©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - AllMS PREVIOUS YEAR

PAPERS

AIIMS 201925 MAY EVENING SHIFT

Physics

1. A Sphere pure rolls on a rough inclined plane with initial velocity $2.8 \mathrm{~m} / \mathrm{s}$. Find the
maximum distance on the inclined plane

A. 2.74 m
B. 5.48 m
C. 1.38 m
D. 3.2 m

Answer: A

D Watch Video Solution
2. Calculate charge on capacitor in steady state.

A. $20 \mu C$
B. $30 \mu C$
C. $45 \mu C$
D. $60 \mu C$

Answer: C

- Watch Video Solution

3. In LC oscillation resistance is 100Ω and inductance and capacitance is 1 H and $10 \mu F$.

Find the half power of frequency .
A. 266.2
B. 366.2
C. 166.2
D. 233.2

Answer: A

- Watch Video Solution

4. Find the maximum tension in the spring if
initially spring at its natural length when block
is released from rest.

A. mg
B. $\mathrm{mg} / 2$

C. $3 \mathrm{mg} / 2$

D. 2 mg

Answer: D

D Watch Video Solution

5. For the given figure the acceleration of 1 kg
block if string is massless and mass of pulley is

2 kg and diameter of pulley is 0.2 m :-

A. $2 m / s^{2}$
B. $2.5 m / s^{2}$
C. $0.2 m / s^{2}$
D. $1 m / s^{2}$

Answer: A

D Watch Video Solution

6. For a refrigerator, heat absorbed from source is 800 J and heat supplied to sink is 500
J then find coefficient of performance is :-
$\frac{5}{8}$
B. $\frac{8}{5}$
C. $\frac{5}{3}$
D. $\frac{3}{5}$

Answer: C

D Watch Video Solution

7. In a transformer number of turns in primary
circuit is 500 and in secondary circuit number of turns is 10 and load resistance to 10Ω and voltage of secondary coil is 50 V then find the current in primary circuit .
A. 0.2 A
B. 0.3 A
C. 0.4 A
D. 0.1 A

Answer: D

D Watch Video Solution

8. In damped oscillation graph between velocity and position will be :-
(1) $\frac{V / \underbrace{}_{x}}{x}$
A.

C.

(4)

Answer: C

D View Text Solution
9. If two protons are moving with speed
$v=4.5 \times 10^{5} \mathrm{~m} / \mathrm{s}$ parallel to each other then
find the ratio of electrostatic and magnetic force between them :-
A. 4.4×10^{5}
B. 2.2×10^{5}
C. 3.3×10^{5}
D. 1.1×10^{5}

Answer: A
10. Find the gravitation field at a distance of 20000 km from centre of earth.
(Given
$\left.R_{\text {earth }}=6400 \mathrm{~km}, M_{\text {earth }}=6 \times 10^{24} \mathrm{~kg}\right):$
A. $1.53 m / s^{2}$
B. $7.12 m / s^{2}$
C. $3.06 m / s^{2}$
D. $1.8 m / s^{2}$

D Watch Video Solution

11. Which of the following represents the dimension of capacitance?

$$
\begin{aligned}
& \text { A. } M^{-1} L i^{-2} A^{2} T^{4} \\
& \text { B. } M L^{2} A^{-2} T^{-4} \\
& \text { C. } M L A^{-1} T^{-4} \\
& \text { D. } M^{-1} L^{-1} A^{2} T^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. In the given figure find out magnetic field at point B (Given : $\mathrm{l}=2.5 \mathrm{~A}, \mathrm{r}=5 \mathrm{~cm}$)

A. $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-5} T$
B. $\pi\left[1+\frac{1}{\pi}\right] \times 10^{-6} T$

> C. $\pi\left(\frac{\pi+1}{\pi}\right) \times 10^{-6} T$
> D. $\left(\frac{\pi+1}{\pi}\right) \times 10^{-6} T$

Answer: A

D Watch Video Solution

13. Initially spring is in natural length and both
blocks are in rest condition. Then deter mine

maximum extension in spring $. \mathrm{K}=20 \mathrm{~N} / \mathrm{M}$
A. $\frac{20}{3} \mathrm{~cm}$
B. $\frac{10}{3} \mathrm{~cm}$
C. $\frac{40}{3} \mathrm{~cm}$
D. $\frac{19}{3} \mathrm{~cm}$

Answer: A

D Watch Video Solution

14. A transformer consists of 500 turn in primary coil and 10 turns in secondary coilk with the load of 10Ω Find out current in the
primary coil when the voltage across secondary coil 50 V .
A. 0.3 A
B. 0.1 A
C. 0.5 A
D. 0.7 A

Answer: B
(Watch Video Solution

15. In figure two infinitely long current carrying

wires are shown. If resultant magnetic field at point A is zero. Then determine current I_{1}.

A. 50A
B. 15 A

C. 30A

D. 25 A

Answer: C

D Watch Video Solution

16. A carnolt engine works between $27^{\circ} \mathrm{C}$ and
$127^{\circ} \mathrm{C}$. Heat supplied by the source is 500 J.

Then heat ejected to the sink is :
A. 1000 J
B. 667 J
C. 375 J
D. 500 J

Answer: C

D Watch Video Solution

17. Find out work done to expend soup bobble to radius $\mathrm{R}=5 \mathrm{~cm}$ (surface tension of water $=$ $0.1 \mathrm{~N} / \mathrm{m}$)
A. $2.8 \times 10^{-3} J$
B. $6.28 \times 10^{-3} \mathrm{~J}$
C. $3.7 \times 10^{-3} \mathrm{~J}$
D. $5.8 \times 10^{-3} J$

Answer: B

D Watch Video Solution

18. Two sources of sound S1 and s2 are moving
towards and away from a stationery observer
with same speed respectively . Observer
detects 3 beats per second. Find speed of sources (approximately).

Given, F1=F2=500 Hz, speed of air $=330 \mathrm{~m} / \mathrm{s}$

A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

19. In hydrogen atom find magnetic field at center in ground. State if Bohr's radius is $r_{0}=5 \times 10^{-11} \mathrm{~m}$.
A. 15.20 T
B. 10.90 T
C. 13.95 T
D. 20.00 T
20.

- $20 e^{-10} \mu C$
- $25 e^{-10} \mu C$
- $30 e^{-10} \mu C$
- $35 e^{-10} \mu C$

Answer: B

D View Text Solution
21. In a isobaric process the work done by a diatomic gas is 10 J , the heat given to the gas will be :
A. 35 J
B. 30 J
C. 45 J
D. 60 J

Answer: A

- Watch Video Solution

22. A capacitor of capacitance 15 nF having dielectirc slab of $\varepsilon_{r}=2.5$ dielectric strength $30 \mathrm{MV} / \mathrm{m}$ and potential difference $=30$ volt. Calculate the area of plate
A. $6.7 \times 10^{-4} m^{2}$
B. $4.2 \times 10^{-4} \mathrm{~m}^{2}$
C. $8.0 \times 10^{-4} \mathrm{~m}^{2}$
D. $9.85 \times 10^{-4} m^{2}$

Answer: A
23. An ideal gas initially at pressure 1 bar is being compressed from $30 m^{3}$ to $10 m^{3}$ volume and its temperature decreases from 320 K to 280 K then find final pressure of gas.
A. 2.625 bar
B. 3.4 bar
C. 1.325 bar
D. 4.5 bar

Answer: A

- Watch Video Solution

24. Distance between sun and earth is 2×10^{8}
km , temperature of sun 6000 K , radius of sun
$7 \times 10^{5} \mathrm{~km}$, if emmisivity of earth is 0.6 , then
find out temperature of earth in thermal equilibrimum.
A. 400 K
B. 300 K

C. 500 K

D. 600 K

Answer: B

D Watch Video Solution

25. Number of visible lines in Balmer series.
A. 2
B. 4
C. 3
D. 5

Answer: B

D Watch Video Solution

26. Ratio of electric and magnetic field due to
moving point charge if its speed is
$4.5 \times 10^{5} \mathrm{~m} / \mathrm{s}$
A. 2×10^{11}
B. 3×10^{11}
C. 2×10^{8}
D. 3×10^{12}

Answer: A

- Watch Video Solution

27. In toroid magnetic field magnetic field on
axis will be radius $=0.5 \mathrm{~cm}$, current $=1.5 \mathrm{~A}$,
turns $=250$, permeability $=700$
A. 7.5 Tesla
B. 10.5 Tesla
C. 4.5 Tesla
D. 15.5 Tesla

Answer: B

D Watch Video Solution

28. The current density is a solid cylindrical wire a radius R, as a function of radial distance r is given by $J(r)=J_{0}\left(1-\frac{r}{R}\right)$. The total
current in the radial regon $\mathrm{r}=0$ to $r=\frac{R}{4}$ will be :

$$
\begin{aligned}
& \text { A. } \frac{5 J_{0} \pi R^{2}}{32} \\
& \text { B. } \frac{5 J_{0} \pi R^{2}}{96} \\
& \text { C. } \frac{3 J_{0} \pi R^{2}}{64} \\
& \text { D. } \frac{J_{0} \pi R^{3}}{128}
\end{aligned}
$$

Answer: B

29. In maxwell's speed distribution curve, for
N_{2} gas, the average of |relative velocity| between two molecules at 300 k will be : -
A. $300 \mathrm{~m} / \mathrm{sec}$
B. $610 \mathrm{~m} / \mathrm{sec}$
C. $920 \mathrm{~m} / \mathrm{sec}$
D. zero

Answer: B

D View Text Solution
30. N_{2} gas is heated from 300 kg temperature to 600 k through an isobaric process. Then
find the change in the entropy of the gas ($\mathrm{n}=1$ mole)
A. $10 \mathrm{~J} / \mathrm{k}$
B. $20 \mathrm{~J} / \mathrm{k}$
C. $30 \mathrm{~J} / \mathrm{k}$
D. $40 \mathrm{~J} / \mathrm{k}$

Answer: B
31. Assertion : In desert area, days get hot fastly and the nights get cold fastly .

Reason : The specific heat capacity for air and land is less than that of water.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is the currect explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

32. Assertion : For communication antennae length should be comparable to $\lambda(\iota \sim \lambda)$

Reason : It leads to maximum power
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is the currect explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

33. Assertion: Amplitude modulation shows more interference than frequency modulation with noise.

Reason: Interference is function of amplitude of modulation wave with carrier wave.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is the currect explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

34. Assertion: For an element generally
$N \geq Z$ ($\mathrm{N}=$ number of neutrons, $\mathrm{Z}=$ atomic number)

Reason: Neutrons always experience attractive nuclear force.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is the currect explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

35. Assertion : Positive feedback is essential for converting a transistor into an oscillator.

Reason : Positive feedback works between cutoff and saturation region.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
36. Assertion : Vibrational degree of freedom
of a di-atomic gas molecule appears at every
high temperature

Reason : Di-atomic gas has two vibrational degree of freedom in one direction.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is the currect explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

37. Assertion : NH3 is liquidities more easily
than CO_{2}.
Reason : Critical temperature of NH 3 is more than CO_{2}.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is the currect explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D View Text Solution

38. Assertion : Even though net external force
on a body is zero, momentum need not be conserved.

Reason : The internal interaction between
particles of a body cancels out momentum of each other
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is the currect explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D View Text Solution

