

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

VECTOR ALGEBRA

Example

- 1. Classify the following measures as scalars and vectors
- (i) 20 m north-west
- (ii) 10 newton
- (iii) 30 km/h
- (iv) 50m/s towards north
- (v) 10^{-19} coloumb

- 2. Represent graphically
- (i) a displacement of 60 km, $40^{\,\circ}\,$ east of north
- (ii) A displacement of 50 km south-east.

- 3. In the following figure, which of the vectors are:
- (i) Collinear
- (ii) Equal
- (iii) Co-initial

(iv) collinear but not equal .

4. Find a unit vector parallel to the vector $-3\hat{i}+4\hat{j}.$

7. If one side of a squre be represented by the vectors $3\hat{i}+4\hat{j}+5\hat{k}$, then the area of the square is

- A. 12
- B. 13
- C. 25
- D. 50

Answer: D

8. The direction cosines of the vector $3\hat{i}-4\hat{j}+5\hat{k}$ are

A.
$$\frac{3}{5}, \frac{-4}{5}, \frac{1}{5}$$

B. $\frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. $\frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$

Answer: B

9. Show that the vector i+j+k is equally inclined with the axes

OX, OY and OZ.

10. Let AB be a vector in two dimensional plane with the magnitude 4 units and making an angle of 30° with X-axis and lying in the first quadrant. Find the components of AB along the two axes off coordinates. Hence, represent AB in terms of unit vectors \hat{i} and \hat{j} .

Watch Video Solution

11. Find the unit vector parallel to the resultant vector of $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

12. If a, b, c be the vectors represented by the sides of a triangle taken in

order, then a+b+c=0

13. If S is the mid-point of side QR of a ΔPQR , then prove that PQ+PR=2PS.

14. If ABCDEF is a regular hexagon, prove that AD + EB + FC = 4AB.

15. If
$$A=(0,1)B=(1,0), C=(1,2), D=(2,1)$$
 , prove that $\overrightarrow{A}B=\overrightarrow{C}D$.

Watch Video Solution

17. Vectors drawn the origin O to the points A, BandC are respectively \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{4}$ $a - \overrightarrow{3}$ b find \overrightarrow{A} $Cand \overrightarrow{B}$ C.

18. Find the direction cosines of the vector joining the points A(1,2,3)

and B(1, 2, 1), directed from A to B.

Watch Video Solution

19. Let α, β, γ be distinct real numbers. The points with position vectors

$$lpha \hat{i} + eta \hat{j} + \gamma \hat{k}, eta \hat{i} + \gamma \hat{j} + lpha \hat{k}, \gamma \hat{i} + lpha \hat{j} + eta \hat{k}$$

A. are collinera

B. form an equilateral triangle

C. form a scalene triangle

20. If the position vectors of the vertices of a triangle be $2\hat{i} + 4\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \hat{k}$ and $3\hat{i} + 6\hat{j} - 3\hat{k}$, then the triangle is

A. right angled

B. isosceles

C. equilateral

D. none of these

Answer: A::B

21. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The

unit vector parallel to one of the diagonals is

22. If \overrightarrow{a} , \overrightarrow{b} are any two vectors, then give the geometrical interpretation of g relation $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a} - \overrightarrow{b}\right|$

Watch Video Solution

23. If sum of two unit vectors is a unit vector; prove that the magnitude

of their difference is $\sqrt{3}$

24. If \overrightarrow{a} is a non zero vecrtor iof modulus \overrightarrow{a} and m is a non zero scalar such that ma is a unit vector, write the value of m.

A.
$$m=\pm 1$$

B. $m=|a|$
C. $m=rac{1}{|a|}$
D. $m=\pm 2$

Answer: C

25. For a non-zero vector a, the set of real number, satisfying |(5-x)a| < |2a| consists of all x such that

A. 0 < x < 3

 ${\rm B.}\,3 < x < 7$

 $\mathsf{C}.-7 < x < \ -3$

 $\mathsf{D.}-7 < x < 3$

Answer: B

26. Find a vector of magnitude (5/2) units which is parallel to the vector $3\hat{i} + 4\hat{j}$.

Watch Video Solution

27. if D,E and F are the mid-points of the sides BC,CA and AB respectively of the ΔABC and O be any points, then prove that OA + OB + OC = OD + OE + OF

Watch Video Solution

28. Find the position vectors of the points which divide the join of the points $2\overrightarrow{a} - 3\overrightarrow{b}and3\overrightarrow{a} - 2\overrightarrow{b}$ internally and externally in the ratio 2:3.

29. The position vectors of the vertices A,B and C of a triangle are $\hat{i} - \hat{j} - 3\hat{k}, 2\hat{i} + \hat{j} - 2\hat{k}$ and $-5\hat{i} + 2\hat{j} - 6\hat{k}$, respectively. The length of the bisector AD of the $\angle BAC$, where D is on the segment BC, is

A.
$$\frac{3}{4}\sqrt{3}$$

B. $\frac{1}{4}$
C. $\frac{11}{2}$

D. None of these

Answer: A

30. The median AD of the triangle ABC is bisected at E and BE meets AC at

F. Find AF:FC.

A. 3/4

B. 1/3

C.1/2

D.1/4

Answer: B

Watch Video Solution

31. The sum of the magnitudes of two forces acting at a point is 16 N. The resultant of these forces is perpendicular to the smaller force has a magnitude of 8 N. If the smaller force is magnitude x, then the value of x is (A) 2N (B) 4N (C) 6N (D) 7N

A. 13,5

B. 12,6

C. 14,4

D. 11,7

Answer: A

32. The length of longer diagonal of the parallelogram constructed on 5a + 2b and a - 3b. If it is given that $|a| = 2\sqrt{2}$, |b| = 3 and angle between a and b is $\frac{\pi}{4}$ is

A. 15

B. $\sqrt{113}$

C. $\sqrt{593}$

D. $\sqrt{369}$

Answer: C

Watch Video Solution

33. The vector \overrightarrow{c} , directed along the internal bisector of the angle between the vectors $\overrightarrow{c} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is

A.
$$rac{5}{3} \left(\hat{i} - 7\hat{j} + 2\hat{k}
ight)$$

B. $rac{5}{3} \left(5\hat{i} + 5\hat{j} + 2\hat{k}
ight)$
C. $rac{5}{3} \left(\hat{i} + 7\hat{j} + 2\hat{k}
ight)$
D. $rac{5}{3} \left(-5\hat{i} + 5\hat{j} + 2\hat{k}
ight)$

Answer: A

Watch Video Solution

34. Show that the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $-4\hat{i}+6\hat{j}-8\hat{k}$ are

collinear.

Watch Video Solution

35. Prove that the ponts A(1,2,3), B(3,4,7), C(-3-2, -5) are

collinear and find the ratio in which B divides AC.

36. If the position vectors off A,B,C and D are $2\hat{i} + \hat{j}, \hat{i} - 3\hat{j}, 3\hat{i} + 2\hat{j}$ and $\hat{i} + \lambda\hat{j}$, respectively and $AB \mid \mid CD$, then λ will be

A. −8 B. −6

- C. 8
- D. 6

Answer: B

37. The points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, 40\hat{i} - 8\hat{j}, a\hat{i} - 52\hat{j}$ are collinear iff (A) a = -40 (B) a = 40 (C) a = 20 (D) none of these

A. - 40

B.40

C. 20

D. none of these

Answer: A

Watch Video Solution

38. If a,b and c are three non-zero vectors such that no two of these are collinear. If the vector a+2b is collinear with c and b+3c is collinear with a(λ being some non-zero scalar), then a+2b+6c is equal to

A. 0

 $\mathsf{B.}\,\lambda b$

 $\mathsf{C}.\,\lambda c$

D. λa

Answer: A

39. Check whether the given three vectors are coplnar or non- coplanar :

$$-2\hat{i}-2\hat{j}+4\hat{k},\ -2\hat{i}+4\hat{j}-2\hat{k},4\hat{i}-2\hat{j}-2\hat{k}.$$

Watch Video Solution

40. If the vectors $4\hat{i} + 11\hat{j} + m\hat{k}$, $7\hat{i} + 2\hat{j} + 6\hat{k}$ and $\hat{i} + 5\hat{j} + 4\hat{k}$ are coplanar, then m is equal to

A. 38

B. 0

C. 10

D. - 10

Answer: C

41. If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and

a+b+2c are complanar.

Watch Video Solution

42. The value of λ for which the four points $2\hat{i} + 3\hat{j} - \hat{k}, \hat{i} + 2\hat{j} + 3\hat{k}, 3\hat{i} + 4\hat{j} - 2\hat{k}$ and $\hat{i} - \lambda\hat{j} + 6\hat{k}$ are coplanar.

- A. 8
- Β.Ο
- $\mathsf{C}.-2$

D. 6

Answer: C

P(a+2b+c), Q(a-b-c), R(3a+b+2c) and S(5a+3b+5c) are

coplanar given that a,b and c are non-coplanar.

Watch Video Solution
44. Show that the vectors

$$\hat{i} - 3\hat{i} + 2\hat{k}, 2\hat{i} - 4\hat{j} - \hat{k}$$
 and $3\hat{i} + 2\hat{j} - \hat{k}$ and linearly independent.
Watch Video Solution

45. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$$
 and $\overrightarrow{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$

are linearly dependent vectors and $\left| \overrightarrow{c}
ight| = \sqrt{3}$ then

A.
$$\alpha = 1, \beta = -1$$

 $\texttt{B.}\,\alpha=1,\beta=~\pm\,1$

C. `alpha=1,beta=+-1

D. $\alpha \pm 1, \beta = 1$

Answer: D

Answer: C

47. A unit vector \hat{a} makes an angle $\frac{\pi}{4}$ with z-axis, if $\hat{a} + \hat{i} + \hat{j}$ is a unit vector then \hat{a} is equal to (A) $\hat{i} + \hat{j} + \frac{\hat{k}}{2}$ (B) $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$ (C) $-\frac{\hat{i}}{2} - \hat{j} + \frac{\hat{k}}{\sqrt{2}}$ (D) $\frac{\hat{i}}{2} - \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$ A. $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}}$ B. $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$ C. $-\frac{\hat{i}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}}$

D. none of these

Answer: C

Watch Video Solution

48. If the resultannt of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7}Q$, then P/Q is

A. 1

 $\mathsf{B}.\,\frac{3}{2}$

C.2

D. 4

Answer: C

Watch Video Solution

49. The vector \overrightarrow{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \overrightarrow{a} has components (p+1)and1, then p is equal to a. -4 b. -1/3 c. 1 d.

A. p=0

B. p=1 or
$$p = -\frac{1}{3}$$

C. p=-1 or $p = \frac{1}{3}$
D. p=1 or $p = -1$

Answer: B

50. ABC is an isosceles triangle right angled at A. forces of magnitude $2\sqrt{2}$, 5 and 6 act along BC, CA and AB respectively. The magnitude of their resultant force is

A. 4 B. 5 C. $11 + 2\sqrt{2}$ D. 30

Answer: B

51. A line segment has length 63 and direction ratios

are $3,\ -2, 6.$ The components of the line vector are

A. - 27, 18, 54

B.27, -18, 54

C. 27, -18, -54

D. - 27, -18, -54

Answer: B

Watch Video Solution

52. If the vectors $6\hat{i} - 2\hat{j} + 3\hat{k}k$, $2\hat{i} + 3\hat{j} - 6\hat{k}$ and $3\hat{i} + 6\hat{j} - 2\hat{k}$ form a

triangle, then it is

A. right angled

B. obtuse angled

C. equilateral

D. isosceles

Answer: B

53. The position vectors of the points A, B, C are $2\hat{i} + \hat{j} - \hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} - 3\hat{k}$ respectively. These points

A. form an isosceles triangle

B. form a right angled triangle

C. are collinear

D. form a scalene triangle

Answer: C

Watch Video Solution

54. The position vector of a point C with respect to B is $\hat{i} + \hat{j}$ and that of B with respect to A is $\hat{i} - \hat{j}$. The position vector of C with respect to A is $\mathsf{B}.\,2\hat{j}$

 ${\rm C.}-2\hat{j}$

 $\mathrm{D.}-2\hat{i}$

Answer: A

Watch Video Solution

55. In a ΔABC , if 2AC=3CB, then 2OA+3OB is equal to

A. 50C

B. - OC

 $\mathsf{C}.\,OC$

D. none of these

Answer: A

56. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} are the position vector of point A, B, C and D, respectively referred to the same origin O such that no three of these point are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, than prove that quadrilateral ABCD is a parallelogram.

A. square

B. rhombus

C. rectangle

D. parallelogram

Answer: D

Watch Video Solution

57. P is a point on the side BC off the ΔABC and Q is a point such that

PQ is the resultant of AP,PB and PC. Then, ABQC is a

A. square

B. rectangle

C. parallelogram

D. trapezium

Answer: C

Watch Video Solution

58. If ABCD is a parallelogram and the position vectors of A,B and C are $\hat{i} + 3\hat{j} + 5\hat{k}$, $\hat{i} + \hat{j} + \hat{k}$ and $7\hat{i} + 7\hat{j} + 7\hat{k}$, then the poisition vector of D will be A. $7\hat{i} + 5\hat{j} + 3\hat{k}$

B. $7\hat{i}+9\hat{j}+11\hat{k}$ C. $9\hat{i}+11\hat{j}+13\hat{k}$

D. $8\hat{i}+8\hat{j}+8\hat{k}$

Answer: B

59. ABCD is a parallelogram whose diagonals meet at P. If O is a fixed point, then $\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD}$ equals :

A. OP

B. 20P

C. 30P

D. 40P

Answer: D

Watch Video Solution

60. If C is the middle point of AB and P is any point outside AB, then

A. PA+PB=PC

B. PA+PB=2PC

C. PA+PB+PC=0

D. PA+PB+2PC=0

Answer: B

Watch Video Solution

61. Let O, O' and G be the circumcentre, orthocentre and centroid of a $\triangle ABC$ and S be any point in the plane of the triangle. Statement -1: $\overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{O'O}$ Statement -2: $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} = 3\overrightarrow{SG}$

A. *OO* '

B. 20'0

C. 200'

D. 0

Answer: B

62. Five points given by A,B,C,D and E are in a plane. Three forces AC,AD and AE act at A annd three forces CB,DB and EB act B. then, their resultant

A. 2AC	
B. 3AB	
C. 3DB	
D. 2BC	

is

Answer: B

Watch Video Solution

63. In a regular hexagon ABCDEF, $\overrightarrow{A}B = a, \overrightarrow{B}C = b$ and $\overrightarrow{C}D = c.$ Then, $\overrightarrow{A}E =$

A. 2b-a

$$B.b-a$$

C. 2a - b

 $\mathsf{D}.\,a+b$

Answer: A

Watch Video Solution

64. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$, then angle between \overrightarrow{a} and \overrightarrow{b} is

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

65. If a, b are the position vectors of A, B respectively and C is a point on AB produced such that AC = 3AB then the position vector of C is

A. 3a - b

B. 3b - a

 $\mathsf{C.}\,3a-2b$

D. 3b-2a

Answer: D

Watch Video Solution

66. Let A and B be points with position vectors \overrightarrow{a} and \overrightarrow{b} with respect to origin O. If the point C on OA is such that $2\overrightarrow{AC} = \overrightarrow{CO}, \overrightarrow{CD}$ is parallel to \overrightarrow{OB} and $\left|\overrightarrow{CD}\right| = 3\left|\overrightarrow{OB}\right|$ then \overrightarrow{AD} is (A) $\overrightarrow{b} - \frac{\overrightarrow{a}}{9}$ (B) $3\overrightarrow{b} - \frac{\overrightarrow{a}}{3}$ (C) $\overrightarrow{b} - \frac{\overrightarrow{a}}{3}$ (D) $\overrightarrow{b} + \frac{\overrightarrow{a}}{3}$

A.
$$3b - \frac{a}{2}$$

B. $3b + \frac{a}{2}$
C. $3b - \frac{a}{3}$
D. $3b + \frac{a}{3}$

Answer: C

67. If the position vector of a point A is $\vec{a} + 2\vec{b}$ and \vec{a} divides AB in the ratio 2: 3, then the position vector of B, is

A. 2a - b

B. b - 2a

C. a - 3b

 $\mathsf{D}.\,b$

68. If D, E and F are respectively, the mid-points of AB, AC and BC in

 ΔABC , then BE + AF is equal to

A. DC

B. $\frac{1}{2}BF$ C. 2BF

D.
$$\frac{3}{2}BF$$

Answer: A

Watch Video Solution

69. In a quadrilateral PQRS, $\overrightarrow{P}Q = \overrightarrow{a}$, $\overrightarrow{Q}R$, \overrightarrow{b} , $\overrightarrow{S}P = \overrightarrow{a} - \overrightarrow{b}$, M is the midpoint of $\overrightarrow{Q}RandX$ is a point on SM such that $SX = \frac{4}{5}SM$. Prove that P, XandR are collinear.

A.
$$PX=rac{1}{5}PR$$

B.
$$PX = rac{3}{5}PR$$

C. $PX = rac{2}{5}PR$

D. none of these

Answer: B

Watch Video Solution

70. Orthocenter of an equilateral triangle ABC is the origin O. If $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$, then $\overrightarrow{AB} + 2\overrightarrow{BC} + 3\overrightarrow{CA} =$ A. 3c B. 3a C. 0 D. 3b

Answer: B

71. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are position vectors of A,B, and C respectively of ΔABC and if $\left|\overrightarrow{a} - \overrightarrow{b}\right|$, $\left|\overrightarrow{b} - \overrightarrow{c}\right| = 2$, $\left|\overrightarrow{c} - \overrightarrow{a}\right| = 3$, then the distance between the centroid and incenter of $\triangle ABC$ is

A. 1

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

Watch Video Solution

72. Let position vectors of point A,B and C of triangle ABC represents be $\hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$. Let $l_1 + l_2$ and l_3 be the length of perpendicular drawn from the orthocenter 'O' on the sides AB, BC and CA, then $(l_1 + l_2 + l_3)$ equals

A.
$$\frac{2}{\sqrt{6}}$$

B.
$$\frac{3}{\sqrt{6}}$$

C.
$$\frac{\sqrt{6}}{2}$$

D.
$$\frac{\sqrt{6}}{3}$$
.

Answer: C

73. ABCDEF is a regular hexagon in the x-y plance with vertices in the anticlockwise direction. If $\overrightarrow{A}B = 2\hat{i}$, then $\overrightarrow{C}D$ is

A. $\hat{i}+3\hat{j}$

B. $\hat{i}9+2\hat{j}$

 $\mathsf{C}.-\hat{i}+3\hat{j}$

D. none of these

74. The vertices of a triangle are A(1,1,2), B (4,3,1) and C (2,3,5). The vector representing internal bisector of the angle A is

A. $\hat{i}+\hat{j}+2\hat{k}$

B. $2\hat{i}-2\hat{j}j+\hat{k}$

C. $2\hat{i}+2\hat{j}+\hat{k}$

D. none of these

Answer: C

Watch Video Solution

75. Let
$$\overrightarrow{a} = (1, 1, -1)$$
, $\overrightarrow{b} = (5, -3, -3)$ and $\overrightarrow{c} = (3, -1, 2)$. If \overrightarrow{r} is collinear with \overrightarrow{c} and has length $\frac{\left|\overrightarrow{a} + \overrightarrow{b}\right|}{2}$, then \overrightarrow{r} equals

A. $\pm 3c$

$$B. \pm \frac{3}{2}c$$
$$C. \pm c$$
$$D. \pm \frac{2}{3}c$$

Answer: C

Watch Video Solution

76. In a trapezium ABCD the vector $\overrightarrow{BC} = \lambda \overrightarrow{AD}$. If $\overrightarrow{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p} = \mu \overrightarrow{AD}$, then

A. $\mu=\lambda+1$

B. $\lambda=\mu+1$

C. $\lambda+\mu=1$

D. $\mu=2+\lambda$

Answer: A

77. If the position vectors of the points A,B and C be $\hat{i} + \hat{j}, \hat{i} - \hat{j}$ and $a\hat{i} + b\hat{j} + c\hat{k}$ respectively, then the points A,B and C are collinear, if

A. a=b=c=1

B. a=1,b and c are arbitrary scalars

C. ab=c=0

D. c=0,a=1 and b is arbitrary scalars

Answer: D

78. Let a,b and c be distinct non-negative numbers and the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$, $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then the quadratic equation $ax^2 + 2cx + b = 0$ has

A. real annd equal roots

B. real and unequal roots

C. unreal roots

D. both roots real and positive

Answer: A

Watch Video Solution

79. The number of distinct real values of λ for which the vectors $\vec{a} = \lambda^3 \hat{i} + \hat{k}, \vec{b} = \hat{i} - \lambda^3 \hat{j}$ and $\vec{c} = \hat{i} + (2\lambda - \sin\lambda)\hat{i} - \lambda\hat{k}$ are coplanar is A.0

B. 1

C. 2

D. 3

Answer: A

Answer: A

Watch Video Solution

81. p=2a-3b,q=a-2b+c and r=-3a+b+2c, where a,b,c being non-coplanar

vectors, then the vector -2a+3b-c is equal to

A.
$$p-4q$$

B.
$$rac{-7q+r}{5}$$

C. $2p-3q+r$
D. $4p-2r$

Answer: B

Watch Video Solution

82. If a_1 and a_2 are two values of a for which the unit vector $\overrightarrow{ai} + \overrightarrow{bj} + \frac{1}{2}\overrightarrow{k}$ is linearly dependent with $\overrightarrow{i} + 2\overrightarrow{j}$ and $\overrightarrow{j} - 2\overrightarrow{k}$, then $\frac{1}{a_1} + \frac{1}{a_2}$ is equal to

A. 1

B.
$$\frac{1}{8}$$

C. $\frac{-16}{11}$
D. $\frac{-11}{16}$

Answer: C

83. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$. Then values of x are (A) $-\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2

A. 1

$$\mathsf{B.}\,\frac{-2}{3}$$

C. 2

$$\mathsf{D}.\,\frac{4}{3}$$

Answer: B::C

84. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three coplanar unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. If three vectors $\overrightarrow{p}, \overrightarrow{q}, and \overrightarrow{r}$ are parallel to $\overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c}$, respectively, and have integral but different magnitudes,

then among the following options, $\left|\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}
ight|$ can take a value equal to a. 1 b. 0 c. $\sqrt{3}$ d. 2

A. 1

B. 0

C. $\sqrt{3}$

D. 2

Answer: C::D

Watch Video Solution

85. A,B C and dD are four points such that
$$\overrightarrow{AB} = m(2\hat{i} - 6\hat{j} + 2\hat{k})\overrightarrow{BC} = (ahti - 2\hat{j}) \text{ and } \overrightarrow{CD} = n(-6\hat{i} + 15\hat{j} - 6\hat{j})$$

. If CD intersects AB at some points E, then

A. $m \geq rac{1}{2}$ B. $n \geq rac{1}{3}$

 $\mathsf{C}.\,m=n$

 $\mathsf{D}.\,m < n$

Answer: A::B

Watch Video Solution

86. If non-zero vectors \overrightarrow{a} and \overrightarrow{b} are equally inclined to coplanar vector \overrightarrow{c} , then \overrightarrow{c} can be

A.
$$\frac{|a|}{|a| = 2|b|}a + \frac{|b|}{|a| + |b|}b$$

B.
$$\frac{|b|}{|a| + |b|}a + \frac{|a|}{|a| + |b|}b$$

C.
$$\frac{|a|}{|a| + |b|}a + \frac{|b|}{|a| + 2|b|}b$$

D.
$$\frac{|b|}{2|a| + |b|}a + \frac{|a|}{2|a| + |b|}b$$

Answer: B::D

87.

$$x\hat{i} + (x+1)\hat{j} + (x+2)\hat{k}, (x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k} ext{ and } (x+6)\hat{k}$$

are coplanar if x is equal to

A. 1	
B.-3	
C. 4	
D. 0	

Answer: A::B::C::D

Watch Video Solution

88. Given three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A.
$$a+b,b+c,c+a$$

 $\mathsf{B}.\,a-b,b+c,c+a$

$$\mathsf{C}.\,a+b,b-c,c+a$$

$$\mathsf{D}.\,a+b,b+c,c-a$$

Answer: B::C::D

Watch Video Solution

89. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{l} , and a_1, a_2, a_3, a_4 are four non-zero vectors such that no vector can be expressed as a linear combination of other $(\lambda - 1)(a_1 - a_2) + \mu(a_2 + a_3) + \gamma(a_3 + a_4 - 2a_2) + a_3 + \delta a_4 = 0$, then

A.
$$\lambda = 1$$

B. $\mu = -\frac{2}{3}$
C. $\gamma = \frac{2}{3}$
D. $\delta = \frac{1}{3}$

Answer: A::B::D

90.

Statement

 $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = and\left|\overrightarrow{a} + \overrightarrow{b}\right| = 5, then\left|\overrightarrow{a} - \overrightarrow{b}\right| = 5.$ Statement 2:

The length of the diagonals of a rectangle is the same.

A. Statement-II and statement II ar correct and Statement III is the

correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: A

Watch Video Solution

1:

91. Statement 1: If $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$, then \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

- A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
- B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: A

Watch Video Solution

92. Assertion: If I is the incentre of $\triangle ABC$, then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)=0

Reason: If O is the or $ig \in$, then the position $\xrightarrow{\longrightarrow}$ rofcentroid of /_\ABC $is\left(\overrightarrow{O}A\right) + \overrightarrow{OB} + \overrightarrow{OC}\frac{1}{3}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

A. Statement-II and statement II ar correct and Statement III is the

correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: B

93. Statement 1: If \overrightarrow{u} and \overrightarrow{v} are unit vectors inclined at an angle α and \overrightarrow{x}

is a unit vector bisecting the angle between them, then

 $\overrightarrow{x} = \left(\overrightarrow{u} + \overrightarrow{v}\right) / (2\sin(\alpha/2))$ Statement 2: If DeltaABC is an isosceles triangle with AB = AC = 1, then the vector representing the bisector of angel A is given by $\overrightarrow{A}D = \left(\overrightarrow{A}B + \overrightarrow{A}C\right)/2$.

A. Statement-II and statement II ar correct and Statement III is the

correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: D

Watch Video Solution

94. Statement I: If $a=2\hat{i}+\hat{k}, b=3\hat{j}+4\hat{k}$ and $c=\lambda a+\mu b$ are coplanar, then c=4a-b.

Statement II: A set vector $a_1, a_2, a_3, \ldots, a_n$ is said to be linearly

independent, if every relation of the form

$$l_1a_1+l_2a_2+l_3a_3+\ldots+l_na_n=0$$
 implies that $l_1=l_2=l_3=\ldots=l_n=0$ (scalar).

A. Statement-I and statement II ar correct and Statement II is the

correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: B

Watch Video Solution

95. Statement 1 : Let $A(\overrightarrow{a}), B(\overrightarrow{b})$ and $C(\overrightarrow{c})$ be three points such that $\overrightarrow{a} = 2\hat{i} + \hat{k}, veb = 3\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{c} = -\hat{i} + 7\hat{j} - 5\hat{k}$. Then

OABC is tetrahedron.

Statement 2 : Let $A(\overrightarrow{a}), B(\overrightarrow{b})$ and $C(\overrightarrow{c})$ be three points such that vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-coplanar. Then OABC is a tetrahedron, where O is the origin.

A. Statement-II and statement II ar correct and Statement III is the

correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: A

Watch Video Solution

96. Statement 1: Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} be the position vectors of four points A, B, CandD and $3\overrightarrow{a} - 2\overrightarrow{b} + 5\overrightarrow{c} - 6\overrightarrow{d} = 0$. Then points A, B, C, andD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $\left(\overrightarrow{P}Q, \overrightarrow{P}Rand\overrightarrow{P}S\right)$ are coplanar. Then $\overrightarrow{P}Q = \lambda \overrightarrow{P}R + \mu \overrightarrow{P}S$, where $\lambda and \mu$ are scalars.

- A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
- B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: A

Watch Video Solution

97. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio 1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio 1:2 and AM intersects BD in Q. Point P divides AL in the ratio A. 1:2

B.1:3

C. 3:1

D. 2:1

Answer: C

Watch Video Solution

98. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio 1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio 1:2 and AM intersects BD in Q.

Point Q divides DB in the ratio

A. 1:2

B.1:3

C.3:1

D. 2:1

Answer: B

99. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio 1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio 1:2 and AM intersects BD in Q.

PQ:DB is equal to

Answer: B

100. Let A,B,C,D,E represent vertices of a regular pentangon ABCDE. Given the position vector of these vertices be a,a+b,b, λa and λb respectively.

Q. AD divides EC in the ratio

A.
$$1 - \cos \frac{3\pi}{5} : \cos \frac{3\pi}{5}$$

B. $1 + 2\cos \frac{2\pi}{5} : \cos \frac{\pi}{5}$
C. $1 + 2\cos \frac{\pi}{5} : 2\cos \frac{\pi}{5}$

D. none of these

Answer: C

Watch Video Solution

101. Let A,B,C,D,E represent vertices of a regular pentangon ABCDE. Given the position vector of these vertices be a,a+b,b, λa and λb respectively.

Q. AD divides EC in the ratio

A.
$$\cos \frac{2\pi}{5}$$
 : 1

B.
$$\cos \frac{3\pi}{5} : 1$$

C. 1: $2\cos \frac{\pi}{5}$
D. 1: 2

Answer: C

Watch Video Solution

102. In a parallelogram OABC, vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are respectively the positions of vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divide the line 2:1 internally. Also the line segment AE intersect the line bisecting the angle O internally in point P. If CP, when extended meets AB in point F. Then The position vector of point P, is

$$\begin{array}{l} \mathsf{A.} \ \frac{|a||c|}{3|c|+2|a|} \bigg(\frac{a}{|a|} + \frac{c}{|c|} \bigg) \\ \mathsf{B.} \ \frac{3|a||c|}{3|c|+|2|a|} \bigg(\frac{a}{|a|} + \frac{c}{|c|} \bigg) \\ \mathsf{C.} \ \frac{2|a||c|}{3|c|+2|a|} \bigg(\frac{a}{|a|} + \frac{c}{|c|} \bigg) \end{array}$$

D. none of these

Answer: B

Watch Video Solution

103. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of 2:1 also, the line segment AE intersects the line bisecting the angle $\angle AOC$ internally at point P. if CP when extended meets AB in points F, then

Q. The ratio in which F divides AB is

A.
$$\frac{2|a|}{||a| - 3|c||}$$
B.
$$\frac{|a|}{||a| - 3|c||}$$
C.
$$\frac{3|a|}{||a| - 3|c||}$$
D.
$$\frac{3|c|}{3||c| - |a||}$$

Answer: B

104. In the Cartesian plane, a man starts at origin and walks a distance of 3 units of the north-east direction and reaches a point P. from P, he walks a distance of 4 units in the north-west direction to reach a point Q. construct the parallelogram OPQR with OP and PQ as adjacent sides. let M be the mid-point of PQ.

	Column I		Column II
A .	The position vector of <i>P</i> is	(p)	$\frac{3}{\sqrt{2}}(\mathbf{\hat{i}}+\mathbf{\hat{j}})$
B.	The position vector of <i>R</i> is	(q)	$\frac{1}{\sqrt{2}}(\hat{\mathbf{i}}+5\hat{\mathbf{j}})$
C.	The position vector of M is	(r)	$2\sqrt{2}(-\hat{\mathbf{i}}+\hat{\mathbf{j}})$
D.	If the line OM meets the diagonal PR in the point T, then OT equals	(s)	$\frac{\sqrt{2}}{3}(\hat{\mathbf{i}}+5\hat{\mathbf{j}})$

Watch Video Solution

105. P, Q have position vectors $\overrightarrow{a} \& \overrightarrow{b}$ relative to the origin $O'\&X, Yand\overrightarrow{P}Q$ internally and externally respectgively in the ratio

$$\begin{array}{lll} 2:1 \ \text{Vector} \ \overrightarrow{X}Y = & \frac{3}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right) \ \text{b.} \ \frac{4}{3} \left(\overrightarrow{a} - \overrightarrow{b} \right) \ \text{c.} \ \frac{5}{6} \left(\overrightarrow{b} - \overrightarrow{a} \right) \ \text{d.} \\ & \frac{4}{3} \left(\overrightarrow{b} - \overrightarrow{a} \right) \end{array}$$

Watch Video Solution

106. A(1, -1, -3), B(2, 1, -2)&C(-5, 2, -6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is :

Watch Video Solution

107. Let ABC be a triangle whose centroid is G, orthocentre is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that no three of O,A,C and D are collinear satisfying the relation. AD+BD+CH+3HG= λHD , then what is the value of the scalar λ .

108. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be unit vectors such that $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} = 0$. If the area of triangle formed by vectors \overrightarrow{a} and \overrightarrow{b} is A, then what is the value of $4A^2$?

Watch Video Solution

109. The values of x for which the angle between the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute, and the angle, between the vector \vec{b} and the axis of ordinates is obtuse, are

Watch Video Solution

110. If the points

$$a(\cos \alpha + \hat{i} \sin \gamma), b(\cos \beta + \hat{i} \sin \beta)$$
 and $c(\cos \gamma + \hat{i} \sin \gamma)$ are
collinear, then the value of $|z|$ is . (where
 $z = bc \sin(\beta - \gamma) + ca \sin(\gamma - \alpha) + ab \sin(\alpha + \beta) + 3\hat{i})$

111. A particle, in equilibrium, is subjected to four forces $\overrightarrow{F}_1, \overrightarrow{F}_2, \overrightarrow{F}_3$ and \overrightarrow{F}_4 ,

$$\stackrel{
ightarrow}{F}_1 = \ -\ 10 \hat{k}, \stackrel{
ightarrow}{F}_2 = u igg(rac{4}{13} \hat{i} - rac{12}{13} \hat{j} + rac{3}{13} \hat{k} igg), \stackrel{
ightarrow}{F}_3 = v igg(- rac{4}{13} \hat{i} - rac{12}{13} \hat{j} + rac{3}{13} \hat{k} igg)$$

then find the values of u,v and w

Watch Video Solution

112. Find the all the values of lamda such that (x,y,z)!=(0,0,0) and x(hati+hatj+3hatk)+y(3hati-

3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)`

Watch Video Solution

113. If G is the centroid of ΔABC and G' is the centroid of $\Delta A'B'C'$ then $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} =$

114. If D,E and F are the mid-points of the sides BC,CA and AB, respectively

of a ΔABC and O is any point, show that

(i) AD+BE+CF=0

(ii) OE+OF+DO=OA

Watch Video Solution

115. If $\overrightarrow{A} n d\overrightarrow{B}$ are two vectors and k any scalar quantity greater than zero, then prove that $\left|\overrightarrow{A} + \overrightarrow{B}\right|^2 \leq (1+k)\left|\overrightarrow{A}\right|^2 + \left(1 + \frac{1}{k}\right)\left|\overrightarrow{B}\right|^2$.

Watch Video Solution

116. If O is the circumcentre and O' the orthocenter of ΔABC prove that

(i) SA+SB+SC=3SG, where S is any point in the plane of ΔABC .

(ii) OA+OB+OC=OO'

Where, AP is diameter of the circumcircle.

117. If $\overrightarrow{c} = 3\overrightarrow{a} + 4\overrightarrow{b}$ and $2\overrightarrow{c} = \overrightarrow{a} - 3\overrightarrow{b}$, show that (i) \overrightarrow{c} and \overrightarrow{a} have the same direction and $|\overrightarrow{c}| > |\overrightarrow{a}|$ (ii) \overrightarrow{b} and \overrightarrow{c} have opposite direction and $|\overrightarrow{c}| > |\overrightarrow{b}|$

Watch Video Solution

118. Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON

of a parallelogram at A, B, C respectively, then

 $\frac{OL}{OA} + \frac{OM}{OB} = \frac{ON}{OC}$ Statement -2 : Three points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are collinear iff there exist scalars x, y, z not all zero such that $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0}$, where x + y + z = 0.

Watch Video Solution

119. If D, EandF are three points on the sides BC, CAandAB, respectively, of a triangle ABC such that the $\frac{BD}{CD}$, $\frac{CE}{AE}$, $\frac{AF}{BF} = -1$

120.

 $\overrightarrow{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j} ext{ and } \overrightarrow{B}(t) = g(t)\hat{i} + g_2(t)\hat{j}, t \in [0, 1], f_1, f_2, g_1g_2$ are continuous functions. If $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are non-zero vectors for all $t ext{ and } \overrightarrow{A}(0) = 2\hat{i} + 3\hat{j}, \overrightarrow{A}(1) = 6\hat{i} + 2\hat{j}, \overrightarrow{B}(0) = 3\hat{i} + 2\hat{i} ext{ and } \overrightarrow{B}(1) = 2\hat{j}$ Then,show that $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are parallel for some t.

Let

Watch Video Solution

121. Prove that if $\cos \alpha \neq 1$, $\cos \beta \neq 1$ and $\cos \gamma \neq 1$, then the vectors $a = \hat{i} \cos \alpha + \hat{j} + \hat{k}$, $b = \hat{i} + \hat{j} \cos \beta + \hat{k}$. $c = \hat{i} + \hat{j} + \hat{k} \cos \gamma$ can never be coplanar.

Watch Video Solution

122. If the vectors $x\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + y\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + z\hat{k}$ are coplanar where, $x \neq 1, y \neq 1$ and $z \neq 1$, then prove that

$$rac{1}{1-x} + rac{1}{1-y} + rac{1}{1-z} = 1$$

Watch Video Solution

123. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are any three non-coplanar vectors, then prove that

points

$$\begin{array}{c} l_{1}\overrightarrow{a} + m_{1}\overrightarrow{b} + n_{1}\overrightarrow{c}, l_{2}\overrightarrow{a} + m_{2}\overrightarrow{b} + n_{2}\overrightarrow{c}, l_{3}\overrightarrow{a} + m_{3}\overrightarrow{b} + n_{3}\overrightarrow{c}, l_{4}\overrightarrow{a} + m_{4} \\ \\ \text{are coplanar if} \begin{vmatrix} l_{1} & l_{2} & l_{3} & l_{4} \\ m_{1} & m_{2} & m_{3} & m_{4} \\ n_{1} & n_{2} & n_{3} & n_{4} \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$$

Watch Video Solution

124. If r_1, r_2 and r_3 are the position vectors of three collinear points and

scalars I and m exists such that $r_3 = lr_1 + mr_2$, then show that I+m=1.

2. Represent the following graphically:

(i) A displacement of 40km, 30° west of south,

- (i) Collinear
- (ii) Equal
- (iii) Coinitial
- (iv) Collinear but not equal.

4. Answer the following as true or false.(i) $\rightarrow a$ and $- \rightarrow a$ are collinear. (ii) Two collinear vectors are always equal in magnitude.(iii) Two vectors having same magnitude are collinear.(iv) Two collinear vectors having the same magni

6. Find the angle of vector
$$\overrightarrow{a} = 6\hat{i} + 2\hat{j} - 3\hat{k}$$
 with x -axis.

7. Write the direction ratios of the vector $r=\hat{i}-\hat{j}+2\hat{k}$ and hence

calculate its direction cosines.

Exercise For Session 2

1. If $a = 2\hat{i} - \hat{j} + 2\hat{k}$ and $b = -\hat{i} + \hat{j} - \hat{k}$, then find a+b. also, find a unit vector along a+b.

Watch Video Solution

2. Find a unit vector in the direction of the resultant of the vectors $\hat{i} + 2\hat{j} + 3\hat{k}, -\hat{i} + 2\hat{j} + \hat{k}$ and $3\hat{i} + \hat{j}$.

the unit vector in the direction off PQ?

10. If $\overrightarrow{OP} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{OQ} = 3\hat{i} - 4\hat{j} + 2\hat{k}$ find the modulus and direction cosines of \overrightarrow{PQ} .

Watch Video Solution

11. Show that the points A, B and C having position vectors $(3\hat{i} - 4\hat{j} - 4\hat{k}), (2\hat{i} - \hat{j} + \hat{k})$ and $(\hat{i} - 3\hat{j} - 5\hat{k})$ respectively, from the

vertices of a right-angled triangle.

Watch Video Solution

12. If $a=2\hat{i}+2\hat{j}-\hat{k}\,$ and |xa|=1, then find x.

Watch Video Solution

13. If $p = 7\hat{i} - 2\hat{j} + 3\hat{k}$ and $q = 3\hat{i} + \hat{j} + 5\hat{k}$, then find the the magnitude of p-2q.

14. Find a vector in the direction of $5\hat{i} - \hat{j} + 2\hat{k}$, which has magnitude 8 units.

Watch Video Solution

15. If $a = \hat{i} + 2\hat{j} + 2\hat{k}$ and $b = 3\hat{i} + 6\hat{j} + 2\hat{k}$, then find a vector in the

direction of a and having magnitude as |b|.

Watch Video Solution

16. Find the position vector of a point R which divides the line joining the point $P(\hat{i} + 2\hat{j} - \hat{k})$ and $Q(-\hat{i} + \hat{j} + \hat{k})$ in the ratio 2:1, (i) internally and (ii) externally.

17. Iff the position vector of one end of the line segment AB be $2\hat{i} + 3\hat{j} - \hat{k}$ and the position vecto of its middle point be $3(\hat{i} + \hat{j} + \hat{k})$, then find the position vector of the other end.

2. If the position vectors of the points A,B and C be a,b and 3a-2b respectively, then prove that the points A,B and C are collinear.

3. The position vectors of four points P,Q,R annd S are 2a+4c,5a+ $3\sqrt{3}b + 4c$, $-2\sqrt{3}b + c$ and 2a + c respectively, prove that PQ is parallel to RS.

Watch Video Solution

4. If three points A,B and C have position vectors (1,x,3),(3,4,7) and (y,-2,-5),

respectively and if they are collinear, then find (x,y).

Watch Video Solution

5. Find the condition that the three points whose position vectors,

$$a=a\hat{i}+b\hat{j}+c\hat{k},b=\hat{i}+c\hat{j}\, ext{ and }\,c=\,-\,\hat{i}-\hat{j}$$
 are collinear.

6. a and b are non-collinear vectors. If c=(x-2)a+b and d=(2x+1)a-b are collinear vectors, then the value of x= \dots

Watch Video Solution

7. Let a,b,c are three vectors of which every pair is non-collinear, if the vectors a+b and b+c are collinear with c annd a respectively, then find a+b+c.

Watch Video Solution

8. Show that the vectors $\hat{i}-\hat{j}-\hat{k}, 2\hat{i}+3\hat{j}+\hat{k}$ and $7\hat{i}+3\hat{j}-4\hat{k}$ are

coplanar.

9. If the vectors $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}+2\hat{j}-3\hat{k}\, ext{ and }\,3\hat{i}+a\hat{j}+5\hat{k}$ are coplanar,

the prove that a=-4.

10. Show that the vectors a - 2b + 4c, -2a + 3b - 6c and -b + 2c are coplanar vector, where a,b,c are non-coplanar vectors.

Watch Video Solution

11. If a,b and c are non-coplanar vectors, then prove that the four points

2a + 3b - c, a - 2b + 3c, 3a + 4b - 2c and a - 6b + 6c are coplanar.

Exercise (Single Option Correct Type Questions)

1. If $a = 3\hat{i} - 2\hat{j} + \hat{k}, b = 2\hat{i} - 4\hat{j} - 3\hat{k}$ and $c = -\hat{i} + 2\hat{j} + 2\hat{k}$, then a+b+c is

A. $3\hat{i} - 4\hat{j}$ B. $3\hat{i} + 4\hat{j}$ C. $4\hat{i} - 4\hat{j}$ D. $4\hat{i} + 4\hat{j}$

Answer: C

Watch Video Solution

2. What should be added in vector $a=3\hat{i}+4\hat{j}-2\hat{k}$ to get its resultant a unit vector \hat{i} ?

A.
$$-2\hat{i}-4\hat{j}+2\hat{k}$$

B. $-2\hat{i}+4\hat{j}-2\hat{k}$
C. $2\hat{i}+4\hat{j}-2\hat{k}$

D. none of these

Answer: A

Watch Video Solution

3. If $a=2\hat{i}+2\hat{j}-8\hat{k}$ and $b=\hat{i}+3\hat{j}-4\hat{k}$, then the magnitude of a+b is equal to

A. 13

B.
$$\frac{13}{5}$$

C. $\frac{3}{13}$
D. $\frac{4}{13}$

Answer: A

4. If $a=2\hat{i}+5\hat{j}\,\,\mathrm{and}\,\,b=2\hat{i}-\hat{j}$, then the unit vector along a+b will be

A. $rac{\hat{i}-\hat{j}}{\sqrt{2}}$ B. $\hat{i}+\hat{j}$ C. $\sqrt{2}\Big(\hat{i}+\hat{j}\Big)$ D. $rac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: D

Watch Video Solution

5. The unit vector parallel to the resultant vector of $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ is

A.
$$rac{1}{7} \Big(3 \hat{i} + \hat{j} + \hat{k} \Big)$$

B. $rac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$
C. $rac{\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{6}}$

D.
$$rac{1}{\sqrt{69}} \Big(-\hat{i} - \hat{j} + 8\hat{k} \Big)$$

Answer: A

Watch Video Solution

6. If
$$a=\hat{i}+2\hat{j}+3\hat{k}, b=-\hat{i}+2\hat{j}+\hat{k}$$
 and $c=3\hat{i}+\hat{j}$, then the unit

vector along its resultant is

A.
$$3\hat{i} + 5\hat{j} + 4\hat{k}$$

B. $rac{3\hat{i} + 5\hat{j} + 4\hat{k}}{50}$
C. $rac{3\hat{i} + 5\hat{j} + 4\hat{k}}{5\sqrt{2}}$

D. none of these

Answer: C

7. If a = (2,5) and b = (1,4), then vector parallel to (a+b) is

A. (3,5)

B. (1,1)

C. (1,3)

D. (8,5)

Answer: C

Watch Video Solution

8. In the $\Delta ABC, AB = a, AC = c \, ext{ and } BC = b$, then

A. a+b+c=0

B. a+b-c=0

C. a-b+c=0

 $\mathsf{D}.-a+b+c=0$

Answer: B

9. If O is origin annd the position vector fo A is $4\hat{i} + 5\hat{j}$, then unit vector parallel to OA is

A.
$$\frac{4}{\sqrt{41}}\hat{i}$$

B. $\frac{5}{\sqrt{41}}\hat{i}$
C. $\frac{1}{\sqrt{41}}(4\hat{i}+5\hat{j})$
D. $\frac{1}{\sqrt{41}}(4\hat{i}-5\hat{j})$

Answer: C

10. The position vectors of the points A,B and C are $\hat{i} + 2\hat{j} - \hat{k}, \hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + 2\hat{k}$, respectively. If A is chosen as the origin, then the position vectors of B and C are

A.
$$\hat{i} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$$

B. $\hat{j} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$
C. $-\hat{j} + 2\hat{k}, \, \hat{i} - -\hat{j} + 3\hat{k}$
D. $-\hat{j} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$

Answer: D

Watch Video Solution

11. The position vectors of P and Q are $5\hat{i} + 4\hat{j} + a\hat{k}$ and $-\hat{i} + 2\hat{j} - 2\hat{k}$, respectively. If the distance betwee them is 7, then the value of a will be

- A. -5, 1
- B.5, 1
- C. 0, 5
- D. 1,0

Answer: A

12. If position vector of points A,B and C are respectively $\hat{i}, \, \hat{j}, \, \, {
m and} \, \, \hat{k}$ and AB=CX, then position vector of point X is

A. $-\hat{i}+\hat{j}+\hat{k}$ B. $\hat{i}-\hat{j}+\hat{k}$ C. $\hat{i}+\hat{j}-\hat{k}$ D. $\hat{i}+\hat{j}+\hat{k}$

Answer: A

13. The position vectors of A and B are $2\hat{i}-9\hat{j}-4\hat{k}~{
m and}~6\hat{i}-3\hat{j}+8\hat{k}$

respectively, then the magnitude of AB is

A. 11	
B. 12	
C. 13	

D. 14

Answer: D

Watch Video Solution

- A. $\sqrt{158}$
- $\mathsf{B.}\,\sqrt{160}$
- $\mathsf{C}.\sqrt{161}$

D. $\sqrt{162}$

Answer: D

15. If the position vectors of P and Q are $\hat{i} + 2\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$ respectively, the cosine of the angle between PQ and Z-axis is

A.
$$\frac{4}{\sqrt{162}}$$

B. $\frac{11}{\sqrt{162}}$
C. $\frac{5}{\sqrt{162}}$
D. $\frac{-5}{\sqrt{162}}$

Answer: B

Watch Video Solution

16. If the position vectors of A and B are $\hat{i}+3\hat{j}-7\hat{k}$ and $5\hat{i}-2\hat{j}+4\hat{k}$,

then the direction cosine of AB along Y-axis is

A.
$$\frac{4}{\sqrt{162}}$$

B.
$$-\frac{5}{\sqrt{162}}$$

C. -5
D. 11

Answer: B

Watch Video Solution

17. The direction cosines of vector $a=3\hat{i}+4\hat{j}+5\hat{k}$ in the direction of

positive axis of X, is

$$A. \pm \frac{3}{\sqrt{50}}$$
$$B. \frac{4}{\sqrt{50}}$$
$$C. \frac{3}{\sqrt{50}}$$
$$D. -\frac{4}{\sqrt{50}}$$

Answer: C

18. The direction cosines of the vector $3\hat{i}-4\hat{j}+5\hat{k}$ are

A.
$$\frac{3}{5}$$
, $-\frac{4}{5}$, $\frac{1}{5}$
B. $\frac{3}{5\sqrt{2}}$, $\frac{-4}{5\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}$, $\frac{-4}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
D. $\frac{3}{5\sqrt{2}}$, $\frac{4}{5\sqrt{2}}$, $\frac{1}{\sqrt{2}}$.

Answer: B

Watch Video Solution

19. The point having position vectors $2\hat{i} + 3\hat{j} + 4\hat{k}, 3\hat{i} + 4\hat{j} + 2\hat{k}$ and $4\hat{i} + 2\hat{j} + 3\hat{k}$ are the vertices of

A. right angled triangle

B. isosceles triangle

C. equilateral triangle

D. collinear

Answer: C

Watch Video Solution

20. If the position vectors of the vertices A,B and C of a $\triangle ABC$ are $\hat{7j} + 10k$, $-\hat{i} + \hat{6j} + \hat{6k}$ and $-4\hat{i} + \hat{9j} + \hat{6k}$, respectively, the triangle is

A. equilateral

B. isosceles

C. scalene

D. right angled and isosceles also

Answer: D

21. If a,b and c are the position vectors of the vertices A,B and C of the ΔABC , then the centroid of ΔABC is

A.
$$\frac{a+b+c}{3}$$

B.
$$\frac{1}{2}\left(a+\frac{b+c}{2}\right)$$

C.
$$a+\frac{b+c}{2}$$

D.
$$\frac{a+b+c}{2}$$

Answer: A

22. If a and b are position vector of two points A,B and C divides AB in ratio 2:1, then position vector of C is

A.
$$\frac{a+2b}{3}$$

B. $\frac{2a+b}{3}$
C. $\frac{a+2}{3}$

D.
$$\frac{a+b}{2}$$

Answer: A

Watch Video Solution

23. Find the position vector of the point which divides the join of the points $\left(2\overrightarrow{a} - 3\overrightarrow{b}\right)$ and $\left(3\overrightarrow{a} - 2\overrightarrow{b}\right)$ (i) internally and (ii) externally in the ratio 2:3.

A.
$$\frac{12}{5}a + \frac{13}{5}b$$

B. $\frac{12}{5}a - \frac{13}{5}b$
C. $\frac{3}{5}a - \frac{2}{5}b$

D. none of these

Answer: B

24. If O is origin and C is the mid - point of A (2, -1) and B (-4, 3). Then value of OC is

A. $\hat{i} + \hat{j}$ B. $\hat{i} - \hat{j}$ C. $-\hat{i} + \hat{j}$ D. $-\hat{i} - \hat{j}$

Answer: C

Watch Video Solution

25. If the position vectors of the points A and B are $\hat{i} + 3\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} - 3\hat{k}$, then what will be the position vector of the mid-point of AB

A. $\hat{i}+2\hat{j}-\hat{k}$

B. $2\hat{i}+\hat{j}-2\hat{k}$

C. $2\hat{i}+\hat{j}-\hat{k}$ D. $\hat{i}+\hat{j}-2\hat{k}$

Answer: B

Watch Video Solution

26. The position vectors of A and B are $\hat{i} - \hat{j} + 2\hat{k}$ and $3\hat{i} - \hat{j} + 3\hat{k}$. The

position vector of the middle points of the line AB is

A.
$$rac{1}{2}\hat{i} - rac{1}{2}\hat{j} + \hat{k}$$

B. $2\hat{i} - \hat{j} + rac{5}{2}\hat{k}$
C. $rac{3}{2}\hat{i} - rac{1}{2}\hat{j} + rac{3}{2}\hat{k}$

D. none of these

Answer: B

27. If the vector \overrightarrow{b} is collinear with the vector $\overrightarrow{a}(2\sqrt{2}, -1, 4)$ and $\left|\overrightarrow{b}\right| = 10$, then

A. $a\pm b=0$

 $\mathsf{B}.\,a\pm 2b=0$

 $\mathsf{C.}\,2a\pm b=0$

D. none of these

Answer: C

Watch Video Solution

28. If \overrightarrow{a} , \overrightarrow{b} are the position vectors of the points (1, -1), (-2, m), find the value of m for which \overrightarrow{a} and \overrightarrow{b} are collinear.

A. 4

B. 3

C. 2

Answer: C

29. The points with position vectors $10\hat{i} + 3\hat{j}, 12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear, if a is equal to

- $\mathsf{A.}-8$
- B. 4
- C. 8

D. 12

Answer: C

30. The vectors $\hat{i}+2\hat{j}+3\hat{k},\lambda\hat{i}+4\hat{j}+7\hat{k},\ -3\hat{i}-2\hat{j}-5\hat{k}$ are

collinear, of λ is equal to

A. 3

B.4

C. 5

D. 6

Answer: A

Watch Video Solution

31. If the points a + b, a - b and a + kb be collinear, then k is equal to

A. 0

B. 2

 $\mathsf{C}.-2$

D. any real number

Answer: D

32. If the position vectors of A,B,C and D are $2\hat{i} + \hat{j}, \hat{i} - 3\hat{j}, 3\hat{i} + 2\hat{j}$ and $\hat{i} + \lambda\hat{j}$ respectively and $\overrightarrow{AB} \mid |\overrightarrow{CD}$. Then λ will be

- $\mathsf{A.}-8$
- B.-6
- C. 8

D. 6

Answer: B

33. If the vectors $3\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} - 4x\hat{j} + y\hat{k}$ are parallel, then the

value of x and y will be

A. -1, -2B. 1, -2C. -1, 2

 $D.\,1,\,2$

Answer: A

34. Theorem 1: If a and b are two non collinear vectors; then every vector r coplanar with a and b can be expressed in one and only one way as a linear combination: xa+yb.

A. x=0, but y is not necessarily zero

B. y=0, bu tx is not necessarily zero

C. x=0,y=0

D. none of these

Answer: C

Watch Video Solution

35. Four non zero vectors will always be a. linearly dependent b. linearly

independent c. either a or b d. none of these

A. linearly dependent

B. linearly independent

C. either (a) or (b)

D. none of these

Answer: A

36. The vectors a,b and a+b are

A. collinear

B. coplanar

C. non-coplanar

D. none of these

Answer: B

Watch Video Solution

37. Find the all the values of lamda such that (x,y,z)!=(0,0,0) and x(hati+hatj+3hatk)+y(3hati-

3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)`

A. -2, 0

B. 0, -2

C. -1, 0

D. 0, -1

Answer: D

Watch Video Solution

38. The number of integral values of p for which $(p+1)\hat{i} - 3\hat{j} + p\hat{k}, p\hat{i} + (p+1)\hat{j} - 3\hat{k}$ and $-3\hat{i} + p\hat{j} + (p+1)\hat{k}$ are linearly dependent vectors is q

A. 0

B. 1

C. 2

D. 3

Answer: B

39. The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (A) $\sqrt{72}$ (B) $\sqrt{33}$ (C) $\sqrt{2880}$ (D) $\sqrt{18}$

A. $\sqrt{18}$

 $\mathsf{B.}\,\sqrt{72}$

C. $\sqrt{33}$

D. $\sqrt{288}$

Answer: C

Watch Video Solution

40. In the figure, a vectors x satisfies the equation x-w=v. then, x is equal

to

A. 2a + b + c

 $\mathsf{B.}\,a+2b+c$

 $\mathsf{C}. a + b + 2c$

 $\mathsf{D}. a + b + c$

Answer: B

41. Vectors $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 4\hat{k}$ are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are

A. not coplanar

B. coplanar but cannot form a triangle

C. coplanar and form a triangle

D. coplanar and can form a right angled triangle.

Answer: B

Watch Video Solution

42. If OP=8 and OP makes angles 45° and 60° with OX-axis and OY-axis respectively, then OP is equal to

A.
$$8\Big(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}\Big)$$

B. $4\Big(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}\Big)$

C.
$$rac{1}{4} \Big(\sqrt{2} \hat{i} + \hat{j} \pm \hat{k} \Big)$$

D. $rac{1}{8} \Big(\sqrt{2} \hat{i} + \hat{j} \pm \hat{k} \Big)$

Answer: B

Watch Video Solution

43. Let a,b and c be three unit vectors such that 3a + 4b + 5c = 0. Then

which of the following statements is true?

A. a is parallel to b

B. a is perpendicular to b

C. a is neither parallel nor perpendicular to b

D. none of these

Answer: D

44. If A, B, C, D and E are five coplanar points, then the value of $\overline{DA} + \overline{DB} + \overline{DC} + \overline{AE} + \overline{BE} + \overline{CE}$ is equal to

A. DE

B. 3DE

C. 2DE

D. 4ED

Answer: B

Watch Video Solution

45. If the vectors \overrightarrow{a} and \overrightarrow{b} are linearly independent and satisfying $(\sqrt{3}\tan\theta - 1)\overrightarrow{a} + (\sqrt{3}\sec\theta - 2)\overrightarrow{b} = \overrightarrow{0}$, then the most general values of θ are:

A.
$$n\pi-rac{\pi}{6}, n\in Z$$

B. $2n\pi\pmrac{11\pi}{6}n\in Z$

C.
$$n\pi\pmrac{\pi}{6}, n\in Z$$

D. $2n\pi+rac{11\pi}{6}, n\in Z$

Answer: D

46. The unit vector bisecting
$$\overrightarrow{OY}$$
 and \overrightarrow{OZ} is

A.
$$rac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$$

B. $rac{\hat{j}-\hat{k}}{\sqrt{2}}$
C. $rac{\hat{j}+\hat{k}}{\sqrt{2}}$
D. $rac{-\hat{j}+\hat{k}}{\sqrt{2}}$.

Answer: C

47. A line passes through the points whose position vectors are $\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + \hat{k}$. The position vector of a point on it at unit distance from the first point is

A.
$$rac{1}{5} \Big(5 \hat{i} + \hat{j} - 7 \hat{k} \Big)$$

B. $rac{1}{5} \Big(4 \hat{i} + 9 \hat{j} - 15 \hat{k} \Big)$
C. $\Big(\hat{i} - 4 \hat{j} + 3 \hat{k} \Big)$
D. $rac{1}{5} \Big(\hat{i} - 4 \hat{j} + 3 \hat{k} \Big)$

Answer: A

Watch Video Solution

48. If D, E and F be the middle points of the sides BC,CA and AB of the

 ΔABC , then AD+BE+CF is

A. a zero vector

B. a unit vector

C. 0

D. none of these

Answer: A

Watch Video Solution

49. If P and Q are the middle points of the sides BC and CD of the parallelogram ABCD, then AP+AQ is equal to

A. AC
B.
$$\frac{1}{2}AC$$

C. $\frac{2}{3}AC$
D. $\frac{3}{2}AC$

Answer: D

50. If the figure formed by the four points $\hat{i} + \hat{j} - \hat{k}, 2\hat{i} + 3\hat{j}, 3\hat{i} + 5\hat{j} - 2\hat{k}$ and $\hat{k} - \hat{j}$ is

A. rectangle

B. parallelogram

C. trapezium

D. none of these

Answer: C

Watch Video Solution

51. A and B are two points. The position vector of A is 6b-2a. A point P divides the line AB in the ratio 1:2. if a-b is the position vector of P, then the position vector of B is given by

A. 7a-15b

B. 7a+15b

C. 15a-7b

D. 15a+7b

Answer: A

Watch Video Solution

52. If three points A,B and C are collinear, whose position vectors are $\hat{i} - 2\hat{j} - 8\hat{k}$, $5\hat{i} - 2\hat{k}$ and $11\hat{i} + 3\hat{j} + 7\hat{k}$ respectively, then the ratio in which B divides AC is

A. 1:2

B. 2:3

C.2:1

D.1:1

Answer: B

53. If in a triangle AB=a,AC=b and D,E are the mid-points of AB and AC respectively, then DE is equal to

A.
$$\frac{a}{4} - \frac{b}{4}$$

B. $\frac{a}{2} - \frac{b}{2}$
C. $\frac{b}{4} - \frac{a}{4}$
D. $\frac{b}{2} - \frac{a}{2}$

Answer: D

Watch Video Solution

54. The sides of a parallelogram are $2\hat{i}+4\hat{j}-5\hat{k}$ and $\hat{i}+2\hat{j}+3\hat{k}$. The

unit vector parallel to one of the diagonals is

A.
$$rac{1}{\sqrt{69}}ig(\hat{i}+2\hat{j}-8\hat{k}ig)$$

B. $rac{1}{69}ig(\hat{i}+2\hat{j}-8\hat{k}ig)$

C.
$$rac{1}{\sqrt{69}} \Big(-\hat{i} - 2\hat{j} + 8\hat{k} \Big)$$

D. $rac{1}{69} \Big(-\hat{i} - 2\hat{j} + 8\hat{k} \Big)$

Answer: C

Watch Video Solution

55. If A, B, C are the vertices of a triangle whose position vectros are $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and G is the centroid of the ΔABC , then $\overline{GA} + \overline{GB} + \overline{GC} =$

A. 0

 $\mathsf{B}.\,A+B+C$

C.
$$\frac{a+b+c}{3}$$

D. $\frac{a+b-c}{3}$

Answer: A

56. If ABCDEF is a regular hexagon then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ equals :

A. 0

B. 2AB

C. 3AB

D. 4AB

Answer: D

Watch Video Solution

57. ABCDE is a pentagon. Forces AB,AE,DC and ED act at a point. Which

force should be added to this systemm to make the resultant 2AC?

A. AC

B. AD

C. BC

Answer: C

58.	In	а	regular	hexagon	
$ABCDEF, \overline{AB}+\overline{AC}+\overline{AD}+\overline{AE}+\overline{AF}=k\overline{AD}$ then k is equal to					
A. 2					
B. 3					
C. 4					
D. 6					
Answer: B					
Watch Video Solution					

59. Let us define the length of a vector $a\hat{i} + b\hat{j} + c\hat{k}$ and |a| + |b| + |c|. This definition coincides with the usual definition of length of a vector $a\hat{i} + b\hat{j} + c\hat{k}$ if an only if

A. a=b=c=0

B. any two of a,b and c are zero

C. any one of a,b and c is zero

D. a+b+c=0

Answer: B

Watch Video Solution

60. If a and b are two non-zero and non-collinear vectors then a+b and a-b

are

A. linearly dependent vectors

B. linearly independent vectors

C. linearly dependent annd independent vectors

D. none of these

Answer: B

Watch Video Solution

61. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| < \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then the angle between \overrightarrow{a} and \overrightarrow{b} can lie in

the interval

A. $(\pi \, / \, 2, \, \pi \, / \, 2)$

- B. $(0, \pi)$
- C. $(\pi / 2, 3\pi / 2)$
- D. $(0, 2\pi)$

Answer: C

62. The magnitudes of mutually perpendicular forces a,b and c are 2,10 and 11 respectively. Then the magnitude of its resultant is

A. 12

B. 15

C. 9

D. none of these

Answer: B

Watch Video Solution

63. If $\hat{i} - 3\hat{j} + 5\hat{k}$ bisects the angle between \hat{a} and $-\hat{i} + 2\hat{j} + 2\hat{k}$, where \hat{a} is a unit vector, then

$$\begin{array}{l} \mathsf{A.} a = \frac{1}{105} \Big(41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \\ \mathsf{B.} a = \frac{1}{105} \Big(41 \hat{i} + 88 \hat{j} + 40 \hat{k} \Big) \\ \mathsf{C.} a = \frac{1}{105} \Big(-41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \end{array}$$

D.
$$a=rac{1}{105}igl(41\hat{i}-88\hat{j}-40\hat{k}igr)$$

Answer: D

64. Let $\overrightarrow{a} = \hat{i}$ be a vector which makes an angle of 120° with a unit vector \overrightarrow{b} in XY plane. then the unit vector $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ is

$$\begin{array}{l} \mathsf{A.} - \frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j} \\ \mathsf{B.} - \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \\ \mathsf{C.} \, \frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j} \\ \mathsf{D.} \, \frac{\sqrt{3}}{2} \hat{i} - \frac{1}{2} \hat{j} \end{array}$$

Answer: C

65. Given three vectors $a = 6\hat{i} - 3\hat{j}$, $b = 2\hat{i} - 6\hat{j}$ and $c = -2\hat{i} + 21\hat{j}$ such that $\alpha = a + b + c$. Then, the resolution of the vector α into components with respect to a and b is given by

A. 3a-2b

B. 3b-2a

C. 2a-3b

D. a-2b

Answer: C

Watch Video Solution

66. 'I' is the incentre of triangle ABC whose corresponding sides are a, b, c, rspectively. $\overrightarrow{aI}A + \overrightarrow{bI}B + \overrightarrow{cI}C$ is always equal to $a. \overrightarrow{0}b.$ $(a+b+c)\overrightarrow{B}Cc.(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})\overrightarrow{A}Cd.(a+b+c)\overrightarrow{A}B$ B. (a+b+c)BC

C. (a+b+c)AC

D. (a+b+c)AB

Answer: A

Watch Video Solution

67. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and a triangle ABC with side lengths a,b,c satisfying $(20a - 15b)\overrightarrow{x} + (15b - 12c)\overrightarrow{y} + (12c - 20a)(\overrightarrow{x} \times \overrightarrow{y}) = \overrightarrow{0}$. Then triangle ABC is:

A. an acute angled triangle

B. an obtuse angled triangle

C. a right angled triangle

D. a scalane triangle

Answer: C

68. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and a, b, and c represent the sides of a ABC satisfying $(a-b)\overrightarrow{x} + (b-c)\overrightarrow{y} + (c-a)(\overrightarrow{\times} x\overrightarrow{y}) = 0$, then ABC is (where $\overrightarrow{\times} x\overrightarrow{y}$ is perpendicular to the plane of x and y) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

- A. an acute angled triangle
- B. ann obtuse angled triangle
- C. a right angled triangle
- D. a scalene triangle

Answer: A

69. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

A. $P\sqrt{2}$

B. P

C. $P\sqrt{3}$

D. none of these

Answer: A

Watch Video Solution

70. If \overrightarrow{b} is a vector whose initial point divides the join of $5\hat{i}and5\hat{j}$ in the ratio k:1 and whose terminal point is the origin and $\left|\overrightarrow{b}\right| \leq \sqrt{37}$, thenk lies in the interval a. [-6, -1/6] b. $(-\infty, -6] \cup [-1/6, \infty)$ c. [0, 6] d. none of these

A. [-6, -1/6]

B.
$$[-\infty, -6] \cup [-1/6, \infty]$$

C.[0, 6]

D. none of these

Answer: B

Watch Video Solution

71. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is

A.
$$rac{1}{3} \Big(6\hat{i} + 13\hat{j} + 18\hat{k} \Big)$$

B. $rac{2}{3} \Big(6\hat{i} + 12\hat{j} - 8\hat{k} \Big)$
C. $rac{1}{3} \Big(-6\hat{i} - 8\hat{j} - 9\hat{k} \Big)$
D. $rac{2}{3} \Big(-6\hat{i} - 12\hat{j} + 8\hat{k} \Big)$

Answer: A

72. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \overrightarrow{a} and \overrightarrow{b} will be given by

A.
$$\frac{a-b}{2\cos(\theta/2)}$$

B. $\frac{a+b}{2\cos(\theta/2)}$
C. $\frac{a-b}{\cos(\theta/2)}$

D. none of these

Answer: B

73. A,B,C and D have position vectors a,b,c and d, respectively, such that a-

b=2(d-c). Then,

A. AB and CD bisect each other

B. BD and AC bisect each other

C. AB and CD trisect each other

D. BD and AC trisect each other

Answer: D

Watch Video Solution

74. On the xy plane where O is the origin, given points, A(1,0), B(0,1) and C(1,1). Let P, Q, and R be moving points on the line OA, OB, OC respectively such that $\overline{OP} = 45t\overline{(OA)}, \overline{OQ} = 60t\overline{(OB)}, \overline{OR} = (1-t)\overline{(OC)}$ with t > 0. If the three points P, Q and R are collinear then the value of t is equal to

A.
$$\frac{1}{106}$$

B. $\frac{7}{187}$
C. $\frac{1}{100}$

D. none of these

Answer: B

Watch Video Solution

75. If a+b+c=lpha d, b+c+d=eta a and a,b,c are non-coplanar, then the sum of a+b+c+d=

A. 0

 $\mathsf{B.}\,\alpha a$

 $\mathsf{C}.\,\beta b$

D. $(\alpha + \beta)c$

Answer: A

76. The position vectors of the points P and Q with respect to the origin O are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} - 2\hat{k}$, respectively. If M is a point on PQ, such that OM is the bisector of POQ, then \overrightarrow{OM} is

 $egin{aligned} \mathsf{A.} & 2 \Big(\hat{i} - \hat{j} + \hat{k} \Big) \ \mathsf{B.} & 2 \hat{i} + \hat{j} - 2 \hat{k} \ \mathsf{C.} & 2 \Big(- \hat{i} + \hat{j} - \hat{k} \Big) \ \mathsf{D.} & 2 \Big(\hat{i} + \hat{j} + \hat{k} \Big) \end{aligned}$

Answer: B

77. ABCD is a quadrilateral. E is the point of intersection of the line joining the mid-points of the oppsote sides. If O is any point and OA+OB+OC+OD=xOE, then x is equal to

D. 4

Answer: D

Watch Video Solution

78. In the $\triangle OAB$, M is the midpoint of AB, C is a point on OM, such that 2OC = CM. X is a point on the side OB such that OX = 2XB. The line XC is produced to meet OA in Y. Then $\frac{OY}{YA}$ =

A. $\frac{1}{3}$ B. $\frac{2}{7}$ C. $\frac{3}{2}$ D. $\frac{2}{5}$

Answer: B

79. Points X and Y are taken on the sides QR and RS, respectively of a parallelogram PQRS, so that QX=4XR and RY=4YS. The line XY cuts the line PR at Z. Then, PZ is

A. $\frac{21}{25}PR$ B. $\frac{16}{25}PR$ C. $\frac{17}{25}PR$

D. none of these

Answer: A

80. The value of the λ so that P, Q, R, S on the sides OA, OB, OC and AB of a

regular tetrahedron are coplanar. When $\frac{OP}{OA} = \frac{1}{3}$; $\frac{OQ}{OB} = \frac{1}{2}$ and $\frac{OS}{AB} = \lambda$ is (A) $\lambda = \frac{1}{2}$ (B) $\lambda = -1$ (C) $\lambda = 0$ (D) $\lambda = 2$ A. $\lambda = \frac{1}{2}$ B. $\lambda = -1$ C. $\lambda = 0$

D. fo no value of λ

Answer: B

Watch Video Solution

81. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

A.
$$-\hat{i}+3\hat{j}+\sqrt{5}\hat{k}$$

B. $\hat{i}-\sqrt{3}\hat{j}+5\hat{k}$
C. $-\hat{i}+\sqrt{3}\hat{j}+\sqrt{5}\hat{k}$
D. $\hat{i}+\sqrt{3}\hat{j}+\sqrt{5}\hat{k}$

Answer: C

Watch Video Solution

Exercise (More Than One Correct Option Type Questions)

1. If the vectors
$$\hat{i} - \hat{j}$$
, $\hat{j} + \hat{k}$ and \overrightarrow{a} form a triangle then \overrightarrow{a} may be (A)
 $-\hat{i} - \hat{k}$ (B) $\hat{i} - 2\hat{j} - \hat{k}$ (C) $2\hat{i} + \hat{j} + \hat{j}k$ (D) hati+hatk`
A. $-\hat{i} - \hat{k}$
B. $\hat{i} - 2\hat{j} - \hat{k}$
C. $2\hat{j} + \hat{j} + \hat{k}$
D. $\hat{i} + \hat{k}$

Answer: A::B::D

Answer: B::C

3. Let ABC be a triangle, the position vectors of whose vertices are $7\hat{j} + 10\hat{k}, -1\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$. Then, ΔABC is

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: A::C

Watch Video Solution

4. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The unit vector parallel to one of the diagonals is

A.
$$rac{1}{7} \Big(3 \hat{i} + 6 \hat{j} - 2 \hat{k} \Big)$$

B. $rac{1}{7} \Big(3 \hat{i} - 6 \hat{j} - 2 \hat{k} \Big)$
C. $rac{1}{\sqrt{69}} \Big(\hat{i} + 2 \hat{j} + 8 \hat{k} \Big)$

D.
$$rac{1}{\sqrt{69}} \Big(-\hat{i} - 2\hat{j} + 8\hat{k} \Big)$$

Answer: A::D

5. If A(-4, 0, 3)andB(14, 2, -5), then which one of the following points lie on the bisector of the angle between $\overrightarrow{O}Aand\overrightarrow{O}B(O$ is the origin of reference)? a. (2, 2, 4) b. (2, 11, 5) c. (-3, -3, -6) d. (1, 1, 2)

A. (2,2,4)

B. (2,11,5)

C. (-3,-3,-6)

D. (1,1,2)

Answer: A::C::D

6. If points $\hat{i}+\hat{j},\,\hat{i}-\hat{j}\,\,\mathrm{and}\,\,p\hat{i}+q\hat{j}+r\hat{k}$ are collinear, then

A. p=1

B. r=0

 $\mathsf{C}.\,q\in R$

D. q
eq 1

Answer: A::B::D

Watch Video Solution

7. If a,b and c are non-coplanar vectors and λ is a real number, then the

vectors $a+2b+3c, \lambda b+\mu c ext{ and } (2\lambda-1)c$ are coplanar when

A. $\mu \in R$ B. $\lambda = rac{1}{2}$ C. $\lambda = 0$

D. no value of λ

Exercise (Statement I And Ii Type Questions)

- **1.** Statement 1: In DeltaABC, $\overrightarrow{A}B + \overrightarrow{A}B + \overrightarrow{C}A = 0$ Statement 2: If $\overrightarrow{O}A = \overrightarrow{a}$, $\overrightarrow{O}B = \overrightarrow{b}$, then $\overrightarrow{A}B = \overrightarrow{a} + \overrightarrow{b}$
 - A. Both Statement I and Statement II are correct and statement II is

the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: C

2. Statement I: $a = \hat{i} + p\hat{j} + 2\hat{k}$ and $b = 2\hat{i} + 3\hat{j} + q\hat{k}$ are parallel vectors, iff $p = \frac{3}{2}$ and q = 4. Statement II: $a = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $b = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are parallel $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.

A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: A

3. Statement 1: if three points P, QandR have position vectors $\overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c}$, respectively, and $2\overrightarrow{a} + 3\overrightarrow{b} - 5\overrightarrow{c} = 0$, then the points P, Q, andR must be collinear. Statement 2: If for three points $A, B, andC, \overrightarrow{A}B = \lambda \overrightarrow{A}C$, then points A, B, andC must be collinear.

A. Both Statement I and Statement II are correct and statement II is

the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: A

Exercise (Passage Based Questions)

1. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel as shown in figure. Also, OA:CB=2:1 and OD:AB=1:3. if the diagonals OC and AD meet at x, find OX:OC.

A. 3/4

B. 1/3

C.2/5

D. 1/2

Answer: C

2. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel as shown in figure. Also, OA:CB=2:1 and OD:AB=1:3. if the diagonals OC and AD meet at x, find OX:OC.

A. 5/2

C. 7//3`

D. 4

Answer: B

Watch Video Solution

A. 2AB

B. 3AB

C. 4AB

D. none of these

Answer: C

4. Consider the regular hexagon ABCDEF with centre at O (origin).

Q. Five forces AB,AC,AD,AE,AF act at the vertex A of a regular hexagon ABCDEF. Then, their resultant is

A. 3AO

B. 2AO

C. 4AO

D. 6AO

Answer: D

5. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an origin O. Answer the following questions? Which of the following is true? A. AC=2AB

B. AC=-3AB

C. AC=3AB

D. none of these

Answer: C

Watch Video Solution

6. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

Which of the following is true?

A. 20A-30B+0C=0

B. 20A+70B+90C=0

C. OA+OB+OC=0

D. none of these

Answer: A

7. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

B divided AC in ratio

 $\mathsf{A.}\,2\!:\!1$

B. 2:3

C. 2: -3

 $\mathsf{D}.\,1\!:\!2$

Answer: D

8. If two vectors OA and OB are there, then their resultant OA+OB can be found by completin the parallelogram OACB and OC=OA+OB. Also, if |OA|=|OB|, then the resultant will bisect the angle between them.
Q. A vector C directed along internal bisector of angle between vectors

 $A=7\hat{i}-4\hat{j}-4\hat{k}\,\, ext{and}\,\,B=\,-2\hat{i}-\hat{j}+2\hat{k}$ with $|C|=5\sqrt{6}$ is

A.
$$rac{5}{3} \left(\hat{i} - \hat{j} + \hat{k}
ight)$$

B. $rac{5}{3} \left(\hat{i} - 7\hat{j} + 2\hat{k}
ight)$
C. $rac{5}{3} \left(5\hat{i} + 5\hat{j} + 2\hat{k}
ight)$
D. $rac{5}{3} \left(-5\hat{i} + 5\hat{j} + 3\hat{k}
ight)$

Answer: B

9. If two vectors OA and OB are there, then their resultant OA+OB can be found by completin the parallelogram OACB and OC=OA+OB. Also, if |OA|=|OB|, then the resultant will bisect the angle between them.

Q. If internal and external bisectors of $\angle A$ of $\triangle ABC$ meet the base BC at D and E respetively, then (D and E lie on samme side of B).

A.
$$BC = rac{BD + BE}{4}$$

B. $BC^2 = BD imes DE$
C. $rac{2}{BC} = rac{1}{BD} + rac{1}{BE}$

D. none of these

Answer: C

Watch Video Solution

10. Let $C: r(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$ be a differentiable curve, i.e., $\lim_{x \to 0} \frac{r(t+H) - r(h)}{h} \text{ exist for all t,}$ $\therefore r'(t) = x'(t)\hat{i} + y'(t)\hat{j} + z'(t)\hat{k}$ Iff r'(t), is tangent to the curve C at the point P[x(t), y(t), z(t)] and r'(t) points in the direction of increasing t. Q. The point P on the curve $r(t) = (1 - 2t)\hat{i} + t^2\hat{j} + 2e^{2(t-1)}\hat{k}$ at which the tangent vector r'(t) is parallel to the radius vector r(t) is A. (-1, 1, 2)B. (1, -1, 2)C. (-1, 1, -2)D. (1, 1, 2)

Answer: A

Watch Video Solution

11. Let $C: r(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$ be a differentiable curve, i.e., $\lim_{x \to 0} \frac{r(t+H) - r(h)}{h} \text{ exist for all t,}$ $\therefore r'(t) = x'(t)\hat{i} + y'(t)\hat{j} + z'(t)\hat{k}$ Iff r'(t), is tangent to the curve C at the point P[x(t), y(t), z(t)] and r'(t) points in the direction of increasing t. Q. The tangent vector to $r(t) = 2t^2\hat{i} + (1-t)\hat{j} + (3t^2+2)\hat{k}$ at (2,0,5) is

A.
$$4\hat{i}+\hat{j}-6\hat{k}$$

B. $4\hat{i}-\hat{j}+6\hat{k}$ C. $2\hat{i}-\hat{j}+6\hat{k}$ D. $2\hat{i}+\hat{j}-6\hat{k}$

Answer: B

Watch Video Solution

Exercise (Matching Type Questions)

1. a and b form the consecutive sides of a regular hexagon ABCDEF.

	Column I		Column II
a.	If $\mathbf{C}\mathbf{D} = x\mathbf{a} + y\mathbf{b}$, then	p.	x = -2
b.	If $\mathbf{CE} = x\mathbf{a} + y\mathbf{b}$, then	q.	x = -1
c.	If $\mathbf{AE} = x\mathbf{a} + y\mathbf{b}$, then		<i>y</i> = 1
d.	If $\mathbf{A}\mathbf{D} = -x\mathbf{b}$, then		<i>y</i> = 2

1. If the resultant of three forces

$$\overrightarrow{F}_1 = p\hat{i} - 3\hat{j} - \hat{k}, \overrightarrow{F}_2 = -5\hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{F}_3 = 6\hat{i} - \hat{k}$ acting on
a particle has a magnitude equal to 5 units, then what is difference in the
values of p ?

Watch Video Solution

2. Vectors along the adjacent sides of parallelogram are $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + \hat{k}$. Find the length of the longer diagonal of the parallelogram.

Watch Video Solution

3. If vectors $\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{b} = \lambda\hat{i} + \hat{j} + 2\hat{k}$

are coplanar, then find the value of $(\lambda - 4)$.

4. If a+b is along the angle bisector of a and b, where $|a|=\lambda |b|$, then the number of digits in value of λ is

5. Let p be the position vector of orthocentre and g is the position vector of the centroid of ΔABC , where circumcentre is the origin. If p = kg, then the value of k is

Watch Video Solution

6. In a ΔABC , a line is drawn passing through centroid dividing AB internaly in ratio 2:1 and AC in λ : 1 (internally). The value of λ is

7. The vector \overrightarrow{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \overrightarrow{a} has components (p+1)and1, then p is equal to a. -4 b. -1/3 c. 1 d.

Watch Video Solution

Exercise (Subjective Type Questions)

1. A vector *a* has components a_1, a_2, a_3 in a right handed rectangular cartesian coordinate system OXYZ the coordinate axis is rotated about *z* axis through an angle $\frac{\pi}{2}$. The components of *a* in the new system **Watch Video Solution**

2. Find the magnitude and direction of $r_1 - r_2$ when $|r_1| = 5$ and points

North-East while $|r_2| = 5$ but points North-West.

3. Let OACB be a parallelogram with O at the origin and OC a diagonal. Let D be the midpoint of OA using vector methods prove that BDandCO intersect in the same ratio. Determine this ratio.

Watch Video Solution

4. ΔABC is a triangle with the point P on side BC such that 3BP=2PC, the point Q is on the line CA such that 4CQ=QA. Find the ratio in which the line joining the common point R of AP and BQ and the point S divides AB.

Watch Video Solution

5. In $\triangle ABC$ internal angle bisector Al,BI and CI are produced to meet opposite sides in A', B', C' respectively. Prove that the maximum value of $\frac{AI \times BI \times CI}{AA' \times BB' \times \mathbb{C}'}$ is $\frac{8}{27}$ **6.** Let $r_1, r_2, r_3, \ldots, r_n$ be the position vectors of points $P_1, P_2, P_3, \ldots, P_n$ relative to an origin O. show that if then a similar equation will also hold good with respect to any other origin O'. If $a_1 + a_2 + a_3 + \ldots + a_n = 0$.

Watch Video Solution

7. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel as shown in figure. Also, OA:CB=2:1 and OD:AB=1:3. if the diagonals OC and AD meet at x, find OX:XC.

8. If u,v and w is a linearly independent system of vectors, examine the system p,q and r, where $p = (\cos a)u + (\cos b)v + (\cos c)w$

$$q=(\sin a)u+(\sin b)v+(\sin c)w$$

 $r = \sin(x+a)u + \sin(x+b)v + \sin(x+c)w$ for linearly dependent.

Watch Video Solution

Exercise (Questions Asked In Previous 13 Years Exam)

1. The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (A) $\sqrt{72}$ (B) $\sqrt{33}$ (C) $\sqrt{2880}$ (D) $\sqrt{18}$

A. $\sqrt{18}$

B. $\sqrt{72}$

C. $\sqrt{33}$

D. $\sqrt{45}$

Answer: C

2. Let a,b and c be three non-zero vectors which are pairwise noncollinear. If a+3b is collinear with c and b+2c is collinear with a, then a+3b+6c is

A. a+c

B.a

C. *c*

D. 0

Answer: D

A. π

B. 0

C.
$$\frac{\pi}{4}$$

D. $\frac{\pi}{2}$

Answer: A

O Watch Video Solution

4. If C is the mid-point of AB and P is any point outside AB, then

A. PA+PB+PC=0

B. PA+PB+2PC=0

C. PA+PB=PC

D. PA+PB=2PC

Answer: D

5. If a,b and c are three non-zero vectors such that no two of these are collinear. If the vector a+2b is collinear with c and b+3c is collinear with a(λ being some non-zero scalar), then a+2b+6c is equal to

A. λa
B. λb
C. λc

D. 0

Answer: D

Watch Video Solution

6. If a,b,c are non-coplanar vectors and λ is a real number, then the vectors a + 2b + 3c, $\lambda b + 4c$ and $(2\lambda - 1)c$ are non-coplanar for

A. all value of λ

B. all except one value of λ

C. all except two value of λ

D. no value of λ

Answer: C

Watch Video Solution

7. Consider points A,B,C annd D with position vectors $7\hat{i} - 4\hat{j} + 7\hat{k}, \hat{i} - 6\hat{j} + 10\hat{k}, -1\hat{i} - 3\hat{j} + 4\hat{k} \text{ and } 5\hat{i} - \hat{j} + 5\hat{k},$

respectively. Then, ABCD is

A. square

B. rhombus

C. rectangle

D. none of these

Answer: D

$$\begin{array}{c|cccc} \mathbf{8.} \mbox{ If } \begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0 \mbox{ and the vectors } \\ \overrightarrow{A} = (1,a,a^2), \ \overrightarrow{B} = (1,b,b^2), \ \overrightarrow{C}(1,c,c^2) \end{array}$$

are non-coplanar then the product abc =

- A. 2
- B.-1
- **C**. 1
- D. 0

Answer: B

Watch Video Solution

9. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle heta and doubled in magnitude then it becomes $4\hat{i} + (4x-2)\hat{j} + 2\hat{k}$. The value of x is

$$\mathsf{A}.\left\{ -\frac{2}{3},2\right\}$$

B.
$$\left(\frac{1}{3}, 2\right)$$

C. $\left\{\frac{2}{3}, 0\right\}$
D. $\{2, 7\}$

Answer: A