©゙’ doubtnut
 India's Number 1 Education App

PHYSICS

BOOKS - AllMS PREVIOUS YEAR PAPERS

AlIMS 1998

Physics

1. The amount of heat measured in calories needed to raise the temperature of 1 gram of substance by 1 degree centigrade is known as
A. heat of fusion
B. specific heat
C. coefficient of expansion
D. latent heat.

Answer: B

D Watch Video Solution

2. What is the potential energy of a 10 kg steel
ball which has been raised vertically 9 m above the floor?
A. 441 joules
B. 98 joules
C. 90 joules
D. 882 joules

Answer: D

(Watch Video Solution

3. The volume of a confined gas varies inversely with the absolute pressure provided that the
temperature remains unchanged. This statement is known as
A. Dalton's law
B. Bernoulli's law
C. Avagadro's law
D. Boyle's law.

Answer: D

- Watch Video Solution

4. What is the work done \ln joules if a 100-kg ball
is raised to 3 m above the floor in 1 second ?
A. 1960 joules
B. 980 joules
C. 2940 joules
D. 3240 joules

Answer: C
5. You are standing 1000 m from the point where
a steel block strikes the sidewalk. How long will It
take the sound to reach your ears if the speed of sound in air at $0^{\circ} \mathrm{C}$ is about $333 \mathrm{~m} / \mathrm{sec}$. ?
A. 3 seconds
B. 2 seconds
C. 1 second
D. 5 seconds.

Answer: A
6. Shadows consist of two portions, the umbra and the penumbra. Which statement below applies ONLY to the umbra?
A. It receives no light from any part of the source
B. It receives light from part of the source
C. it is a partial shadow
D. It is circular in shape
7. If a force of 30.6 kg acts on a 60 kg mass, calculate the resulting acceleration. (1 k.g of force
= 9.8 newtons)
A. $5 \mathrm{~m} / \mathrm{sec}^{2}$
B. $2 m / \mathrm{sec}^{2}$
C. $0.5 \mathrm{~m} / \mathrm{sec}^{2}$
D. $9.8 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: A
8. If the uniform acceleration near the surface of the earth is about $9.8 \mathrm{~m} / \mathrm{sec}^{2}$. for a free-fall, what Is the velocity at the end of 2 seconds of fall (neglect friction)?
A. $14.6 \mathrm{~m} / \mathrm{sec}$
B. $17.0 \mathrm{~m} / \mathrm{sec}$
C. $19.6 \mathrm{~m} / \mathrm{sec}$
D. $9.8 \mathrm{~m} / \mathrm{sec}$.

Answer: C
9. If the mass of a moving projectile is tripled and its velocity is doubled, the kinetic energy will be multiplied by
A. 8
B. 6
C. 2
D. 12

Answer: D
10. Which ratio below best defines the efficiency of simple machines?
> A. $\frac{\text { useful work output }}{\text { work input }} \times 100 \%$
> B. $\frac{\text { work input }}{\text { work output }} \times 100 \%$
C.
theoretical mechanical advantage actual mechanical advantage
D. $\frac{\text { useful work input }}{\text { useful work output }} \times 100 \%$

Answer: A
11. If an object is moving with a constant acceleration, the net force acting on that body is
A. increasing
B. decreasing
C. constant
D. zero

Answer: C

12. The direction of the force exerted on a surface by a liquid at rest is
A. normal to the surface
B. parallel to the surface
C. tangential to the surface
D. 30° to the surface

Answer: A

- Watch Video Solution

13. In simplest terms, the energy of a wave is directly proportional to the square of Its
A. height
B. refraction
C. reflection
D. length.

Answer: A

D View Text Solution
14. A good floor lamp has a wide heavy wide to Increase Its stability through
A. banking
B. lowering the center of gravity
C. raising the center of gravity
D. None of the above.

Answer: B

15. A resultant force of 45 kg Is acting on a body

 whose acceleration Is $10 \mathrm{~m} / \mathrm{sec}^{2}$. Calculate the mass of the body.A. 450 kg
B. 44.1 kg
C. 4.5 kg
D. 1960 kg .

Answer: B

D Watch Video Solution
16. Two forces of $45 \mathrm{~kg}-\mathrm{f}$ and $40 \mathrm{~kg}-\mathrm{f}$ act on a body In opposite directions. What Is the resultant force ?
A. $45 \mathrm{~kg}-\mathrm{f}$
B. $40 \mathrm{~kg}-\mathrm{f}$
C. $5 \mathrm{~kg}-\mathrm{f}$
D. $90 \mathrm{~kg}-\mathrm{f}$.

Answer: C

D Watch Video Solution
17. $F=G m_{1}, m_{2} / d_{2}$ is the equation
representing Newton's law of universal gravitation. Which of the statements below is true?
A. G is called the gravitation constant
B. The law can be used to calculate the mass
of an object on another planet if the mass
and radius of that planet are known
C. Knowing the value of G, one can easily
calculate the mass of the earth.
D. All of the above are true.

Answer: A

(Watch Video Solution

18. Which of the statements below is correct?

A. The angle of bank for a road is obtained
from a consideration of the centripetal
force required
B. There is no tendency for the vehicle to skid
if a road is banked for the speed at which
the vehicle is moving
C. The resultant force action on a vehicle will
be that which maintains it in a circular path

D. All of the above statements are correct.

Answer: D

- View Text Solution

19. How far will a body free-fall in 1 second If released from rest ?
A. 0.0 m
B. 4.9 m
C. 9.8 m
D. 19.6 m .

Answer: B

(Watch Video Solution

20. Which statement below is true?
A. Radiant energy is propagated as a wave

motion

B. Positrons have the same mass as an electron
C. When a nucleus emits a beta particle, its mass number is unchanged
D. All of the above.

Answer: D

D Watch Video Solution

21. Radium $R a^{236}$ has a half-life of 1590 years. How much of the original amount of $R a^{236}$ would
remain after 6360 year?

> A. $\frac{1}{8}$
> B. $\frac{1}{4}$
> C. $\frac{1}{16}$
> D. $\frac{1}{2}$

Answer: C

D Watch Video Solution

22. A ball is located in a semicircular trough. The
ball is moved slightly to one side and returns to
its original locatiun. The ball Is said to be in
A. neutral equilibrium
B. unstable equilibrium
C. stable equilibrium
D. all of the above.

Answer: C

- Watch Video Solution

23. Using the figure below as a reference, identify the true statement. The large tank is full of water
and is exposed to the atmosphere

$$
d\left[-m{ }^{h}-\cdots-\cdots-d^{h}\right.
$$

$d_{1}=$ diameter of opening
$v_{1}=$ velocity at d_{1}
$v_{2}=$ velocity at d_{2}
A. $v_{1} / v_{2}=1$
B. $v_{2}>v_{1}$
C. $v_{1}>v_{2}$
D. none of the above

Answer: A

Watch Video Solution

24. If a color disc composed of red, orange, yellow, green, blue, indigo, and violet pie-shaped sections is rapidly rotated, which color will your eye see?
A. red
B. black
C. brown
D. white

Answer: D
25. The amount of a liquid's cohesive force per unit of length is called
A. depression
B. adhesion
C. apparent weight
D. surface tension

Answer: D
26. When light is reflected from a surface it can be either regular reflection or diffuse reflection. The essential difference between regularly and diffusely reflecting surfaces is that
A. regularly reflecting surfaces are smoother than diffusely reflecting surfaces
B. light can not be reflected from a diffusely reflecting surface
C. the regularly reflecting surface is coarser than the diffusely reflecting surface

D. all of the above are essential differences

between regularly and diffusely reflecting surfaces.

Answer: A

- View Text Solution

27. If the density of a given body Is $10 \mathrm{gm} / \mathrm{cm}^{3}$, what Is Its specific gravity?
A. 0.01
B. 1.0 gm
C. 1.0
D. 10.0

Answer: D

(D) Watch Video Solution

28. When analyzed, most complicated machines are found to consist of a combination of various
simple machines. Which machine below is NOT a simple machine?
A. lever

B. electric motor

C. inclined plane
D. pulley.

Answer: B

(D) Watch Video Solution

29. Calculate the velocity of a test sled that Is propelled by a device that has 2500 joules of available energy to propel a sled of 50 kg mass
B. $25 \mathrm{~m} / \mathrm{sec}$
C. $50 \mathrm{~m} / \mathrm{sec}$
D. $1 \mathrm{~m} / \mathrm{sec}$.

Answer: C

(D) Watch Video Solution

30. In uniformly accelerated motira the following questions hold :
$\mathrm{V}=\mathrm{Vo}+\mathrm{at}$
$X=V o t+1 / 2 a t^{2}$
When $\mathrm{X}=$ displacement, $\mathrm{V}=$ Velocity at time, $\mathrm{Vo}=$
initial velocity, $\mathrm{t}=$ time , and a =acceleration. A ball is projected directly upward at a velocity of 15 $\mathrm{m} / \mathrm{sec}$.

What is the highest point this ball will reach?
A. 38.66 m
B. 11.48 m
C. 9.80 m
D. 1.53 m .

Answer: B
31. In uniformly accelerated motira the following questions hold :
$\mathrm{V}=\mathrm{Vo}+\mathrm{at}$
$X=V o t+1 / 2 a t^{2}$
When $\mathrm{X}=$ displacement, $\mathrm{V}=\mathrm{Velocity}$ at time, $\mathrm{Vo}=$ initial velocity, $\mathrm{t}=$ time , and a =acceleration. A ball is projected directly upward at a velocity of 15 $\mathrm{m} / \mathrm{sec}$.

What is the distance above the ground after 3
seconds?
A. 1.8 m
B. 0.9 m

C. 0 m

D. 3.6 m .

Answer: B

- Watch Video Solution

32. In uniformly accelerated motira the following questions hold :
$\mathrm{V}=\mathrm{Vo}+\mathrm{at}$
$X=V o t+1 / 2 a t^{2}$

When $\mathrm{X}=$ displacement, $\mathrm{V}=\mathrm{Velocity}$ at time, $\mathrm{Vo}=$ initial velocity, $\mathrm{t}=$ time , and a =acceleration. A ball
is projected directly upward at a velocity of 15 $\mathrm{m} / \mathrm{sec}$.

What is Its velocity at that point ?
A. $14.4 \mathrm{~m} / \mathrm{sec}$. downward
B. $14.4 \mathrm{~m} / \mathrm{sec}$. upward
C. $29.4 \mathrm{~m} / \mathrm{sec}$. downward
D. $29.4 \mathrm{~m} / \mathrm{sec}$. upward

Answer: A
33. What is the velocity of the light in the medium
if $\operatorname{Sin} \theta_{i}=0.707, \operatorname{Sin} \theta_{r}=0.500$, and the velocity of light in a vacuum is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}$?
A. $2.1 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
B. $2.8 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
C. $1.4 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
D. $4.2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

Answer: A
(D) Watch Video Solution
34. The ray of light as it enters will
A. bend away from the normal
B. be totally reflected
C. bend toward the normal
D. do none of the above.

Answer: C

- Watch Video Solution

35. The index of refraction can be defined as the
velocity of light In a vacuum divided by the
velocity In the medium $\left(N=\frac{C}{S}\right)$ If this is the case, another valid expression for Snell's law Is

$$
\begin{aligned}
& \text { A. } \frac{\sin \theta_{i}}{\sin \theta_{r}}=\frac{C_{r}}{S_{r}} \\
& \text { B. } \frac{\sin \theta_{i}}{\sin \theta_{r}}=\frac{C_{i}}{C_{r}} \\
& \text { C. } \frac{S_{i}}{S_{r}}=\frac{N_{r}}{N_{i}} \\
& \text { D. } \frac{\sin \theta_{i}}{\sin \theta_{r}}=\frac{S_{i}}{S_{r}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

36. using the illustration when both surfaces 1 and 2 are exposed to the atmoshere, P_{1} and P_{2} are gauge pressure, and h_{1} and h_{2} are heights .

The Bernoulli equation for this situation is
$h_{1}+\frac{P_{1}}{W}+\frac{V_{1}^{2}}{2 \mathrm{a}}=h_{2}+\frac{P_{2}}{W}+\frac{V_{2}^{2}}{2 \mathrm{a}}$
If an Identical outlet were placed at exactly the same point on the left side of the container, the velocity would be
A. zero
B. computable
C. $2 V_{2}$
D. none of the above

Answer: B

- Watch Video Solution

37. using the illustration when both surfaces 1
and 2 are exposed to the atmoshere, P_{1} and P_{2} are gauge pressure, and h_{1} and h_{2} are heights .

The Bernoulli equation for this situation is
$h_{1}+\frac{P_{1}}{W}+\frac{V_{1}^{2}}{2 \mathrm{a}}=h_{2}+\frac{P_{2}}{W}+\frac{V_{2}^{2}}{2 \mathrm{a}}$
The value of P_{1} and P_{2} are such that
A. $P_{1}=P_{2}=0$
B. P_{2} It P_{1}
C. $P_{1}>P_{2}$
D. $P_{1} / P_{2}=0$

Answer: A

- Watch Video Solution

38. using the illustration when both surfaces 1 and 2 are exposed to the atmoshere, P_{1} and P_{2} are gauge pressure, and h_{1} and h_{2} are heights .

The Bernoulli equation for this situation is
$h_{1}+\frac{P_{1}}{W}+\frac{V_{1}^{2}}{2 \mathrm{a}}=h_{2}+\frac{P_{2}}{W}+\frac{V_{2}^{2}}{2 \mathrm{a}}$
The velocity of the fluid leavening point (2) is
constant and can be expressed as
A. $V_{2}=\left(P_{1} / P_{2}\right) V_{1}$
B. $V_{2}=\left(P_{1} / P_{2}\right) a h$
C. $V_{2}=\left[\left(h_{1}-h_{2}\right)(2 a)\right]^{1 / 2}$
D. none of the above

Answer: C
39. Choose the word or phrase that is most closely associated with the given word. You may use a choice more than once or not at all.

Eliminate those choices that you think to be incorrect and mark the letter of your choice on the answer sheet
(1)Graham's law of diffusion
(2)Charles's law
(3)Ohm's law
(4) Gresham's law
$F=\frac{M V^{2}}{R}$
40. Choose the word or phrase that is most closely associated with the given word. You may use a choice more than once or not at all.

Eliminate those choices that you think to be incorrect and mark the letter of your choice on the answer sheet
(1)Graham's law of diffusion
(2)Charles's law
(3)Ohm's law
(4) Gresham's law
$I=\frac{E}{R}$
41. Choose the word or phrase that is most closely associated with the given word. You may use a choice more than once or not at all.

Eliminate those choices that you think to be incorrect and mark the letter of your choice on the answer sheet
(1)Graham's law of diffusion
(2)Charles's law
(3)Ohm's law
(4) Gresham's law
$\frac{V}{V_{1}}=\frac{T}{T_{1}}$
42. Choose the word or phrase that is most closely associated with the given word. You may use a choice more than once or not at all.

Eliminate those choices that you think to be incorrect and mark the letter of your choice on the answer sheet
(1)Graham's law of diffusion
(2)Charles's law
(3)Ohm's law
(4) Gresham's law
$R_{1} / R_{2}=\sqrt{M_{2} / M_{1}}$
43. An astronaut is accelerated in his spacecraft from rest to $800 \mathrm{mi} . / \mathrm{hr}$. In 60 sec . He was subjected to an acceleration of
A. $4800 \mathrm{ft} . / \mathrm{sec} . / \mathrm{sec}$.
B. $1200 \mathrm{mi} . / h r^{2}$
C. $4800 \mathrm{mi} . / h r^{2}$
D. $48000 \mathrm{mi} . / h r^{2}$

Answer: D
(D) Watch Video Solution
44. The proposal that no more than two electrons may occupy a particule atomic orbital was made by
A. Pauli
B. Pauling
C. Einstein
D. Curie

Answer: A
45. An object is thrown upward with a vertical velocity of 128 ft ./sec. It will return in
A. 64 seconds
B. 16 seconds
C. 8 seconds
D. 4 seconds

Answer: C
46. The particle accelerated at a constat rate from
$23 \mathrm{mi} . / \mathrm{br}$. to $58 \mathrm{mi} . / \mathrm{hr}$. In 3.5 sec . Its acceleration was
A. $10 \mathrm{mi} . / \mathrm{hr}$. per sec.
B. $58 \mathrm{mi} . / \mathrm{hr}$. per sec.
C. $23 \mathrm{mi} . / \mathrm{hr}$. per sec.
D. less than $10 \mathrm{mi} . / \mathrm{hr}$. per sec.

Answer: A

D Watch Video Solution
47. Since speed changed at a uniform rate and
the average velocity is equal to the average of the Initial and final speeds. how far has the particle traveled while It was accelerating ?
A. 51 ft
B. 600ft
C. 210ft
D. less than 20 mi .

Answer: C
48. A particle travels 336 mi in 6 hn , its 1 average velocity is
A. $33.6 \mathrm{mi} . / \mathrm{hr}$
B. $66 \mathrm{mi} . / \mathrm{hr}$
C. $56 \mathrm{mi} / \mathrm{hr}$.
D. $40 \mathrm{mi} / \mathrm{km} / \mathrm{hr}$.

Answer: C
49. The volume of the piece of glass Is

A. $166 \mathrm{~cm}^{3}$

B. $60 \mathrm{~cm}^{3}$
C. $1.6 \mathrm{~cm}^{3}$
D. $1666 \mathrm{~cm}^{3}$

Answer: D

- View Text Solution

50. If the buoyant force of the water Is equal to the weight of the water displaced, then the piece of glass suspended in water weighs
A. 16 N
B. 100 N
C. 83 N
D. 50 N .

Answer: C

D View Text Solution
51. If the piece of glass were suspended in air, It would weight (the buoyancy of air is neglected)
A. 100 Newtons
B. 50 Newtons
C. 10 Newtons
D. 600 Newtons

Answer: A

- Watch Video Solution

52. Assertlon (A). When an electric motor is started the Initial current In It Is considerably more than the final current

Reasoning : The current falls due to the fall In the back emf
A. Assertion is true, Reason is false
B. Assertion is false, Reason is true
C. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion
D. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion

Answer: C

- View Text Solution

53. Assertion(A). A pool of water looks shallower than it actually is

Reasoning (R). Light bends towarch the normal while travelling from water to air
A. Both Assertion and Reason Correct and

Reason explains Assertion
B. Assertion is right, Reason is wrong
C. Both Assertion and Reason correct but Reason does not explains Assertion D. Assertion and Reason are both wrong.

Answer: B

D Watch Video Solution

54. Weight of a person can be zero when
55. he is falling freely
56. he is orbiting in a satellite
57. he is in aeroplane flying at a high altitude.
58. he is having ride in a gas filled balloon.
A. 1, 2, 3 and 4 are correct
B. 1 and 2 are correct
C. 1 and 4 are correct
D. 1, 2 and 4 are correct.
59. Assertion (A) : The earth revolves around the sun an elliptical orbit

Reasoning (R) : The sun alwaye attracts the earth with the same force
A. both Assertion and Reason are both are
both wrong
B. Assertion is right, Reason is wrong
C. both Assertion and Reason are correct and

Reason explains Assertion

D. both Assertion and Reason are correct, but

Reason does not explain Assertion

Answer: C

D Watch Video Solution

56. Assertion:The couple acting on a body is not equal to the rotational KE of the body Reason: Couple and KE have different dimensions
A. both Assertion and Reason are both are both wrong
B. Assertion is right, Reason is wrong
C. both Assertion and Reason are correct and

Reason explains Assertion
D. both Assertion and Reason are correct, but Reason does not explain Assertion

Answer: A

- View Text Solution

57. Assertion: A tiny drops of liquid resist deforming forces better than bigger drops

Reason:Excess pressure inside a drop is directly proportional to the Surface tension.
A. both Assertion and Reason are both are
both wrong
B. Assertion is right, Reason is wrong
C. both Assertion and Reason are correct and

Reason explains Assertion
D. both Assertion and Reason are correct, but

Reason does not explain Assertion

Answer: B
58. Assertion: A thin aluminium disc, spinning freely about a centre pivot, is quickly brought to rest when . placed between the poles of a strong U-shaped magnet

Reason:A current induced in a disc rotating in a magnetic field produces a force which tends to oppose the disc's motion.
A. both Assertion and Reason are both are both wrong
B. Assertion is right, Reason is wrong
C. both Assertion and Reason are correct and

Reason explains Assertion

D. both Assertion and Reason are correct, but

Reason does not explain Assertion

Answer: A

D View Text Solution

59. Assertion: In Rutherford's experiment, aparticles from a sodium source were allowed to fall on a 104 mm thick gold foil. Most of the
particles passed straight through the foil.
Reason : The entire positive charge and nearly
whole of the mass of an atom is concentrated in the nucleus.
A. both Assertion and Reason are both are
both wrong
B. Assertion is right, Reason is wrong
C. both Assertion and Reason are correct and

Reason explains Assertion
D. both Assertion and Reason are correct, but

Reason does not explain Assertion

Answer: A

- View Text Solution

60. Assertion: At ordinary temperatures. the

Vibrational degrees of freedom do not contribute
to the specific heat of gases
Reason:The average charge corresponding to a
degree of vibration is not kT and hence the molecular vibrations are not excited.
A. both Assertion and Reason are both are both wrong

B. Assertion is right, Reason is wrong

C. both Assertion and Reason are correct and

Reason explains Assertion
D. both Assertion and Reason are correct, but Reason does not explain Assertion

Answer: C

- View Text Solution

