

MATHS

NCERT - NCERT MATHEMATICS (ENGLISH)

STRAIGHT LINES

2. Find the distance of the point (3, -5) from the line 3x - 4y - 26 = 0.

3. Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with positive direction of X axis is 15o.

Watch Video Solution				
4. Find the equation of the line, which makes intercepts 3 and 2 on the x and y axes respectively.				
Watch Video Solution				
5. Equation of a line is $3x - 4y + 10 = 0$. Find its (i) slope, (ii) x and vintercepts				
Watch Video Solution				

6. The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that K=273 when F=32 and that K=373 when F=212. Express K in terms of F and find the value of F, when K=0.

8. Reduce the equation $\sqrt{3}x + y - 8 = 0$ into normal form. Find the values of p and ω .

9. Find the equation of a line perpendicular to the line x - 2y + 3 = 0and passing through the point (1, 2).

10. Show that two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, where $b_1, b_2 \neq 0$ are : (i) Parallel if $\frac{a_1}{b_1} = \frac{a_2}{b_2}$, and (ii) perpendicular if $a_1a_2 + b_1b_2 = 0$.

Watch Video Solution

11. If the lines 2x + y - 3 = 0, 5x + ky - 3 = 0 and 3x - y - 2 = 0are

concurrent, find the value of k.

12. Find the distance of the line 4x - y = 0 from the point P(4, 1)

measured along the line making an angle of 135o with the positive xaxis.

13. Find the image of the point (1, 2) in the line x - 3y + 4 = 0.

Watch Video Solution

14. Show that the area of the triangle formed by the lines
$$y=m_1x+c_1, y=m_2x+c_2$$
 and $x=0$ is $rac{\left(c_1-c_2
ight)^2}{2|m_1-m_2|}$

Watch Video Solution

15. A line is such that its segment between the lines 5x-y+4=0 and

3x + 4y - 4 = 0 is bisected at the point (1,5). Obtain its equation.

16. Show that the path of a moving point such that its distances from two

lines 3x - 2y = 5 and 3x + 2y = 5 are equal is a straight line.

19. Find the equations of the lines parallel to axes and passing through

$$(-2,3)$$

$$(h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)\cdot$$

Watch Video Solution

22. In the following figure, the time-distance graph is shown for a linear motion. As time T = 0, distance is 2 units and at T = 3, distance = 8 units. Using slopes, find the relation between distance and time.

23. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$,

find the slope of the other line.

24. If the points (-2,6) and (4,8) is perpendicular to the line joining the points (8,12) and (x,24) then the value of x is

Watch Video Solution

25. Find the slope of the lines:(a) Passing through the points (3, 2) and

(1.4),(b) Passing through the points (3,2)and (7,2),(c) Passing through

the points (3,2) and (3,4),(d) Making inclination of 60o with the p

28. Find the transformed equation of the straight line 2x - 3y + 5 = 0,

when the origin is shifted to the point $(3,\ -1)$ after translation of axes.

1. The line through the points (h, 3) and (4, 1) intersects the line 7x - 9y - 19 = 0 at right angle. Find the value of h.

2. Prow that the line through the point (x_1, y_1) and parallel to the line

Ax + By + C = 0is $A(x - x_1) + B(y - y_1) = 0$.

Watch Video Solution

3. Two lines passing through the point (2, 3) intersects each other at an

angle of 60° . If slope of one line is 2, find equation of the other line.

4. Find the equation of the right bisector of the line segment joining the

points (3, 4) and (1, 2).

5. Find the coordinates of the foot of perpendicular from the point

(-1, 3)to the line 3x - 4y - 16 = 0.

Watch Video Solution

6. The perpendicular from the origin to the line y = mx + cmeets it at the point (1, 2). Find the values of m and c.

7. If p and q are the lengths of perpendiculars from the origin to the lines $x\cos\theta - y\sin\theta = k\cos 2 heta$ and $x\sec\theta + ycosec\theta = k$, respectively, prove that $p^2 + 4q^2 = k^2$.

10. Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive xaxis.(i) $x - \sqrt{3}y + 8 = 0$, (ii) y - 2 = 0, (iii) x - y = 4.

11. Reduce the following equations into intercept form and find their intercepts on the axes.(i) 3x + 2y12 = 0, (ii) 4x3y = 6, (iii) 3y + 2 = 0.

12. Reduce the following equations into slope intercept form and find their slopes and the y intercepts.(i) x + 7y = 0, (ii) 6x + 3y5 = 0, (iii) y = 0.

Watch Video Solution

13. Find equation of the line parallel to the line 3x - 4y + 2 = 0 and passing through the point (2, 3).

14. Find the distance between parallel lines(i) 15x + 8y - 34 = 0 and 15x + 8y + 31 = 0(ii) l(x + y) + p = 0 and l(x + y) - r = 0.

15. Find the points of the xaxis, whose distances from the line $\frac{x}{3} + \frac{y}{4} = 1$ are 4 unit.

Watch Video Solution

16. Find the distance of the point (1, 1) from the line 12(x+6) = 5(y-2).

Watch Video Solution

17. Find angles between the lines $\sqrt{3}x + y = 1$ and $x + \sqrt{3}y = 1$.

18. Find equation of the line perpendicular to the line x - 7y + 5 = 0 and

having x intercept 3.

Miscellaneous Exercise

1. A person standing at the junction (crossing) of two straight paths represented by the equations 2x - 3y + 4 = 0 and 3x + 4y - 5 = 0 wants to reach the path whose equation is 6x - 7y + 8 = 0 in the least time. Find equation of the path equation that he should follow.

2. Find equation of the line which is equidistant from parallel lines 9x + 6y = 0 and 3x + 2y + 6 = 0. **3.** If sum of the perpendicular distances of a variable point P(x, y) from

the lines x + y - 5 = 0 and 3x - 2y + 7 = 0 is always 10. Show that P

must move on a line.

Watch Video Solution

4. Prove that the product of the lengths of the perpendiculars drawn

from the points

$$\left(\sqrt{a^2 - b^2}, 0\right)$$
 and $\left(-\sqrt{a^2 - b^2}, 0\right)$ to the line $\frac{x}{a}\cos \theta + \frac{y}{b}\sin \theta = 1$
Watch Video Solution

5. A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.

6. Find the direction in which a straight line must be drawn through the point (-1, 2)so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.

> Watch Video Solution

7. The hypotenuse f a right isosceles triangle has its ends at the points (1,3) and (-4,1). Find the equations of the legs (perpendicular sides) of the

triangle.

Watch Video Solution

8. In what ratio, the line joining (1, 1) and (5, 7) is divided by the line x + y = 4?

12. Find the equation of the line passing through the point of intersection of the lines 4x - 7y - 3 = 0 and 2x - 3y + 1 = 0 that has equal intercept to axes.

13. Show that the equation of the straight line through the origin angle arphi

with the line $y=mx+b\,israc{y}{x}=rac{m\pm tanarphi}{1\pm m\,tanarphi}$

Watch Video Solution

14. Find the image of the point (3,8) with respect to the line x + 3y = 7

assuming the line to be a plane mirror.

Watch Video Solution

15. If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line

y=mx+4, then m=

16. Find the equation of a line drawn perpendicular to the line $\frac{x}{4} + \frac{y}{6} = 1$ through the point where it meets the y-axis.

Watch Video Solution

17. Find the equation of the line parallel to y-axis and drawn through the

point of intersection of the lines x - 7y + 5 = 0 and 3x + y = 0.

Watch Video Solution

18. Find perpendicular distance from the origin of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \varphi, \sin \varphi)$.

19. What are the points on y-axis whose distance from the line $\frac{x}{3} + \frac{y}{4} = 1 \text{ is } 4 \text{ units }?$

20. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6, respectively.

Watch Video Solution

21. Find the values of θ and p, if the equation $x \cos \theta + y \sin \theta = p$ is the normal form of the line $\sqrt{3}x + y + 2 = 0$.

Watch Video Solution

22. Find the values of k for which the line $(k-3)x - (4-k^2)$ $y + k^2 - 7k + 6 = 0$ is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin.

Exercise 101

1. A line passes through (x_1, y_1) and (h, k). If slope of the line is m, show

that $k - y_1 = m(h - x_1)$.

2. If three points (h, 0), (a, b) and (o, k) lie on a line, show that $\frac{a}{b} + \frac{b}{k} = 1.$

3. Find the angle between the X- axis and the line joining the points

(3, -1)and (4, -2).

Watch Video Solution

4. The slope of a line is double of the slope of another line. If tangents of

the angle between the is find the slopes of the other line.

5. Consider the following population and year graph: find the slope of the

line AB and using it find what will be the population in the year 2010.

6. Find the slope of a line, which passes through the origin, and the midpoint of the line segment joining the points P(0, 4) and B(8, 0).

0	Watch	Video	Solution	
---	-------	-------	----------	--

7. Find a point on the x-axis, which is equidistant from the point (7,6) and

(3,4).

A.
$$\left(\frac{15}{2}, 0\right)$$

B. $\left(\frac{17}{2}, 0\right)$
C. $\left(-\frac{17}{2}, 0\right)$
D. $\left(-\frac{15}{2}, 0\right)$

Answer: A
$$\left(\frac{15}{2},0\right)$$

8. Find the slope of the line, which makes an angle of $30^{\,\circ}$ with the positive

direction of Y-axis measured anticlockwise.

9. Without using the Pythagoras theorem, show that the points (4, 4),

(3, 5) and (1, 1) are the vertices of a right angled triangle.

Watch Video Solution

10. Draw a quadrilateral in the Cartesian plane, whose vertices are (-4, 5), (0, 7), (5, -5) and (-4, -2). Also, find its area.

Watch Video Solution

11. Find the distance between $P(x-1,\ y_1) and \ Q(x_2,y_2)$ when i. PQ is

parallel to the y-axis ii. PQ is parallel to the x-axis.

12. The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.

Watch Video Solution

13. Without using distance formula, show that points $(\,-2,\,-1)$, (4,0) ,

(3,3) and (-3,2) are the vertices of a parallelogram.

Watch Video Solution

14. Find the value of x for which the points (x, 1), (2, 1) and (4, 5) are collinear.

1. By using the concept of equation of a line, prove that the three points

(3, 0), (-2, -2)and (8, 2)are collinear.

Passing through the point (-4, 3) with slope $\frac{1}{2}$.

Watch Video Solution

4. Find the equation of the line which satisfy the given conditions : Passing through (0, 0) with slope m. 5. Find the equation of the line which satisfy the given conditions : Passing through $(2, 2\sqrt{3})$ and inclined with the xaxis at an angle of 75°.

Watch Video Solution

6. Find the equation of the line which satisfy the given conditions : Intersecting the xaxis at a distance of 3 units to the left of origin with slope -2.

Watch Video Solution

7. Find the equation of the line which satisfy the given conditions : Intersecting the yaxis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the xaxis. 8. Find the equation of the line which satisfy the given conditions : Passing through the point (-1, 1) and (2, -4)

10. P (a, b) is the midpoint of a line segment between axes. Show that

equation of the line is $rac{x}{a}+rac{y}{b}=2.$

Watch Video Solution

11. Find equation of the line passing through the point (2, 2) and cutting

off intercepts on the axes whose sum is 9.

13. A line perpendicular to the line segment joining the points (1, 0) and

(2, 3) divides it in the ratio 1: n. Find the equation of the line.

Watch Video Solution

Watch Video Solution

14. Find the equation of the line passing through (3, -5) and perpendicular to the line through the points (2, -5) and (3, -6).

15. The owner of a milk store finds that, he can sell 980 litres of milk each week a Rs. 14/litre and 1220 litres of milk each week at Rs16/litre. Assuming a linear relationship between selling price and demand, how many lire could he sell weekly at Rs17/litres?

Watch Video Solution

16. The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.

Watch Video Solution

17. The perpendicular from the origin to a line meets it at the point (2, 9),

find the equation of the line.

18. Find the equation of the line passing through the point (0,2) making an angle $\frac{2\pi}{3}$ with the positive x-axis. Also, find equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

19. Find the equation of the line which satisfy the given conditions : Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is 30° .

Watch Video Solution

20. The vertices of Δ PQR are P(2, 1), Q(2, 3) and R(4, 5). Find equation

of the median through the vertex R.

1. Find the new coordinates of the points in each of the following cases if the origin is shifted to the point (-3, -2) by a translation of axes.(i) (1, 1) (ii) (0, 1) (iii) (5, 0) (iv) (-1, -2) (v) (3, -5)

Watch Video Solution

2. Find what the following equations become when the origin is shifted to the point (1, 1)(i) $x^2 + xy - 3y^2 - y + 2 = 0$ (ii) $xy - y^2 - x + y = 0$ (iii) xy - x - y + 1 = 0

Watch Video Solution

Exercise 10 4

1. Find the equation of the line through the intersection of 5x - 3y = 1

and 2x - 3y - 23 = 0 and perpendicular to the line 5x - 3y - 1 = 0.

2. Find the equation of the line through the intersection of lines x+2y+3=0 and 4x+y+7=0 and which is parallel to 5x+4y+20=0

Watch Video Solution

3. Find the equation of the line through the intersection of the lines

2x + 3y 4 = 0 and x - 5y = 7 that has its x-intercept equal to 4.

View Text Solution

4. Find the equation of the line through the intersection of lines $3x + \langle 4y = \rangle$ 7 and $xy + \langle 2 \rangle = \langle 0$ and whose slope is 5.