3|c|+2|a|}\left(\frac{a}{|a|}+\frac{c}{|c|}\right)$
B. $\frac{3|a||c|}{3|c|+|2| a \mid}\left(\frac{a}{|a|}+\frac{c}{|c|}\right)$
C. $\frac{2|a||c|}{3|c|+2|a|}\left(\frac{a}{|a|}+\frac{c}{|c|}\right)$
D. none of these

Answer: B

- Watch Video Solution

103. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of 2:1 also, the line segment $A E$ intersects the line bisecting the angle $\angle A O C$ internally at point P. if $C P$ when extended meets $A B$ in points F, then
Q. The ratio in which F divides $A B$ is
A. $\frac{2|a|}{||a|-3| c|\mid}$
B. $\frac{|a|}{||a|-3| c|\mid}$
C. $\frac{3|a|}{||a|-3| c|\mid}$
D. $\frac{3|c|}{3||c|-|a||}$

Answer: B

(D) Watch Video Solution

104. In the Cartesian plane, a man starts at origin and walks a distance of 3 units of the north-east direction and reaches a point P. from P, he walks a distance of 4 units in the north-west direction to reach a point Q . construct the parallelogram OPQR with $O P$ and $P Q$ as adjacent sides. let M be the mid-point of $P Q$.

Column I

Column II
A. The position vector of P is
(p) $\frac{3}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{j}})$
B. The position vector of R is
(q) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}}+5 \hat{\mathbf{j}})$
C. The position vector of M is
(r) $2 \sqrt{2}(-\hat{\mathbf{i}}+\hat{\mathbf{j}})$
D. If the line $O M$ meets the diagonal $P R$ in the point T, then OT equals
(s) $\frac{\sqrt{2}}{3}(\hat{\mathbf{i}}+5 \hat{\mathbf{j}})$

(Watch Video Solution

105. P, Q have position vectors $\vec{a} \& \vec{b}$ relative to the origin ${ }^{\prime} O^{\prime} \& X, Y a n d \vec{P} Q$ internally and externally respectgively in the ratio

2:1 Vector $\vec{X} Y=\frac{3}{2}(\vec{b}-\vec{a})$
b. $\frac{4}{3}(\vec{a}-\vec{b})$
c. $\frac{5}{6}(\vec{b}-\vec{a}) \mathrm{d}$. $\frac{4}{3}(\vec{b}-\vec{a})$

Watch Video Solution

106. $A(1,-1,-3), B(2,1,-2) \& C(-5,2,-6)$ are the position vectors of the vertices of a triangle $A B C$. The length of the bisector of its internal angle at A is :

- Watch Video Solution

107. Let $A B C$ be a triangle whose centroid is G, orthocentre is H and circumcentre is the origin ' O '. If D is any point in the plane of the triangle such that no three of $\mathrm{O}, \mathrm{A}, \mathrm{C}$ and D are collinear satisfying the relation. $\mathrm{AD}+\mathrm{BD}+\mathrm{CH}+3 \mathrm{HG}=\lambda H D$, then what is the value of the scalar λ.

- Watch Video Solution

108. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}+\vec{b}-\vec{c}=0$. If the area of triangle formed by vectors \vec{a} and $\vec{b} i s A$, then what is the value of $4 A^{2}$?

- Watch Video Solution

109. The values of x for which the angle between the vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute, and the angle, between the vector \vec{b} and the axis of ordinates is obtuse, are

- Watch Video Solution

110. If the
points
$a(\cos \alpha+\hat{i} \sin \gamma), b(\cos \beta+\hat{i} \sin \beta)$ and $c(\cos \gamma+\hat{i} \sin \gamma) \quad$ are collinear, then the value of $|z|$ is . . (where $z=b c \sin (\beta-\gamma)+c a \sin (\gamma-\alpha)+a b \sin (\alpha+\beta)+3 \hat{i})$
111. A particle, in equilibrium, is subjected to four forces $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}$ and \vec{F}_{4},
$\vec{F}_{1}=-10 \hat{k}, \vec{F}_{2}=u\left(\frac{4}{13} \hat{i}-\frac{12}{13} \hat{j}+\frac{3}{13} \hat{k}\right), \vec{F}_{3}=v\left(-\frac{4}{13} \hat{i}-\frac{12}{13} \hat{j}+\right.$
then find the values of u, v and w

- Watch Video Solution

112. Find the all the values of lamda such that $(x, y, z)!=(0,0,0)$ and $x($ hati+hatj+3hatk) $+\mathrm{y}(3$ hati-

3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)

- Watch Video Solution

113. If G is the centroid of $\triangle A B C$ and G^{\prime} is the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$ then $\overrightarrow{A A}{ }^{\prime}+\overrightarrow{B B},+\overrightarrow{C C},=$

- Watch Video Solution

114. If D, E and F are the mid-points of the sides $B C, C A$ and $A B$, respectively of a $\triangle A B C$ and O is any point, show that
(i) $A D+B E+C F=0$
(ii) $\mathrm{OE}+\mathrm{OF}+\mathrm{DO}=\mathrm{OA}$

- Watch Video Solution

115. If $\vec{A} n d \vec{B}$ are two vectors and k any scalar quantity greater than zero, then prove that $|\vec{A}+\vec{B}|^{2} \leq(1+k)|\vec{A}|^{2}+\left(1+\frac{1}{k}\right)|\vec{B}|^{2}$.

- Watch Video Solution

116. If O is the circumcentre and O ' the orthocenter of $\triangle A B C$ prove that
(i) $\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=3 \mathrm{SG}$, where S is any point in the plane of $\triangle A B C$.
(ii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}=\mathrm{OO}^{\prime}$

Where, AP is diameter of the circumcircle.

- View Text Solution

117. If $\vec{c}=3 \vec{a}+4 \vec{b}$ and $2 \vec{c}=\vec{a}-3 \vec{b}$, show that (i) \vec{c} and \vec{a} have the same direction and $|\vec{c}|>|\vec{a}|$ (ii) \vec{b} and \vec{c} have opposite direction and $|\vec{c}|>|\vec{b}|$

- Watch Video Solution

118. Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then
$\frac{O L}{O A}+\frac{O M}{O B}=\frac{O N}{O C}$
Statement -2 : Three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ are collinear iff there exist scalars x, y, z not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$, where $x+y+z=0$.

- Watch Video Solution

119. If $D, E a n d F$ are three points on the sides $B C, C A a n d A B$, respectively, of a triangle $A B C$ such that the $\frac{B D}{C D}, \frac{C E}{A E}, \frac{A F}{B F}=-1$
$\vec{A}(t)=f_{1}(t) \hat{i}+f_{2}(t) \hat{j}$ and $\vec{B}(t)=g(t) \hat{i}+g_{2}(t) \hat{j}, t \in[0,1], f_{1}, f_{2}, g_{1} g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non-zero vectors for all t and $\vec{A}(0)=2 \hat{i}+3 \hat{j}, \vec{A}(1)=6 \hat{i}+2 \hat{j}, \vec{B}(0)=3 \hat{i}+2 \hat{i}$ and $\vec{B}(1)=2$, Then,show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some t.

- Watch Video Solution

121. Prove that if $\cos \alpha \neq 1, \cos \beta \neq 1$ and $\cos \gamma \neq 1$, then the vectors $a=\hat{i} \cos \alpha+\hat{j}+\hat{k}, b=\hat{i}+\hat{j} \cos \beta+\hat{k} . c=\hat{i}+\hat{j}+\hat{k} \cos \gamma$ can never be coplanar.

- Watch Video Solution

122. If the vectors $x \hat{i}+\hat{j}+\hat{k}, \hat{i}+y \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+z \hat{k}$ are coplanar where, $x \neq 1, y \neq 1$ and $z \neq 1$, then prove that
$\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}=1$

- Watch Video Solution

123. If \vec{a}, \vec{b} and \vec{c} are any three non-coplanar vectors, then prove that points
$l_{1} \vec{a}+m_{1} \vec{b}+n_{1} \vec{c}, l_{2} \vec{a}+m_{2} \vec{b}+n_{2} \vec{c}, l_{3} \vec{a}+m_{3} \vec{b}+n_{3} \vec{c}, l_{4} \vec{a}+m_{4}$
are coplanar if $\left|\begin{array}{llll}l_{1} & l_{2} & l_{3} & l_{4} \\ m_{1} & m_{2} & m_{3} & m_{4} \\ n_{1} & n_{2} & n_{3} & n_{4} \\ 1 & 1 & 1 & 1\end{array}\right|=0$

- Watch Video Solution

124. If r_{1}, r_{2} and r_{3} are the position vectors of three collinear points and scalars I and m exists such that $r_{3}=l r_{1}+m r_{2}$, then show that $\mathrm{I}+\mathrm{m}=1$.

- Watch Video Solution

125. Show that points with position vectors
$2-2 b+3 c,-2 a+3 b-c$ and $4 a-7 b+7 c$ are collinear. It is given that vectors a, b and c and non-coplanar.

- Watch Video Solution

Exercise For Session 1

1. Classify the following measures as scalars and vector:
(i) 20 kg weight
(ii) 45°
(iii) 10 m south-east
(iv) $50 \mathrm{~m} / \mathrm{sec}^{2}$

- Watch Video Solution

2. Represent the following graphically:
(i) A displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south,
(ii) a displacement of $70 \mathrm{~km}, 40^{\circ}$ north of west.

- Watch Video Solution

3. In the given figure, $A B C D E F$ is a regular hexagon, which vectors are:

(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.
4. Answer the following as true or false.(i) $\rightarrow a$ and $-\rightarrow a$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.(iii) Two vectors having same magnitude are collinear.(iv) Two collinear vectors having the same magni

- Watch Video Solution

5. Find the perimeter of a triangle with sides $3 \hat{i}+4 \hat{j}+5 \hat{k}, 4 \hat{i}-3 \hat{j}-5 \hat{k}$ and $7 \hat{i}+\hat{j}$.

- Watch Video Solution

6. Find the angle of vector $\vec{a}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ with x-axis.

- Watch Video Solution

7. Write the direction ratios of the vector $r=\hat{i}-\hat{j}+2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

Exercise For Session 2

1. If $a=2 \hat{i}-\hat{j}+2 \hat{k}$ and $b=-\hat{i}+\hat{j}-\hat{k}$, then find $\mathrm{a}+\mathrm{b}$. also, find a unit vector along $a+b$.

- Watch Video Solution

2. Find a unit vector in the direction of the resultant of the vectors $\hat{i}+2 \hat{j}+3 \hat{k},-\hat{i}+2 \hat{j}+\hat{k}$ and $3 \hat{i}+\hat{j}$.

- Watch Video Solution

3. Find the direction cosines of the resultant of the vectors $(\hat{i}+\hat{j}+\hat{k}),(-\hat{i}+\hat{j}+\hat{k}),(\hat{i}-\hat{j}+\hat{k})$ and $(\hat{i}+\hat{j}-\hat{k})$.

- Watch Video Solution

4. In a regular hexagon $A B C D E F, \overrightarrow{A E}$

- Watch Video Solution

5. Prove that $3 O D+D A+D B+D C$ is equal to $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$.

- Watch Video Solution

> 6. In $A B C D E F, \overline{A B}+\overline{A C}+\overline{A D}+\overline{A E}+\overline{A F}=k \overline{A D}$ then k is equal to

- Watch Video Solution

7. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+\vec{D} E+\vec{E} A=\overrightarrow{0}$ $\vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C=3 \vec{A} C$

- Watch Video Solution

8. The position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\vec{a}, \vec{b}, \overrightarrow{2} a+\overrightarrow{3} b$ and $\vec{a}-\overrightarrow{2} b$ respectively show that $\vec{D} B=3 \vec{b}-\vec{a}$ and $\vec{A} C=\vec{a}+\overrightarrow{3} b$

- Watch Video Solution

9. If $P(-1,2)$ and $Q(3,7)$ are two points, express the vector $P Q$ in terms of unit vectors \hat{i} and \hat{j} also, find distance between point P and Q . what is the unit vector in the direction off PQ ?

- Watch Video Solution

10. If $\overrightarrow{O P}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\overrightarrow{O Q}=3 \hat{i}-4 \hat{j}+2 \hat{k}$ find the modulus and direction cosines of $\overrightarrow{P Q}$.

- Watch Video Solution

11. Show that the points A, B and C having position vectors $(3 \hat{i}-4 \hat{j}-4 \hat{k}),(2 \hat{i}-\hat{j}+\hat{k})$ and $(\hat{i}-3 \hat{j}-5 \hat{k})$ respectively, from the vertices of a right-angled triangle.

- Watch Video Solution

12. If $a=2 \hat{i}+2 \hat{j}-\hat{k}$ and $|x a|=1$, then find x .

- Watch Video Solution

13. If $p=7 \hat{i}-2 \hat{j}+3 \hat{k}$ and $q=3 \hat{i}+\hat{j}+5 \hat{k}$, then find the the magnitude of $p-2 q$.
14. Find a vector in the direction of $5 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude 8 units.

- Watch Video Solution

15. If $a=\hat{i}+2 \hat{j}+2 \hat{k}$ and $b=3 \hat{i}+6 \hat{j}+2 \hat{k}$, then find a vector in the direction of a and having magnitude as $|\mathrm{b}|$.

- Watch Video Solution

16. Find the position vector of a point R which divides the line joining the point $P(\hat{i}+2 \hat{j}-\hat{k})$ and $Q(-\hat{i}+\hat{j}+\hat{k})$ in the ratio $2: 1$, (i) internally and (ii) externally.

- Watch Video Solution

17. Iff the position vector of one end of the line segment $A B$ be $2 \hat{i}+3 \hat{j}-\hat{k}$ and the position vecto of its middle point be $3(\hat{i}+\hat{j}+\hat{k})$, then find the position vector of the other end.

- Watch Video Solution

Exercise For Session 3

1. Show that the points $A(1,3,2), B(-2,0,1)$ and $C(4,6,3)$ are collinear.

- Watch Video Solution

2. If the position vectors of the points A, B and C be a, b and $3 a-2 b$ respectively, then prove that the points A, B and C are collinear.

- Watch Video Solution

3. The position vectors of four points P, Q, R annd S are $2 a+4 c, 5 a+$ $3 \sqrt{3} b+4 c,-2 \sqrt{3} b+c$ and $2 a+c$ respectively, prove that PQ is parallel to RS.

- Watch Video Solution

4. If three points A, B and C have position vectors $(1, x, 3),(3,4,7)$ and $(y,-2,-5)$, respectively and if they are collinear, then find (x, y).

- Watch Video Solution

5. Find the condition that the three points whose position vectors, $a=a \hat{i}+b \hat{j}+c \hat{k}, b=\hat{i}+c \hat{j}$ and $c=-\hat{i}-\hat{j}$ are collinear.

- Watch Video Solution

6. a and b are non-collinear vectors. If $c=(x-2) a+b$ and $d=(2 x+1) a-b$ are collinear vectors, then the value of $x=\ldots$

- Watch Video Solution

7. Let a, b, c are three vectors of which every pair is non-collinear, if the vectors $a+b$ and $b+c$ are collinear with c annd a respectively, then find $a+b+c$.

- Watch Video Solution

8. Show that the vectors $\hat{i}-\hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}+\hat{k}$ and $7 \hat{i}+3 \hat{j}-4 \hat{k}$ are coplanar.

- Watch Video Solution

9. If the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar, the prove that $a=-4$.

- Watch Video Solution

10. Show that the vectors $a-2 b+4 c,-2 a+3 b-6 c$ and $-b+2 c$ are coplanar vector, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-coplanar vectors.

- Watch Video Solution

11. If a, b and c are non-coplanar vectors, then prove that the four points $2 a+3 b-c, a-2 b+3 c, 3 a+4 b-2 c$ and $a-6 b+6 c$ are coplanar.

- Watch Video Solution

Exercise (Single Option Correct Type Questions)

1. If $a=3 \hat{i}-2 \hat{j}+\hat{k}, b=2 \hat{i}-4 \hat{j}-3 \hat{k}$ and $c=-\hat{i}+2 \hat{j}+2 \hat{k}$, then $a+b+c$ is
A. $3 \hat{i}-4 \hat{j}$
B. $3 \hat{i}+4 \hat{j}$
C. $4 \hat{i}-4 \hat{j}$
D. $4 \hat{i}+4 \hat{j}$

Answer: C

- Watch Video Solution

2. What should be added in vector $a=3 \hat{i}+4 \hat{j}-2 \hat{k}$ to get its resultant a unit vector \hat{i} ?
A. $-2 \hat{i}-4 \hat{j}+2 \hat{k}$
B. $-2 \hat{i}+4 \hat{j}-2 \hat{k}$
C. $2 \hat{i}+4 \hat{j}-2 \hat{k}$
D. none of these

Answer: A

- Watch Video Solution

3. If $a=2 \hat{i}+2 \hat{j}-8 \hat{k}$ and $b=\hat{i}+3 \hat{j}-4 \hat{k}$, then the magnitude of $\mathrm{a}+\mathrm{b}$ is equal to
A. 13
B. $\frac{13}{5}$
C. $\frac{3}{13}$
D. $\frac{4}{13}$

Answer: A

- Watch Video Solution

4. If $a=2 \hat{i}+5 \hat{j}$ and $b=2 \hat{i}-\hat{j}$, then the unit vector along $\mathrm{a}+\mathrm{b}$ will be
A. $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$
B. $\hat{i}+\hat{j}$
C. $\sqrt{2}(\hat{i}+\hat{j})$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: D

- Watch Video Solution

5. The unit vector parallel to the resultant vector of $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$ is
A. $\frac{1}{7}(3 \hat{i}+\hat{j}+\hat{k})$
B. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
C. $\frac{\hat{i}+\hat{j}+2 \hat{k}}{\sqrt{6}}$
D. $\frac{1}{\sqrt{69}}(-\hat{i}-\hat{j}+8 \hat{k})$

Answer: A

- Watch Video Solution

6. If $a=\hat{i}+2 \hat{j}+3 \hat{k}, b=-\hat{i}+2 \hat{j}+\hat{k}$ and $c=3 \hat{i}+\hat{j}$, then the unit vector along its resultant is
A. $3 \hat{i}+5 \hat{j}+4 \hat{k}$
B. $\frac{3 \hat{i}+5 \hat{j}+4 \hat{k}}{50}$
c. $\frac{3 \hat{i}+5 \hat{j}+4 \hat{k}}{5 \sqrt{2}}$
D. none of these

Answer: C

- Watch Video Solution

7. If $a=(2,5)$ and $b=(1,4)$, then vector parallel to ($\mathrm{a}+\mathrm{b}$) is
A. $(3,5)$
B. $(1,1)$
C. $(1,3)$
D. $(8,5)$

Answer: C

- Watch Video Solution

8. In the $\triangle A B C, A B=a, A C=c$ and $B C=b$, then
A. $a+b+c=0$
B. $a+b-c=0$
C. $a-b+c=0$
D. $-a+b+c=0$

Answer: B

- Watch Video Solution

9. If O is origin annd the position vector fo A is $4 \hat{i}+5 \hat{j}$, then unit vector parallel to OA is
A. $\frac{4}{\sqrt{41}} \hat{i}$
B. $\frac{5}{\sqrt{41}} \hat{i}$
C. $\frac{1}{\sqrt{41}}(4 \hat{i}+5 \hat{j})$
D. $\frac{1}{\sqrt{41}}(4 \hat{i}-5 \hat{j})$

Answer: C

D Watch Video Solution

10. The position vectors of the points A, B and C are $\hat{i}+2 \hat{j}-\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}+2 \hat{k}$, respectively. If A is chosen as
the origin, then the position vectors of B and C are
A. $\hat{i}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
B. $\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
C. $-\hat{j}+2 \hat{k}, \hat{i}--\hat{j}+3 \hat{k}$
D. $-\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$

Answer: D

- Watch Video Solution

11. The position vectors of P and Q are $5 \hat{i}+4 \hat{j}+a \hat{k}$ and $-\hat{i}+2 \hat{j}-2 \hat{k}$, respectively. If the distance betwee them is 7 , then the value of a will be
A. $-5,1$
B. 5,1
C. 0,5
D. 1,0

D Watch Video Solution

12. If position vector of points A, B and C are respectively \hat{i}, \hat{j}, and \hat{k} and $A B=C X$, then position vector of point X is
A. $-\hat{i}+\hat{j}+\hat{k}$
B. $\hat{i}-\hat{j}+\hat{k}$
C. $\hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

Answer: A

D Watch Video Solution

13. The position vectors of A and B are $2 \hat{i}-9 \hat{j}-4 \hat{k}$ and $6 \hat{i}-3 \hat{j}+8 \hat{k}$ respectively, then the magnitude of $A B$ is
A. 11
B. 12
C. 13
D. 14

Answer: D

- Watch Video Solution

14. If the position vectors of P and Q are $(\hat{i}+3 \hat{j}-7 \hat{k})$ and $(5 \hat{i}-2 \hat{j}+4 \hat{k})$, then $|\mathrm{PQ}|$ is
A. $\sqrt{158}$
B. $\sqrt{160}$
C. $\sqrt{161}$
D. $\sqrt{162}$
15. If the position vectors of P and Q are $\hat{i}+2 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$ respectively, the cosine of the angle between PQ and Z -axis is
A. $\frac{4}{\sqrt{162}}$
B. $\frac{11}{\sqrt{162}}$
C. $\frac{5}{\sqrt{162}}$
D. $\frac{-5}{\sqrt{162}}$

Answer: B

- Watch Video Solution

16. If the position vectors of A and B are $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$, then the direction cosine of $A B$ along Y-axis is
A. $\frac{4}{\sqrt{162}}$
B. $-\frac{5}{\sqrt{162}}$
C. -5
D. 11

Answer: B

- Watch Video Solution

17. The direction cosines of vector $a=3 \hat{i}+4 \hat{j}+5 \hat{k}$ in the direction of positive axis of X, is
A. $\pm \frac{3}{\sqrt{50}}$
B. $\frac{4}{\sqrt{50}}$
C. $\frac{3}{\sqrt{50}}$
D. $-\frac{4}{\sqrt{50}}$

Answer: C

18. The direction cosines of the vector $3 \hat{i}-4 \hat{j}+5 \hat{k}$ are
A. $\frac{3}{5},-\frac{4}{5}, \frac{1}{5}$
B. $\frac{3}{5 \sqrt{2}}, \frac{-4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. $\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$.

Answer: B

- Watch Video Solution

19. The
point
having
position
vectors
$2 \hat{i}+3 \hat{j}+4 \hat{k}, 3 \hat{i}+4 \hat{j}+2 \hat{k}$ and $4 \hat{i}+2 \hat{j}+3 \hat{k}$ are the vertices of
A. right angled triangle
B. isosceles triangle
C. equilateral triangle
D. collinear

Answer: C

- Watch Video Solution

20. If the position vectors of the vertices A, B and C of a $\triangle A B C$ are $7 \hat{j}+10 k,-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$, respectively, the triangle is
A. equilateral
B. isosceles
C. scalene
D. right angled and isosceles also

Answer: D

- Watch Video Solution

21. If a, b and c are the position vectors of the vertices A, B and C of the $\triangle A B C$, then the centroid of $\triangle A B C$ is
A. $\frac{a+b+c}{3}$
B. $\frac{1}{2}\left(a+\frac{b+c}{2}\right)$
C. $a+\frac{b+c}{2}$
D. $\frac{a+b+c}{2}$

Answer: A

- Watch Video Solution

22. If a and b are position vector of two points A, B and C divides $A B$ in ratio 2:1, then position vector of C is
A. $\frac{a+2 b}{3}$
B. $\frac{2 a+b}{3}$
C. $\frac{a+2}{3}$
D. $\frac{a+b}{2}$

Answer: A

- Watch Video Solution

23. Find the position vector of the point which divides the join of the points $(2 \vec{a}-3 \vec{b})$ and $(3 \vec{a}-2 \vec{b})$ (i) internally and (ii) externally in the ratio $2: 3$.
A. $\frac{12}{5} a+\frac{13}{5} b$
B. $\frac{12}{5} a-\frac{13}{5} b$
C. $\frac{3}{5} a-\frac{2}{5} b$
D. none of these

Answer: B

24. If O is origin and C is the mid - point of $A(2,-1)$ and $B(-4,3)$. Then value of $O C$ is
A. $\hat{i}+\hat{j}$
B. $\hat{i}-\hat{j}$
C. $-\hat{i}+\hat{j}$
D. $-\hat{i}-\hat{j}$

Answer: C

- Watch Video Solution

25. If the position vectors of the points A and B are $\hat{i}+3 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}-3 \hat{k}$, then what will be the position vector of the mid-point of $A B$
A. $\hat{i}+2 \hat{j}-\hat{k}$
B. $2 \hat{i}+\hat{j}-2 \hat{k}$
C. $2 \hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$

Answer: B

- Watch Video Solution

26. The position vectors of A and B are $\hat{i}-\hat{j}+2 \hat{k}$ and $3 \hat{i}-\hat{j}+3 \hat{k}$. The position vector of the middle points of the line $A B$ is
A. $\frac{1}{2} \hat{i}-\frac{1}{2} \hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{j}+\frac{5}{2} \hat{k}$
C. $\frac{3}{2} \hat{i}-\frac{1}{2} \hat{j}+\frac{3}{2} \hat{k}$
D. none of these

Answer: B

27. If the vector \vec{b} is collinear with the vector $\vec{a}(2 \sqrt{2},-1,4)$ and $|\vec{b}|=10$, then
A. $a \pm b=0$
B. $a \pm 2 b=0$
C. $2 a \pm b=0$
D. none of these

Answer: C

- Watch Video Solution

28. If \vec{a}, \vec{b} are the position vectors of the points $(1,-1),(-2, m)$, find the value of m for which \vec{a} and \vec{b} are collinear.
A. 4
B. 3
C. 2
D. 0

Answer: C

- Watch Video Solution

29. The points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, if a is equal to
A. -8
B. 4
C. 8
D. 12

Answer: C

30. The vectors $\hat{i}+2 \hat{j}+3 \hat{k}, \lambda \hat{i}+4 \hat{j}+7 \hat{k},-3 \hat{i}-2 \hat{j}-5 \hat{k} \quad$ are collinear, of λ is equal to
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

31. If the points $a+b, a-b$ and $a+k b$ be collinear, then k is equal to
A. 0
B. 2
C. -2
D. any real number

Answer: D

- Watch Video Solution

32. If the position vectors of A, B, C and D are $2 \hat{i}+\hat{j}, \hat{i}-3 \hat{j}, 3 \hat{i}+2 \hat{j}$ and $\hat{i}+\lambda \hat{j}$ respectively and $\overrightarrow{A B}|\mid \overrightarrow{C D}$. Then
λ will be
A. -8
B. -6
C. 8
D. 6

Answer: B

33. If the vectors $3 \hat{i}+2 \hat{j}-\hat{k}$ and $6 \hat{i}-4 x \hat{j}+y \hat{k}$ are parallel, then the value of x and y will be
A. $-1,-2$
B. $1,-2$
C. $-1,2$
D. 1,2

Answer: A

- Watch Video Solution

34. Theorem 1: If a and b are two non collinear vectors; then every vector r coplanar with a and b can be expressed in one and only one way as a linear combination: $x a+y b$.
A. $x=0$, but y is not necessarily zero
B. $y=0$, bu tx is not necessarily zero
C. $x=0, y=0$
D. none of these

Answer: C

- Watch Video Solution

35. Four non zero vectors will always be a. linearly dependent b. linearly independent c. either a or b d. none of these
A. linearly dependent
B. linearly independent
C. either (a) or (b)
D. none of these

Answer: A

36. The vectors a, b and $a+b$ are
A. collinear
B. coplanar
C. non-coplanar
D. none of these

Answer: B

Watch Video Solution

37. Find the all the values of lamda such that $(x, y, z)!=(0,0,0)$ and
$x($ hati+hatj +3 hatk $)+y(3 h a t i-$

3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)
A. $-2,0$
B. $0,-2$
C. $-1,0$
D. $0,-1$

Answer: D

- Watch Video Solution

38. The number of integral values of p for which $(p+1) \hat{i}-3 \hat{j}+p \hat{k}, p \hat{i}+(p+1) \hat{j}-3 \hat{k}$ and $-3 \hat{i}+p \hat{j}+(p+1) \hat{k}$ are linearly dependent vectors is q
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

39. The vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is (A) $\sqrt{72}$ (B) $\sqrt{33}$ (C) $\sqrt{2880}$ (D) $\sqrt{18}$
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{288}$

Answer: C

- Watch Video Solution

40. In the figure, a vectors x satisfies the equation $\mathrm{x}-\mathrm{w}=\mathrm{v}$. then, x is equal to

A. $2 a+b+c$
B. $a+2 b+c$
C. $a+b+2 c$
D. $a+b+c$

Answer: B
41. Vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+4 \hat{k}$ are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are
A. not coplanar
B. coplanar but cannot form a triangle
C. coplanar and form a triangle
D. coplanar and can form a right angled triangle.

Answer: B

- Watch Video Solution

42. If $O P=8$ and $O P$ makes angles 45° and 60° with $O X$-axis and $O Y$-axis respectively, then OP is equal to
A. $8(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$
B. $4(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$
C. $\frac{1}{4}(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$
D. $\frac{1}{8}(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$

Answer: B

- Watch Video Solution

43. Let a, b and c be three unit vectors such that $3 a+4 b+5 c=0$. Then which of the following statements is true?
A. a is parallel to b
B. a is perpendicular to b
C. a is neither parallel nor perpendicular to b
D. none of these

Answer: D

- Watch Video Solution

44. If A, B, C, D and E are five coplanar points, then the value of $\overline{D A}+\overline{D B}+\overline{D C}+\overline{A E}+\overline{B E}+\overline{C E}$ is equal to
A. DE
B. 3DE
C. 2DE
D. 4ED

Answer: B

- Watch Video Solution

45. If the vectors \vec{a} and \vec{b} are linearly independent and satisfying $(\sqrt{3} \tan \theta-1) \vec{a}+(\sqrt{3} \sec \theta-2) \vec{b}=\overrightarrow{0}$, then the most general values of θ are:
A. $n \pi-\frac{\pi}{6}, n \in Z$
B. $2 n \pi \pm \frac{11 \pi}{6} n \in Z$
C. $n \pi \pm \frac{\pi}{6}, n \in Z$
D. $2 n \pi+\frac{11 \pi}{6}, n \in Z$

Answer: D

D Watch Video Solution

46. The unit vector bisecting $\overrightarrow{O Y}$ and $\overrightarrow{O Z}$ is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{j}+\hat{k}}{\sqrt{2}}$
D. $\frac{-\hat{j}+\hat{k}}{\sqrt{2}}$.

Answer: C

47. A line passes through the points whose position vectors are $\hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at unit distance from the first point is
A. $\frac{1}{5}(5 \hat{i}+\hat{j}-7 \hat{k})$
B. $\frac{1}{5}(4 \hat{i}+9 \hat{j}-15 \hat{k})$
C. $(\hat{i}-4 \hat{j}+3 \hat{k})$
D. $\frac{1}{5}(\hat{i}-4 \hat{j}+3 \hat{k})$

Answer: A

- Watch Video Solution

48. If D, E and F be the middle points of the sides $B C, C A$ and $A B$ of the
$\triangle A B C$, then $A D+B E+C F$ is
A. a zero vector
B. a unit vector
C. 0
D. none of these

Answer: A

D Watch Video Solution

49. If P and Q are the middle points of the sides $B C$ and $C D$ of the parallelogram $A B C D$, then $A P+A Q$ is equal to
A. AC
B. $\frac{1}{2} A C$
C. $\frac{2}{3} A C$
D. $\frac{3}{2} A C$

Answer: D

50. If the figure formed by the four points $\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}, 3 \hat{i}+5 \hat{j}-2 \hat{k}$ and $\hat{k}-\hat{j}$ is
A. rectangle
B. parallelogram
C. trapezium
D. none of these

Answer: C

- Watch Video Solution

51. A and B are two points. The position vector of A is $6 b-2 a$. A point P divides the line $A B$ in the ratio $1: 2$. if $a-b$ is the position vector of P, then the position vector of B is given by
A. $7 \mathrm{a}-15 \mathrm{~b}$
B. $7 a+15 b$
C. 15a-7b
D. $15 a+7 b$

Answer: A

D Watch Video Solution

52. If three points A, B and C are collinear, whose position vectors are $\hat{i}-2 \hat{j}-8 \hat{k}, 5 \hat{i}-2 \hat{k}$ and $11 \hat{i}+3 \hat{j}+7 \hat{k}$ respectively, then the ratio in which B divides $A C$ is
A. $1: 2$
B. 2:3
C. 2:1
D. 1:1

Answer: B

53. If in a triangle $A B=a, A C=b$ and D, E are the mid-points of $A B$ and $A C$ respectively, then $D E$ is equal to
A. $\frac{a}{4}-\frac{b}{4}$
B. $\frac{a}{2}-\frac{b}{2}$
C. $\frac{b}{4}-\frac{a}{4}$
D. $\frac{b}{2}-\frac{a}{2}$

Answer: D

- Watch Video Solution

54. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is
A. $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}-8 \hat{k})$
B. $\frac{1}{69}(\hat{i}+2 \hat{j}-8 \hat{k})$
C. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$
D. $\frac{1}{69}(-\hat{i}-2 \hat{j}+8 \hat{k})$

Answer: C

- Watch Video Solution

55. If A, B, C are the vertices of a triangle whose position vectros are $\vec{a}, \vec{b}, \vec{c}$ and G is the centroid of the $\triangle A B C$, then $\overline{G A}+\overline{G B}+\overline{G C}=$
A. 0
B. $A+B+C$
C. $\frac{a+b+c}{3}$
D. $\frac{a+b-c}{3}$

Answer: A

56. If $A B C D E F$ is a regular hexagon then $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}$ equals:
A. 0
B. 2 AB
C. 3 AB
D. 4 AB

Answer: D

- Watch Video Solution

57. $A B C D E$ is a pentagon. Forces $A B, A E, D C$ and $E D$ act at a point. Which force should be added to this systemm to make the resultant 2AC?
A. AC
B. $A D$
C. $B C$
D. $B D$

Answer: C

- Watch Video Solution

58.

In a
regular
hexagon
$A B C D E F, \overline{A B}+\overline{A C}+\overline{A D}+\overline{A E}+\overline{A F}=k \overline{A D}$ then k is equal to
A. 2
B. 3
C. 4
D. 6

Answer: B

- Watch Video Solution

59. Let us define the length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ and $|a|+|b|+|c|$. This definition coincides with the usual definition of length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ if an only if
A. $a=b=c=0$
B. any two of a, b and c are zero
C. any one of a, b and c is zero
D. $a+b+c=0$

Answer: B

- Watch Video Solution

60. If a and b are two non-zero and non-collinear vectors then $a+b$ and $a-b$ are
A. linearly dependent vectors
B. linearly independent vectors
C. linearly dependent annd independent vectors
D. none of these

Answer: B

- Watch Video Solution

61. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between \vec{a} and \vec{b} can lie in the interval
A. $(\pi / 2, \pi / 2)$
B. $(0, \pi)$
C. $(\pi / 2,3 \pi / 2)$
D. $(0,2 \pi)$

Answer: C

- Watch Video Solution

62. The magnitudes of mutually perpendicular forces a, b and c are 2,10 and 11 respectively. Then the magnitude of its resultant is
A. 12
B. 15
C. 9
D. none of these

Answer: B

- Watch Video Solution

63. If $\hat{i}-3 \hat{j}+5 \hat{k}$ bisects the angle between \hat{a} and $-\hat{i}+2 \hat{j}+2 \hat{k}$, where \widehat{a} is a unit vector, then
A. $a=\frac{1}{105}(41 \hat{i}+88 \hat{j}-40 \hat{k})$
B. $a=\frac{1}{105}(41 \hat{i}+88 \hat{j}+40 \hat{k})$
C. $a=\frac{1}{105}(-41 \hat{i}+88 \hat{j}-40 \hat{k})$
D. $a=\frac{1}{105}(41 \hat{i}-88 \hat{j}-40 \hat{k})$

Answer: D

- Watch Video Solution

64. Let $\vec{a}=\hat{i}$ be a vector which makes an angle of 120° with a unit vector \vec{b} in XY plane. then the unit vector $(\vec{a}+\vec{b})$ is
A. $-\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2} \hat{j}$
B. $-\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}$
C. $\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2} \hat{j}$
D. $\frac{\sqrt{3}}{2} \hat{i}-\frac{1}{2} \hat{j}$

Answer: C

65. Given three vectors $a=6 \hat{i}-3 \hat{j}, b=2 \hat{i}-6 \hat{j}$ and $c=-2 \hat{i}+21 \hat{j}$ such that $\alpha=a+b+c$. Then, the resolution of the vector α into components with respect to a and b is given by
A. $3 \mathrm{a}-2 \mathrm{~b}$
B. $3 \mathrm{~b}-2 \mathrm{a}$
C. $2 \mathrm{a}-3 \mathrm{~b}$
D. $a-2 b$

Answer: C

- Watch Video Solution

66. ' I ' is the incentre of triangle $A B C$ whose corresponding sides are a, b, c, rspectively. $a \vec{I} A+b \vec{I} B+c \vec{I} C$ is always equal to a. $\overrightarrow{0}$ b.
$(a+b+c) \vec{B} C$ c. $(\vec{a}+\vec{b}+\vec{c}) \vec{A} C$ d. $(a+b+c) \vec{A} B$
A. 0
B. $(a+b+c) B C$
C. $(a+b+c) A C$
D. $(a+b+c) A B$

Answer: A

- Watch Video Solution

67. If \vec{x} and \vec{y} are two non-collinear vectors and a triangle ABC with side lengths a,b,c satisfying $(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} \times \vec{y})=\overrightarrow{0}$. Then triangle $A B C$ is:
A. an acute angled triangle
B. an obtuse angled triangle
C. a right angled triangle
D. a scalane triangle

- Watch Video Solution

68. If \vec{x} and \vec{y} are two non-collinear vectors and a, b, and c represent the sides of a satisfying $(a-b) \vec{x}+(b-c) \vec{y}+(c-a)(\overrightarrow{\times} x \vec{y})=0$, then $A B C$ is (where $\overrightarrow{\times} x \vec{y}$ is perpendicular to the plane of $x a n d y$) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle
A. an acute angled triangle
B. ann obtuse angled triangle
C. a right angled triangle
D. a scalene triangle

Answer: A

69. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.
A. $P \sqrt{2}$
B. P
C. $P \sqrt{3}$
D. none of these

Answer: A

- Watch Video Solution

70. If \vec{b} is a vector whose initial point divides thejoin of $5 \hat{i} a n d 5 \hat{j}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, thenk lies in the interval a. $[-6,-1 / 6]$ b. $(-\infty,-6] \cup[-1 / 6, \infty)$ C. $[0,6]$ d. none of these
A. $[-6,-1 / 6]$
B. $[-\infty,-6] \cup[-1 / 6, \infty]$
C. $[0,6]$
D. none of these

Answer: B

- Watch Video Solution

71. If $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $2 \hat{i}+5 \hat{j}+7 \hat{k}$ are the position vectors of the vertices A, B and C, respectively, of triangle $A B C$, then the position vector of the point where the bisector of angle A meets $B C$ is
A. $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})$
B. $\frac{2}{3}(6 \hat{i}+12 \hat{j}-8 \hat{k})$
C. $\frac{1}{3}(-6 \hat{i}-8 \hat{j}-9 \hat{k})$
D. $\frac{2}{3}(-6 \hat{i}-12 \hat{j}+8 \hat{k})$

- Watch Video Solution

72. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by
A. $\frac{a-b}{2 \cos (\theta / 2)}$
B. $\frac{a+b}{2 \cos (\theta / 2)}$
C. $\frac{a-b}{\cos (\theta / 2)}$
D. none of these

Answer: B

- Watch Video Solution

73. A, B, C and D have position vectors a, b, c and d, respectively, such that a-$\mathrm{b}=2(\mathrm{~d}-\mathrm{c})$. Then,
A. $A B$ and $C D$ bisect each other
B. BD and $A C$ bisect each other
C. $A B$ and $C D$ trisect each other
D. $B D$ and $A C$ trisect each other

Answer: D

- Watch Video Solution

74. On the $x y$ plane where O is the origin, given points, $A(1,0), B(0,1)$ and $C(1,1)$. Let P, Q, and R be moving points on the line $O A, O B, O C$ respectively such that $\overline{O P}=45 t \overline{(O A)}, \overline{O Q}=60 t \overline{(O B)}, \overline{O R}=(1-t) \overline{(O C)}$ with $t>0$. If the three points P, Q and R are collinear then the value of t is equal to
A. $\frac{1}{106}$
B. $\frac{7}{187}$
C. $\frac{1}{100}$
D. none of these

Answer: B

- Watch Video Solution

75. If $a+b+c=\alpha d, b+c+d=\beta a$ and a, b, c are non-coplanar, then the sum of $a+b+c+d=$
A. 0
B. αa
C. βb
D. $(\alpha+\beta) c$
76. The position vectors of the points P and Q with respect to the origin O are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-2 \hat{k}$, respectively. If M is a point on PQ , such that OM is the bisector of POQ , then $\overrightarrow{O M}$ is
A. $2(\hat{i}-\hat{j}+\hat{k})$
B. $2 \hat{i}+\hat{j}-2 \hat{k}$
C. $2(-\hat{i}+\hat{j}-\hat{k})$
D. $2(\hat{i}+\hat{j}+\hat{k})$

Answer: B

- Watch Video Solution

77. $A B C D$ is a quadrilateral. E is the point of intersection of the line joining the mid-points of the oppsote sides. If O is any point and $O A+O B+O C+O D=x O E$, then x is equal to
A. 3
B. 9
C. 7
D. 4

Answer: D

- Watch Video Solution

78. In the $\triangle O A B, \mathrm{M}$ is the midpoint of AB, C is a point on OM , such that $2 O C=C M . \mathrm{X}$ is a point on the side OB such that $\mathrm{OX}=2 \mathrm{XB}$. The line XC is produced to meet OA in Y . Then $\frac{O Y}{Y A}=$
A. $\frac{1}{3}$
B. $\frac{2}{7}$
C. $\frac{3}{2}$
D. $\frac{2}{5}$

- Watch Video Solution

79. Points X and Y are taken on the sides $Q R$ and $R S$, respectively of a parallelogram $P Q R S$, so that $Q X=4 X R$ and $R Y=4 Y S$. The line $X Y$ cuts the line $P R$ at Z. Then, $P Z$ is
A. $\frac{21}{25} P R$
B. $\frac{16}{25} P R$
C. $\frac{17}{25} P R$
D. none of these

Answer: A

80. The value of the λ so that P, Q, R, S on the sides $O A, O B, O C$ and $A B$ of a regular tetrahedron are coplanar. When $\frac{O P}{O A}=\frac{1}{3} ; \frac{O Q}{O B}=\frac{1}{2}$ and $\frac{O S}{A B}=\lambda$ is (A) $\lambda=\frac{1}{2}$ (B) $\lambda=-1$ (C) $\lambda=0$ (D) $\lambda=2$
A. $\lambda=\frac{1}{2}$
B. $\lambda=-1$
C. $\lambda=0$
D. fo no value of λ

Answer: B

- Watch Video Solution

81. OABCDE is a regular hexagon of side 2 units in the $X Y$-plane in the first quadrant. O being the origin and $O A$ taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.
A. $-\hat{i}+3 \hat{j}+\sqrt{5} \hat{k}$
B. $\hat{i}-\sqrt{3} \hat{j}+5 \hat{k}$
C. $-\hat{i}+\sqrt{3} \hat{j}+\sqrt{5} \hat{k}$
D. $\hat{i}+\sqrt{3} \hat{j}+\sqrt{5} \hat{k}$

Answer: C

- Watch Video Solution

Exercise (More Than One Correct Option Type Questions)

1. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and \vec{a} form a triangle then \vec{a} may be (A)
$-\hat{i}-\hat{k}$ (B) $\hat{i}-2 \hat{j}-\hat{k}$ (C) $2 \hat{i}+\hat{j}+\hat{j} k$ (D) hati+hat
A. $-\hat{i}-\hat{k}$
B. $\hat{i}-2 \hat{j}-\hat{k}$
C. $2 \hat{j}+\hat{j}+\hat{k}$
D. $\hat{i}+\hat{k}$

D Watch Video Solution

2. If the resultant of three forces $F_{1}=p \hat{i}+3 \hat{j}-\hat{k}, F_{2}=6 \hat{i}-\hat{k}$ and $F_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a particle has a magnitude equal to 5 units, then the value of p is
A. -6
B. -4
C. 2
D. 4

Answer: B::C

3. Let $A B C$ be a triangle, the position vectors of whose vertices are $7 \hat{j}+10 \hat{k},-1 \hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$. Then, $\Delta A B C$ is
A. isosceles
B. equilateral
C. right angled
D. none of these

Answer: A:C

- Watch Video Solution

4. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is
A. $\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})$
B. $\frac{1}{7}(3 \hat{i}-6 \hat{j}-2 \hat{k})$
C. $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}+8 \hat{k})$
D. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$

Answer: A: D

- Watch Video Solution

5. If $A(-4,0,3) \operatorname{and} B(14,2,-5)$, then which one of the following points lie on the bisector of the angle between $\vec{O} \operatorname{Aand} \vec{O} B(O$ is the origin of reference)? a. $(2,2,4)$ b. $(2,11,5)$ c. $(-3,-3,-6)$ d. $(1,1,2)$
A. $(2,2,4)$
B. $(2,11,5)$
C. (-3,-3,-6)
D. $(1,1,2)$

Answer: A::C::D

6. If points $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $p \hat{i}+q \hat{j}+r \hat{k}$ are collinear, then
A. $p=1$
B. $r=0$
C. $q \in R$
D. $q \neq 1$

Answer: A::B::D

- Watch Video Solution

7. If a, b and c are non-coplanar vectors and λ is a real number, then the vectors $a+2 b+3 c, \lambda b+\mu c$ and $(2 \lambda-1) c$ are coplanar when
A. $\mu \in R$
B. $\lambda=\frac{1}{2}$
C. $\lambda=0$
D. no value of λ

- Watch Video Solution

Exercise (Statement I And li Type Questions)

1. Statement 1: In $\operatorname{Delta} A B C, \vec{A} B+\vec{A} B+\vec{C} A=0$ Statement 2: If
$\vec{O} A=\vec{a}, \vec{O} B=\vec{b}$, then $\vec{A} B=\vec{a}+\vec{b}$
A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

2. Statement I: $a=\hat{i}+p \hat{j}+2 \hat{k}$ and $b=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors, iff $p=\frac{3}{2}$ and $q=4$.
Statement II: $a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $b=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.
A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: A

- Watch Video Solution

3. Statement 1: if three points $P, Q a n d R$ have position vectors \vec{a}, \vec{b}, and \vec{c}, respectively, and $2 \vec{a}+3 \vec{b}-5 \vec{c}=0$, then the points $P, Q, a n d R$ must be collinear. Statement 2: If for three points A, B, and $C, \vec{A} B=\lambda \vec{A} C$, then points A, B, and C must be collinear.
A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: A

- Watch Video Solution

1. Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides $O D$ and $A B$ are parallel as shown in figure. Also, $O A: C B=2: 1$ and $O D: A B=1: 3$. if the diagonals $O C$ and $A D$ meet at x, find $O X: O C$.
A. $3 / 4$
B. $1 / 3$
C. $2 / 5$
D. $1 / 2$

Answer: C

- Watch Video Solution

2. Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides $O D$ and $A B$ are parallel as shown in figure. Also, $O A: C B=2: 1$ and $O D: A B=1: 3$. if the diagonals $O C$ and $A D$ meet at x, find $O X: O C$.
A. $5 / 2$
B. 6
C. $7 / / 3^{\prime}$
D. 4

Answer: B

- Watch Video Solution

3. If $A B C D E F$ is a regular hexagon then $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}$ equals :
A. 2 AB
B. 3 AB
C. 4AB
D. none of these

Answer: C

4. Consider the regular hexagon ABCDEF with centre at O (origin).
Q. Five forces $A B, A C, A D, A E, A F$ act at the vertex A of a regular hexagon ABCDEF. Then, their resultant is
A. 3AO
B. 2AO
C. 4AO
D. 6AO

Answer: D

- Watch Video Solution

5. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?

Which of the following is true?
A. $A C=2 A B$
B. $A C=-3 A B$
C. $A C=3 A B$
D. none of these

Answer: C

- Watch Video Solution

6. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?

Which of the following is true?
A. $20 A-3 O B+O C=0$
B. $2 O A+70 B+90 C=0$
C. $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}=0$
D. none of these

D Watch Video Solution

7. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?
B divided $A C$ in ratio
A. 2:1
B. 2: 3
C. $2:-3$
D. 1:2

Answer: D

8. If two vectors $O A$ and $O B$ are there, then their resultant $O A+O B$ can be found by completin the parallelogram $O A C B$ and $O C=O A+O B$. Also, if $|O A|=|O B|$, then the resultant will bisect the angle between them.
Q. A vector C directed along internal bisector of angle between vectors
$A=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $B=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|C|=5 \sqrt{6}$ is
A. $\frac{5}{3}(\hat{i}-\hat{j}+\hat{k})$
B. $\frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$
C. $\frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k})$
D. $\frac{5}{3}(-5 \hat{i}+5 \hat{j}+3 \hat{k})$

Answer: B

- Watch Video Solution

9. If two vectors $O A$ and $O B$ are there, then their resultant $O A+O B$ can be found by completin the parallelogram OACB and $\mathrm{OC=OA+OB}$. Also, if $|O A|=|O B|$, then the resultant will bisect the angle between them.
Q. If internal and external bisectors of $\angle A$ of $\triangle A B C$ meet the base BC at D and E respetively, then (D and E lie on samme side of B).
A. $B C=\frac{B D+B E}{4}$
B. $B C^{2}=B D \times D E$
C. $\frac{2}{B C}=\frac{1}{B D}+\frac{1}{B E}$
D. none of these

Answer: C

(Watch Video Solution

10. Let $C: r(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ be a differentiable curve, i.e., $\lim _{x \rightarrow 0} \frac{r(t+H)-r(h)}{h}$ exist for all t , $\therefore r^{\prime}(t)=x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}+z^{\prime}(t) \hat{k}$

Iff $r^{\prime}(t)$, is tangent to the curve C at the point $P[x(t), y(t), z(t)]$ and $r^{\prime}(t)$ points in the direction of increasing t.
Q. The point P on the curve $r(t)=(1-2 t) \hat{i}+t^{2} \hat{j}+2 e^{2(t-1)} \hat{k}$ at which the tangent vector $r^{\prime}(t)$ is parallel to the radius vector $r(\mathrm{t})$ is
A. $(-1,1,2)$
B. $(1,-1,2)$
C. $(-1,1,-2)$
D. $(1,1,2)$

Answer: A

- Watch Video Solution

11. Let $C: r(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ be a differentiable curve, i.e., $\lim _{x \rightarrow 0} \frac{r(t+H)-r(h)}{h}$ exist for all t ,

$$
\therefore r^{\prime}(t)=x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}+z^{\prime}(t) \hat{k}
$$

Iff $r^{\prime}(t)$, is tangent to the curve C at the point $P[x(t), y(t), z(t)]$ and $r^{\prime}(t)$ points in the direction of increasing t . Q. The tangent vector to $r(t)=2 t^{2} \hat{i}+(1-t) \hat{j}+\left(3 t^{2}+2\right) \hat{k}$ at $(2,0,5)$ is
A. $4 \hat{i}+\hat{j}-6 \hat{k}$
B. $4 \hat{i}-\hat{j}+6 \hat{k}$
C. $2 \hat{i}-\hat{j}+6 \hat{k}$
D. $2 \hat{i}+\hat{j}-6 \hat{k}$

Answer: B

- Watch Video Solution

Exercise (Matching Type Questions)

1. a and b form the consecutive sides of a regular hexagon ABCDEF.

Column I
a. If $\mathbf{C D}=x \mathbf{a}+y \mathbf{b}$, then
p. $x=-2$
b. If $\mathbf{C E}=x \mathbf{a}+y \mathbf{b}$, then
q. $x=-1$
c. If $\mathbf{A E}=x \mathbf{a}+y \mathbf{b}$, then
r. $y=1$
d. If $\mathbf{A D}=-x \mathbf{b}$, then
s. $y=2$

1. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}-3 \hat{j}-\hat{k}, \vec{F}_{2}=-5 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{F}_{3}=6 \hat{i}-\hat{k}$ acting on a particle has a magnitude equal to 5 units, then what is difference in the values of p ?

Watch Video Solution

2. Vectors along the adjacent sides of parallelogram are $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$. Find the length of the longer diagonal of the parallelogram.

- Watch Video Solution

3. If vectors $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\lambda \hat{i}+\hat{j}+2 \hat{k}$ are coplanar, then find the value of $(\lambda-4)$.
4. If $\mathrm{a}+\mathrm{b}$ is along the angle bisector of a and b , where $|a|=\lambda|b|$, then the number of digits in value of λ is

- Watch Video Solution

5. Let p be the position vector of orthocentre and g is the position vector of the centroid of $\triangle A B C$, where circumcentre is the origin. If $p=k g$, then the value of k is

- Watch Video Solution

6. In a $\triangle A B C$, a line is drawn passing through centroid dividing $A B$ internaly in ratio $2: 1$ and AC in $\lambda: 1$ (internally). The value of λ is

- Watch Video Solution

7. The vector \vec{a} has the components $2 p$ and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components $(p+1)$ and 1 , then p is equal to a. $-4 \mathrm{~b} .-1 / 3 \mathrm{c} .1 \mathrm{~d}$. 2

- Watch Video Solution

Exercise (Subjective Type Questions)

1. A vector a has components a_{1}, a_{2}, a_{3} in a right handed rectangular cartesian coordinate system $O X Y Z$ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$. The components of a in the new system

- Watch Video Solution

2. Find the magnitude and direction of $r_{1}-r_{2}$ when $\left|r_{1}\right|=5$ and points North-East while $\left|r_{2}\right|=5$ but points North-West.

- Watch Video Solution

3. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal. Let D be the midpoint of $O A$. using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.

- Watch Video Solution

4. $\triangle A B C$ is a triangle with the point P on side BC such that $3 \mathrm{BP}=2 \mathrm{PC}$, the point Q is on the line CA such that $4 C Q=Q A$. Find the ratio in which the line joining the common point R of $A P$ and $B Q$ and the point S divides $A B$.

- Watch Video Solution

5. In $\triangle A B C$ internal angle bisector Al, Bl and Cl are produced to meet opposite sides in $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Prove that the maximum value of $\frac{A I \times B I \times C I}{A A^{\prime} \times B B^{\prime} \times \mathbb{C}^{\prime}}$ is $\frac{8}{27}$
6. Let $r_{1}, r_{2}, r_{3}, \ldots, r_{n}$ be the position vectors of points $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$ relative to an origin 0 . show that if then a similar equation will also hold good with respect to any other origin O'. If $a_{1}+a_{2}+a_{3}+\ldots+a_{n}=0$.

- Watch Video Solution

7. Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides $O D$ and $A B$ are parallel as shown in figure. Also, $O A: C B=2: 1$ and $O D: A B=1: 3$. if the diagonals $O C$ and $A D$ meet at x, find $O X: X C$.

- Watch Video Solution

8. If u, v and w is a linearly independent system of vectors, examine the system $\quad \mathrm{p}, \mathrm{q} \quad$ and $\quad \mathrm{r}$, where $\quad p=(\cos a) u+(\cos b) v+(\cos c) w$
$q=(\sin a) u+(\sin b) v+(\sin c) w$
$r=\sin (x+a) u+\sin (x+b) v+\sin (x+c) w$ for linearly dependent.

- Watch Video Solution

Exercise (Questions Asked In Previous 13 Years Exam)

1. The vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is (A) $\sqrt{72}$ (B) $\sqrt{33}$ (C)
$\sqrt{2880}$ (D) $\sqrt{18}$
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{45}$
2. Let a, b and c be three non-zero vectors which are pairwise noncollinear. If $a+3 b$ is collinear with c and $b+2 c$ is collinear with a, then $a+3 b+6 c$ is
A. $a+c$
B. a
C. c
D. 0

Answer: D

- Watch Video Solution

3. The non-zero vectors are \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is
A. π
B. 0
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

4. If C is the mid-point of $A B$ and P is any point outside $A B$, then
A. $P A+P B+P C=0$
B. $P A+P B+2 P C=0$
C. $P A+P B=P C$
D. $P A+P B=2 P C$

Answer: D

D Watch Video Solution

5. If a, b and c are three non-zero vectors such that no two of these are collinear. If the vector $a+2 b$ is collinear with c and $b+3 c$ is collinear with $a($ λ being some non-zero scalar), then $a+2 b+6 c$ is equal to
A. λa
B. λb
C. λc
D. 0

Answer: D

- Watch Video Solution

6. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-coplanar vectors and λ is a real number, then the vectors $a+2 b+3 c, \lambda b+4 c$ and $(2 \lambda-1) c$ are non-coplanar for
A. all value of λ
B. all except one value of λ
C. all except two value of λ
D. no value of λ

Answer: C

- Watch Video Solution

7. Consider points A, B, C annd D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k},-1 \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$, respectively. Then, ABCD is
A. square
B. rhombus
C. rectangle
D. none of these

Answer: D

8. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$ and the vectors
$\vec{A}=\left(1, a, a^{2}\right), \vec{B}=\left(1, b, b^{2}\right), \vec{C}\left(1, c, c^{2}\right)$
are non-coplanar then the product $\mathrm{abc}=\ldots$.
A. 2
B. -1
C. 1
D. 0

Answer: B

Watch Video Solution

9. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. The value of x is
A. $\left\{-\frac{2}{3}, 2\right\}$
B. $\left(\frac{1}{3}, 2\right)$
C. $\left\{\frac{2}{3}, 0\right\}$
D. $\{2,7\}$

Answer: A

- Watch Video Solution

