

PHYSICS

BOOKS - AIIMS PREVIOUS YEAR PAPERS

AIIMS 2019 26 MAY EVENING SHIFT

After switch is closed current drawn from the

battery is :

A. 6A

B. 1.5 A

 $\mathsf{C.}\,3A$

D. 4A

Answer: C

2. Time period of oscillation for given combination will be :

A.
$$2\pi\sqrt{\frac{m(K_1+K_2)}{K_1K_2}}$$

B. $2\pi\sqrt{\frac{m}{K_1+K_2}}$
C. $2\pi\sqrt{\frac{mK_1K_2}{K_1+K_2}}$
D. $2\pi\sqrt{\frac{mK_1}{K_2}}$

View Text Solution

Answer: A

3. For a wire $\frac{R}{l}=\frac{1}{2}$ and length of wire is $l=5~{ m cm}$. If potential differrence of 1V is

applied across it current through wire will be :

(R = Resistance)

A. 40 A

B. 4A

C. 25 A

D. 2.5 A

Answer: A

4. If modulation index $\mu=rac{1}{2}$ and $V_2=2$ then $V_C = ?$ A. 4 B. 2 C. 6 D. 8

Answer: A

Watch Video Solution

5. A body of mass $5 \times 10^3 g$ kg moving with speed 2 m/s collides with a body of mass $15 \times 10^3 kg$ inelastically & sticks to it. Then loss in K.E. of the system will be :

A. 7.5kJ

 $\mathsf{B}.\,15kJ$

 $\mathsf{C.}\,10kJ$

D. 5kJ

Answer: A

6. A disc of radius is rotatating with angular frequency 10 rad/sec. A block of mass 2 kg is to be put on the disc frication coefficient between disc and block is $\mu_K = 0.4$, then find the maximum distance from axis where the block can be placed without slidding:

A. 2cm

B. 3cm

C. 4 cm

D. 6cm

Answer: C

7. Angular magnification of telescope if focal length of objective and eye lenses are 10 cm and 10 mm respectively and tube length is 11cm:

A. 10

B. 5

C. 100

D. 50

Answer: A

> Watch Video Solution

8. An electron is moving in a circle of radius 2m with speed 4 m/s . Find the acceleration of the electron

A. $8m/s^2$

 $\mathsf{B.}\,4m\,/\,s^2$

C.
$$16m/s^2$$

D. $10m/s^2$

Answer: A

9. A container of height 10 cm is filled with water. There is hole at bottom. Find the

pressure difference between point A & B.

A. 1000 Pa

B. zero

C. 1 Pa

D. 100 Pa

Answer: A

10. A coil is placed in y-z plane making an angle of 30° with x-axis . The current through coil is I, and number of turns are N. If a magnetic field of strength 'B' is applied in positive xdirection, then find the torque experienced by coil: (Radius of coil is R)

$$\left(N=100, I=1A, r=2m, B=rac{1}{\pi}T
ight)$$

A. 100N - m

B.
$$50N - m$$

C.
$$200N - m$$

D.
$$150N-m$$

Answer: C

Watch Video Solution

11. In YDSE a=2mm, D = 2m, $\lambda=500$ mm.

Find distance of point on screen from central

maxima where intensity becomes $50\,\%$ of

central maxima

A. $1000 \mu m$

B. $500 \mu m$

C. 250μ mu

D. $125 \mu m$

Answer: D

Watch Video Solution

12. A sample which has half life of 10^{33} year . If initial number of nuclei of the sample is 26×10^{24} . Then find out of the number of nuclei decayed in 1 year.

```
A. 1.82 	imes 10^{-7}
```

```
B. 182 	imes 10^{-7}
```

C. $18.2 imes 10^{-7}$

D. $1820 imes10^{-7}$

Answer: C

13. If a small orifice is made at a height of 0.25 m from the ground, the horizontal range of water stream will be : -

A. 46.5cm

 $\mathsf{B.}\,56.6cm$

C. 76.6*cm*

 $\mathsf{D.}\,86.6cm$

Answer: D

14. A capacitor is connected to a battery of voltage V. Now a di-electric slab of di-electric constant k is completely inserted between the plates, then the final charge on the capacitor will be : (If initial charge is q_0)

Answer: B

15. The unit of magnetic flux is

A. Tesla

B. Gauss

C. Webar

D. Webar $/m^2$

Answer: C

Watch Video Solution

16. Calculate the mean % error in five observations :

80.0, 80.5, 81.0, 81.5, 82

A. 0.74~%

B. 1.74 %

$\mathsf{C}.\,0.38~\%$

D. 1.38~%

Answer: A

Watch Video Solution

17. Calculate focal length of given lens if the

magnification is -0.5.

A. 6.66cm

 $\mathsf{B.}\,5.44cm$

C. 3.88cm

 $\mathsf{D}.\,1.38cm$

Answer: A

18. Tranformer \rightarrow

 $ightarrow E_P = 1000V, I_P = 50A$

200V
ightarrow 80 houses

Resistance of secondary coild will be :

A. 2Ω

B. 3Ω

 $\mathsf{C}.\,1\Omega$

D. 4Ω

Answer: C

Watch Video Solution

19. The magnetic flux has the dimension

A.
$$MT^{-1}L^2Q^{-1}$$

B. $MT^{-2}L^{3}Q^{-1}$

- C. $MT^{-1}L^{-1}Q$
- D. MTL^2Q

Answer: A

Watch Video Solution

20. Which state of triply ionised Beryllium (Be^{+++}) the same orbital radius as that of the ground state hydrogen ?

- A. 1
- B. 2
- C. 3
- D. 4

Answer: A

21. In LCR series circuit source voltage is 120 volt and voltage in inductor 50 volt and resistance is 40 volt then determine voltage in capacitor.

A.
$$V_C=10ig(5-8\sqrt{2}ig)$$

B.
$$V_C=10ig(5+8\sqrt{2}ig)$$

C.
$$V_C=20ig(5+8\sqrt{2}ig)$$

D.
$$V_C=10ig(5+7\sqrt{2}ig)$$

Answer: B

22. Determine the pressure difference in tube of non-uniform cross sectional area as shown in figure $\Delta P=?$

 $d_1 = 5cm, V_1 = 4, d_2 = 2cm, V_2 = ?$

A. 304200 Pa

B. 304500 Pa

C. 302500 Pa

D. 303500 Pa

Answer: B

View Text Solution

23.
$$mx^2 - bx + k = 0$$

Find time after which of the energy will be come half of initial maximum value in damped forced oscillation .

$$\begin{aligned} \mathsf{A}.\,t &= \frac{m}{b} + \frac{1}{2} \mathrm{ln}\,2\\ \mathsf{B}.\,t &= \frac{m}{b} \times \frac{2}{3} \mathrm{ln}\,2\\ \mathsf{C}.\,t &= \frac{m}{2} - \frac{1}{2} \mathrm{ln}\,2\\ \mathsf{D}.\,t &= \frac{m}{b} \times \frac{1}{2} \mathrm{ln}\,2 \end{aligned}$$

Answer: D

24. α particle is revolving in radius r with frequency f then find value of magnetic dipole moment .

A. 2evr

B. evr

C. 3evr

D. 4evr

Answer: B

25. In given thermodynamic process determine

efficiency of cycle .

 $AB, EF, CD \rightarrow$ isothermal

$$\eta = rac{Q_1 - Q_2}{Q_1} = \ ?$$

View Text Solution

26. Determine coefficient of performance of given temperature limit.

- $T_1=27^{\,\circ}\,C$ [outside fridge]
- $T_2=\,-\,23^{\,\circ}\,C$ [inside fridge]

A. 4

B. 5

C. 6

D. 7

Answer: B

27. Assertion : A charge particle is released

particle is released from rest in magnetic field

then it will move in circular path.

Reason : Work done by magnetic field is non

zero.

28. Assertion : Water drop stick to glass surface.

Reason : Water have properties of surface tension.

Watch Video Solution

29. Assertion : Photodiode current work in reverse bias.

Reason : Change in diode increases with

increase in intensity.

30. Assertion : Coefficient of performance in

refrigrator may be greater than one.

Reason : Heat extracted from lower

temperature reservoir.

Watch Video Solution

31. Assertion : Binding energy increase with

increases atomic mass number.

Reason : Density of nucleus increase with

increases in atomic mass number.

View Text Solution

32. Assertion : When electron and holes

combine then this reaction is exothermic .

Reason : Hole electron can not combine.

Watch Video Solution

33. Assertion : Binding energy per unit nucleon increase in atomic mass number . Reason : Density of nucleus increases with

increase in mass number.

