đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - AllMS PREVIOUS YEAR

PAPERS

AlIMS 201926 MAY EVENING SHIFT

Physics
1.

After switch is closed current drawn from the

battery is :

A. 6 A
B. 1.5 A
C. $3 A$
D. 4 A

Answer: C

D View Text Solution

2. Time period of oscillation for given

combination will be :

A. $2 \pi \sqrt{\frac{m\left(K_{1}+K_{2}\right)}{K_{1} K_{2}}}$
B. $2 \pi \sqrt{\frac{m}{K_{1}+K_{2}}}$
C. $2 \pi \sqrt{\frac{m K_{1} K_{2}}{K_{1}+K_{2}}}$
D. $2 \pi \sqrt{\frac{m K_{1}}{K_{2}}}$

Answer: A

D View Text Solution

3. For a wire $\frac{R}{l}=\frac{1}{2}$ and length of wire is
$l=5 \mathrm{~cm}$. If potential differrence of 1 V is
applied across it current through wire will be :
($\mathrm{R}=$ Resistance)
A. 40 A
B. 4 A
C. 25 A
D. 2.5 A

Answer: A
(Watch Video Solution
4. If modulation index $\mu=\frac{1}{2}$ and $V_{2}=2$ then $V_{C}=$?
A. 4
B. 2
C. 6
D. 8

Answer: A

D Watch Video Solution
5. A body of mass $5 \times 10^{3} \mathrm{~g}$ kg moving with speed $2 \mathrm{~m} / \mathrm{s}$ collides with a body of mass $15 \times 10^{3} \mathrm{~kg}$ inelastically \& sticks to it. Then loss in K.E. of the system will be :
A. $7.5 k J$
B. $15 k J$
C. $10 k J$
D. $5 k J$

Answer: A

6. A disc of radius is rotatating with angular frequency $10 \mathrm{rad} / \mathrm{sec}$. A block of mass 2 kg is to be put on the disc frication coefficient between disc and block is $\mu_{K}=0.4$, then find
the maximum distance from axis where the block can be placed without slidding:
A. 2 cm
B. 3 cm
C. 4 cm
D. 6 cm

Answer: C

D View Text Solution

7. Angular magnification of telescope if focal
length of objective and eye lenses are 10 cm
and 10 mm respectively and tube length is

11cm:
A. 10
B. 5
C. 100
D. 50

Answer: A

D Watch Video Solution

8. An electron is moving in a circle of radius

2 m with speed $4 \mathrm{~m} / \mathrm{s}$. Find the acceleration of
the electron
A. $8 m / s^{2}$

$$
\text { B. } 4 m / s^{2}
$$

C. $16 m / s^{2}$
D. $10 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

- Watch Video Solution

9. A container of height 10 cm is filled with
water. There is hole at bottom. Find the
pressure difference between point A \& B .

A. 1000 Pa
B. zero
C. 1 Pa
D. 100 Pa

Answer: A

D View Text Solution

10. A coil is placed in y-z plane making an angle of 30° with x-axis. The current through coil is

I , and number of turns are N . If a magnetic
field of strength ' B ' is applied in positive x direction, then find the torque experienced by coil: (Radius of coil is R)
$\left(N=100, I=1 A, r=2 m, B=\frac{1}{\pi} T\right)$
A. $100 N-m$
B. $50 N-m$
C. $200 N-m$
D. $150 N-m$

Answer: C

D Watch Video Solution
11. In YDSE $a=2 m m, \mathrm{D}=2 \mathrm{~m}, \lambda=500 \mathrm{~mm}$.

Find distance of point on screen from central
maxima where intensity becomes 50% of

central maxima

A. $1000 \mu m$
B. $500 \mu m$
C. $250 \mu \mathrm{mu}$
D. $125 \mu \mathrm{~m}$

Answer: D
(Watch Video Solution
12. A sample which has half life of 10^{33} year. If initial number of nuclei of the sample is 26×10^{24}. Then find out of the number of nuclei decayed in 1 year.
A. 1.82×10^{-7}
B. 182×10^{-7}
C. 18.2×10^{-7}
D. 1820×10^{-7}

Answer: C

13. If a small orifice is made at a height of 0.25
m from the ground, the horizontal range of
water stream will be :-

A. 46.5 cm
B. 56.6 cm
C. 76.6 cm
D. 86.6 cm

Answer: D

D View Text Solution

14. A capacitor is connected to a battery of voltage V . Now a di-electric slab of di-electric constant k is completely inserted between the plates, then the final charge on the capacitor will be : (If initial charge is q_{0})
A. $\frac{\varepsilon_{0} A}{d} V$
B. $\frac{k \varepsilon_{0} A}{d} V$
C. $\frac{\varepsilon_{0} A}{k d} A$
D. zero

Answer: B

D Watch Video Solution
15. The unit of magnetic flux is
A. Tesla
B. Gauss
C. Webar
D. Webar $/ m^{2}$

Answer: C

D Watch Video Solution

16. Calculate the mean $\%$ error in five observations:
$80.0,80.5,81.0,81.5,82$
A. 0.74%
B. 1.74%
C. 0.38%
D. 1.38%

Answer: A

D Watch Video Solution

17. Calculate focal length of given lens if the magnification is -0.5 .

A. 6.66 cm
B. 5.44 cm
C. 3.88 cm
D. 1.38 cm

Answer: A
(D) View Text Solution
18. Tranformer
$\rightarrow E_{P}=1000 \mathrm{~V}, I_{P}=50 \mathrm{~A}$
$200 \mathrm{~V} \rightarrow 80$ houses

Resistance of secondary coild will be :
A. 2Ω
B. 3Ω
C. 1Ω
D. 4Ω

Answer: C
19. The magnetic flux has the dimension
A. $M T^{-1} L^{2} Q^{-1}$
B. $M T^{-2} L^{3} Q^{-1}$
C. $M T^{-1} L^{-1} Q$
D. $M T L^{2} Q$

Answer: A

D Watch Video Solution
20. Which state of triply ionised Beryllium
$\left(B e^{+++}\right)$the same orbital radius as that of
the ground state hydrogen ?
A. 1
B. 2
C. 3
D. 4

Answer: A
21. In LCR series circuit source voltage is 120
volt and voltage in inductor 50 volt and resistance is 40 volt then determine voltage in capacitor.
A. $V_{C}=10(5-8 \sqrt{2})$
B. $V_{C}=10(5+8 \sqrt{2})$
C. $V_{C}=20(5+8 \sqrt{2})$
D. $V_{C}=10(5+7 \sqrt{2})$

Answer: B
22. Determine the pressure difference in tube of non-uniform cross sectional area as shown in figure $\Delta P=$?

$$
d_{1}=5 \mathrm{~cm}, V_{1}=4, d_{2}=2 \mathrm{~cm}, V_{2}=?
$$

A. 304200 Pa
B. 304500 Pa

C. 302500 Pa

D. 303500 Pa

Answer: B

D View Text Solution

23. $m x^{2}-b x+k=0$

Find time after which of the energy will be come half of initial maximum value in damped forced oscillation .

$$
\begin{aligned}
& \text { A. } t=\frac{m}{b}+\frac{1}{2} \ln 2 \\
& \text { B. } t=\frac{m}{b} \times \frac{2}{3} \ln 2 \\
& \text { C. } t=\frac{m}{2}-\frac{1}{2} \ln 2 \\
& \text { D. } t=\frac{m}{b} \times \frac{1}{2} \ln 2
\end{aligned}
$$

Answer: D

D Watch Video Solution

24. α particle is revolving in radius r with frequency f then find value of magnetic dipole moment.
A. $2 e v r$
B. evr
C. 3evr
D. 4 evr

Answer: B

D Watch Video Solution
25. In given thermodynamic process determine efficiency of cycle .
$A B, E F, C D \rightarrow$ isothermal
$\eta=\frac{Q_{1}-Q_{2}}{Q_{1}}=?$

D View Text Solution

26. Determine coefficient of performance of given temperature limit.
$T_{1}=27^{\circ} C$ [outside fridge]
$T_{2}=-23^{\circ} C$ [inside fridge]
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

27. Assertion : A charge particle is released particle is released from rest in magnetic field then it will move in circular path.

Reason : Work done by magnetic field is non
zero.

- Watch Video Solution

28. Assertion : Water drop stick to glass
surface.

Reason : Water have properties of surface tension.

D Watch Video Solution
29. Assertion : Photodiode current work in
reverse bias.

Reason : Change in diode increases with increase in intensity.

D Watch Video Solution

30. Assertion : Coefficient of performance in refrigrator may be greater than one.

Reason : Heat extracted from lower temperature reservoir.
31. Assertion : Binding energy increase with increases atomic mass number.

Reason : Density of nucleus increase with increases in atomic mass number.

D View Text Solution

32. Assertion : When electron and holes combine then this reaction is exothermic.

Reason : Hole electron can not combine.
33. Assertion : Binding energy per unit nucleon increase in atomic mass number .

Reason : Density of nucleus increases with increase in mass number.
(D) View Text Solution

