©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PUNJAB BOARD PREVIOUS

YEAR PAPERS

Refraction of Light and Lenses

Exercise

1. A 2.0 cm long needle is placed vertically at a
distance 48 cm in front of a double convex
lens made of a material of refractive index 1.5
having radii of curvature as 20 cm and 30 cm .

Find the height of image formed.

D Watch Video Solution

2. A 3.0 cm long needle is placed vertically at a
distance 50 cm in front of a double convex
lens made of a material of refractive index 1.6
having radii of curvature as 30 cm of each
surface. Find the height of image formed by
the lens.

Watch Video Solution

3. A 5.0 cm long needle is placed vertically at a distance 20 cm in front of a double convex
lens made of a material of refractive index 1.5 having radii of curvature as 10 cm of each surface. Find theheight of image formed.

D Watch Video Solution

4. A ray of light of frequency of $5 x 10^{14} \mathrm{~Hz}$ is passed through a liquid the wavelength of
light measured inside the liquid is found to be
$450 x 10^{-9} \mathrm{M}$. Calculate refractive index of the

liquid

D Watch Video Solution

5. A ray of monochromatic light travelling in
vacuum with speed C, wavelength X and
frequency u, enters into a medium of refractive index 1.5 . What will be its new speed, wavelength and frequency?
6. For the same angle of incidence, the angle of refraction in three different media A, B and

C are $15^{\wedge} @, 25^{\wedge} @$ and $35^{\wedge} @$ respectively. In which medium will the velocity of light be minimum?

D Watch Video Solution

7. Two lenses, one diverging of power 2D and the other converging of power

6Darecombinedtogether.Calculate the focal lengthand power of the combination.

D Watch Video Solution

8. The radii of curvature of the faces of a double convex lens are 20 cm and 30 cm . Its
focal length is 24 cm . What is the refractive index of the glass?

- Watch Video Solution

9. A convex lens has 10 cm focal length in air.What is its focal length in water?
(Refractive index of air-water is 1.33 , refractive index for air glass $=(1.5)$

- Watch Video Solution

10. If the critical angle for total internal reflection from medium to vacuum is 30°, then what is the velocity of light in the medium ?
11. The radii of curvature of the faces of a double convex lens are 20 cm and 20 cm . Its focal length is also 20 cm . What is the refractive index of the glass?

D Watch Video Solution

12. A convex lens has 12 cm focal length in air.

What is its focal length in water? (Refractive
index of air-water is (1.33), refractive index for air-glass $=(1.5)$.

D Watch Video Solution

13. The radii of curvature of the faces of a double convex lens are 10 cm and 15 cm , Its
focal length is 12 cm . What is the refractive index of the glass ?
14. A convex lens has 20 cm focal length in air.What is its focal length in water?
(Refractive index of air-water is 1.33 , refractive index for air glass = 1.5).

D Watch Video Solution

15. A concave lens is placed in contact with a convex lens of focal length 25 cm .The combination produces a real image at adistance of 80 cm , when an object is at a
distance of 40 cm . What is the focallength of

concave lens ?

D Watch Video Solution

16. A convex lens has 10 cm focal length in air.What is its focal length in water?
(Refractive index of air-water is 1.33 , refractive index for air glass = (1.5)
17. A concave lens is kept in contact with convex lens of focal length 20 cm .The combination works as convex lens of focal length 50 cm . Find the power of concave lens.

- Watch Video Solution

18. A convex lens is made of glass of refractive index 1.5. If radius of curvature of the each of its two surfaces is 20 cm , find the ratio of power , of lens when placed in air to its power,
when immersed inside a liquid of refractive index 1.25.

D Watch Video Solution

19. A needle placed 45 cm from a lens forms an image on the screen placed 90 cm on the other side of the lens. What is the type of lens? Find the focal length. If the length of needle is 5 cm . What is the length of image?

- Watch Video Solution

20. A lens of focal length 12 cm produces a virtual image. The size of image is $1 / 3$ times the size of the object. What kind of lens it is ? Determine the positions of the object and the image.

D Watch Video Solution

21. The image formed by the lens is erect and
its length is three times the length of an object. If the focal length of the lens is 15 cm ,
what kind of lens it is ? Calculate the object and image distance.

D Watch Video Solution

22. A lens placed at a distance of 20 cm from an object produces a virtual image $2 / 3$ the size of the object. Find the position of the image, kind of the lens and its focal length.
23. A needle placed 40 cm from a lens forms
an image on a screen placed 80 cm on the other side of the lens. Identify the type of lens and determine its focal length. What is the size of the image, if the size of needle is 15 cm ?

D Watch Video Solution

24. What is the focal lengthof the combination
of a convex lens of focal length 30 cm in
contact with a concave lens of focal length 20
cm ? Is the system a converging or diverging
lens? Ignore thickness of the lenses.

D Watch Video Solution

25. An object of size 5 cm is placed at distance
of 25 cm in front of a convex lens of focal
length 20 cm . Find the size and nature of image and its distance from the lens.

D Watch Video Solution

26. An object of size 10 cm is placed at distance of 20 cm in front of aconcave lens of
focal length 20 cm . Find the size and nature of image. Also find distance of image from the lens

D Watch Video Solution

27. Two lenses of powers+15D and -5D are in
contact with each other. What is the focal
length of combination?
28. If the focal length of a converging lens is 50 cm . What is the power of the Lens ?

- Watch Video Solution

29. Define refractive index?

- Watch Video Solution

30. State Snell's law of refraction of light.
31. What is refraction of light?

- Watch Video Solution

32. A convex lens made of a material of
refractive index μ_{1}, is kept in a medium of refractive index μ_{2}, Parallel rays of light are incident on the lens. Complete the pathof rays
of light emerging from the convex lens if $\mu_{1}=\mu_{2}$.

D Watch Video Solution

33. A convex lens made of a material of refractive index 'mu_1' is kept in a medium of refractive index μ_{2}, Parallel rays of light are incident on the lens. Complete the pathof rays
of light emerging fromthe convex lens if $\mu_{1}<\mu_{2}$.

- Watch Video Solution

34. A convex lens made of a material of refractive index μ_{1} is kept ih a medium of refractive index μ_{2}, Parallel rays of light are incident on the lens. Complete the path of rays of light emerging fromthe convex lens if $\mu_{1}>\mu_{2}$.

- Watch Video Solution

35. Define critical angle for total internal reflection.
36. Define critical angle for total internal reflection.

D Watch Video Solution
37. State Snell's law of refraction of light.
38. Name the type of lens whichalways produces virtual and erect image.

D Watch Video Solution

39. What is total internal reflection, state the necessary conditions for it ? Find a relation between refractive index and critical angle.

D Watch Video Solution

40. Write the conditions for total internal reflection to takeplace?

- Watch Video Solution

41. Prove the Relation : ${ }^{a} \mu_{b}=\frac{1}{{ }^{b} \mu_{a}}$

- Watch Video Solution

42. How will you explain twinkling of stars?
43. State Snell's law of refraction of light.

D Watch Video Solution

44. When does Snell's law in refraction fail ?

D Watch Video Solution

45. Explain the phenomenon of refraction at a
plane surface seperating two transparent
media and show that $\mu_{=} c / v$, where letters have their usual meanings.

D Watch Video Solution

46. The sun appears before the sun rise and after sun set for few minutes, why?

D Watch Video Solution

47. A concave mirror andaconvex lens are held
in water. What changes if any, do you expect in
their respective focal lengths as compared to
their values in air.

D Watch Video Solution

48. To a fish under water, the man appears as tall or small standing at the bank of a lake.

Give reason.

D Watch Video Solution
49. What is total internal reflection of light ?

What are essential conditions of it ? Explain
the formation of mirage using this
phenomena.

- Watch Video Solution

50. What is total internal reflection, state the necessary conditions for it ? Find a relation between refractive index and critical angle.
51. What is total internal reflection, state the necessary conditions for it ? Find a relation between refractive index and critical angle.

- Watch Video Solution

52. Write the conditions for total internal reflection to takeplace?
53. The sun is seen a little before it rises and for a short while after it sets. Explain, why?

D Watch Video Solution

54. What are optical fibres? Give their one use

D Watch Video Solution

55. Derive the relation between refractive index of the medium and critical angle.
56. What are optical fibres ? Explain with the help of diagram on what principle does it work ?

- Watch Video Solution

57. Write the conditions for total internal reflection to takeplace?
58. What is total internal reflection of light ?

What are the two essential conditions for total internal reflection to take place?

- Watch Video Solution

59. Write the conditions for total internal reflection to takeplace?

- Watch Video Solution

60. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
when light undergoes refraction fromoptically
rarer to optically denser medium at curved surface.

D Watch Video Solution

61. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.
62. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.

- Watch Video Solution

63. What is total internal reflection of light?

What are the two essential conditions for total internal reflection to take place?
64. What is total internal reflection of light ?

What are the two essential conditions for total internal reflection to take place?

- Watch Video Solution

65. Why does a diamond sparkle?

- Watch Video Solution

66. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

67. Define critical angle for total internal reflection.
68. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
when light undergoes refraction fromoptically
rarer to optically denser medium at curved surface.

D Watch Video Solution

69. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.
70. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.

- Watch Video Solution

71. A convex lens made of a material of refractive index μ_{1} is kept ih a medium of refractive index μ_{2}, Parallel rays of light are incident on the lens. Complete the path of
rays of light emerging fromthe convex lens if $\mu_{1}>\mu_{2}$.

D Watch Video Solution

72. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.
73. Derive expression for the lens maker's
formula \quad i.e.: $\quad \frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
where the letters have their usual meanings

D Watch Video Solution

74. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.
75. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.

D Watch Video Solution

76. What is total internal reflection, state the necessary conditions for it ? Find a relation between refractive index and critical angle.
77. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ when light undergoes refraction fromoptically rarer to optically denser medium at curved surface.

D Watch Video Solution

78. What is the relation between focal length and radius of curvature of a concave mirror?

What is focal length of a plane mirror?

- Watch Video Solution

79. By giving sign-conventions, derive the lens formula relating object distance, image distance and focal length for a thin convex lens. Draw a ray diagram to show the formation of image of an object placed between optical centre and focus of a convex lens.

- Watch Video Solution

80. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a
thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

D Watch Video Solution

81. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

82. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

83. Derive the relation:- $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
when light undergoes refraction fromoptically
rarer to optically denser medium at curved surface.
84. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

85. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

86. Define power of a lens

D Watch Video Solution

87. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

88. Define power of a lens

- Watch Video Solution

89. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

90. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

91. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

92. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.
93. Derive Lens formula for $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ a thin convex Lens, using ray diagram for the formation of a real image by Convex Lens.

- Watch Video Solution

