©゙" doubtnut

India's Number 1 Education App

PHYSICS

NCERT - NCERT PHYSICS(ENGLISH)

SYSTEMS OF PARTICLES AND

ROTATIONAL MOTION

Solved Example

1. Find the centre of mass of three particle at
the vertices of an equilateral triangle. The
$100 g, 150 g$, and $200 g$ respectively. Each side of the equilateral triangle is 0.5 m along.

- Watch Video Solution

2. Locate the centre of mass of uniform triangular lamina and a uniform cone.
3. Find the centre of mass of a uniform L
shaped lamina (a thin flat plate) with dimension as shown in Fig. The mass of the lamina is 3 kg .

D Watch Video Solution

4. Find the scalar and vector paroducts of two
vectors.
$a=(3 \hat{i}-4 \hat{j}+5 \hat{k})$ and $b=(-2 \hat{i}+\hat{j}-3 \hat{k})$
5. The force $7 \hat{i}+3 \hat{j}-5 \hat{k}$ acts on a particle whose position vector is $\hat{i}-\hat{j}+\hat{k}$. What is the torque of a given force about the origin ?

- Watch Video Solution

6. Show that the angular momentum about any
point of a single particle moving with constant
velocity remains constant throughout the motion.
7. Show that moment of a couple does not depend on the point about which you take the moments.

D Watch Video Solution

8. A metal bar 70 cm long and 4.00 kg in mass is
supported on two knife edges placed 10 cm
from each end. A 6.00 kg weight is suspended
at 30 cm from one end. Find the reactions at
the knife edges. Assume the bar to be of uniform cross-section and homogeneous.

- Watch Video Solution

9. A $3 m$ along ladder weighing 20 kg leans on a
frictionless wall. Its feet rest on the floor $1 m$
from the wall. Find the rection forces of the wall and the floor.
10. What is the moment of inertia of a circular disc about one of its diameters ?

- Watch Video Solution

11. The moment of inertia of a straight thin rod of mass M and length I about an axis perpendicular to its length and passing through its one end, is

- Watch Video Solution

12. What is the moment of inertia of a ring about a tangent to the circle of the ring ?

D Watch Video Solution

13. Obtain Eq. (7.38) from first principles.

- View Text Solution

14. The angular speed of a moton wheel is increased from 1200 rpm to 3120 rpm in 16 seconds. (i) What is the angular acceleration,
assuming the acceleration to be uniform ?

How many revolutions does the engine make during this time?

- Watch Video Solution

15. A cord of negligible mass is wound round the rim of a flywheel of mass 20 kg and radius 20 cm . A steady pull of 25 N is applied on the cord as shown in Fig. The flywheel is mounted on a horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when $2 m$ of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this point. Assume that the wheel stars from
rest.
(d) Compare answers to parts (b)and (c).

D View Text Solution

16. Three bodies, a ring, a soild cylinder and a soild sphere roll down the same inclined plane without slipping. They start from rest. The radii of the bodies are identical. Which of the bodies reaches the ground with maximum velocity?
17. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie on the body?
(Watch Video Solution
18. In the $H C I$ molecule, the separation between the nuclei of the two atoms is about $1.27 \AA\left(1 \AA=10^{-10} m\right)$. Find the approximate
location of the c.m of the molecule, given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus?

D Watch Video Solution

3. A child is standing at one end of a long trolley moving with a speed v on a smooth horizontal track. If the child starts running towards the other end of the trolley with a speed u, the centre of mass of the system (trolley + child) will move with a speed :

(D) Watch Video Solution

4. Show that the area of the triangle contained between the vector \vec{a} and \vec{b} is one half of the magnitude of $\vec{a} \times \vec{b}$

D Watch Video Solution

5. Show that $\vec{a} \cdot(\vec{b} \times \vec{c})$ is equal in magnitude to the volume of the parallelpiped formed by the vectors \vec{a}, \vec{b} and \vec{c}
6. Find the components along the x, y, z axes of the angular momentum \vec{L} of a particle, whose position vector is \vec{r} with components x, y, z and momentum is \vec{p} with components p_{x}, p_{y} and p_{z}. Show that if the particle moves only in the $x-y$ plane, the angular momentum has only a z-component.

D Watch Video Solution

7. Two particles each of mass m and speed v, travel in opposite direction along parallel lines separated by a distance d. Show that the vector angular momentum of this system of particles is the same about any point taken as origin.

D Watch Video Solution

8. A non-uniform bar weight W and length L is
suspended by two strings of negligible weight as shown in figure. The angles made by the strings with the vertical are θ_{1} and θ_{2}
respectively. The distance d of the centre of gravity of the bar from its left end is

D Watch Video Solution

9. A car weighs 1800 kg . The distance between
its front and back axles is 1.8 m . Its centre of
gravity is $1.05 m$ behind the front axle.

Determine the force exerted by the level
ground on each front wheel and each back wheel.

D Watch Video Solution

10. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.
(b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $\frac{1}{4} M R^{2}$, find the moment of inertia about an axis normal to the disc passing through a point on its edge.

- View Text Solution

11. Torques of equal magnitude are applied to
hollow cylinder and a solid sphere, both having
the same mass and same radius. The cylinder is
free to rotate about its standard axis of symmetry, and the sphere is free to rotate
about an axis passing through its centre. which
of the two will acquire a greater angular speed after a given time ?

- Watch Video Solution

12. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 s^{-1}$. The radius of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder ? What is the magnitude of angular momentum of the cylinder about its axis ?
13. A child stands at the centre of a turn table
with his two arms outstretched. The turn table
is set rotating with an angular speed of 40 rpm .

How much is the angular speed of the child, if he folds his hands back reducing the moment of inertia to $(2 / 5)$ time the initial value ?

Assume that the turn table rotates without friction.
(b) Show that the child's new $K . E$. of rotation
is more than the initial K. E. of rotation. How do you account for this increase in $K . E$. ?

(D) Watch Video Solution

14. A rope of negligible mass is wound around a hollow cylinder of mass 3 kg and radius 40 cm .

What is the angular acceleration of the cylinder, if the rope is pulled with a force of $30 N$? What is the linear acceleration of the rope ? Assume that there is no slipping.

- Watch Video Solution

15. To maintain a rotor at a uniform angular speed of $200 \mathrm{rad} \mathrm{s}^{-1}$, an engine needs to transmit a torque of 180 Nm . What is the power of the engine required?

- Watch Video Solution

16. From a uniform disc of radius R, a circular section of radius $R / 2$ is cut out. The centre of the hole is at $R / 2$ from the centre of the original disc. Locate the centre of mass of the resulting flat body.

(D) Watch Video Solution

17. A metre stick is balanced on a knife edge at its centre. When two coins, each of mass $5 g$ are put one on of the other at the 12 cm mark, the stick is found to balanced at 45 cm . The mass of the metre stick is.

- Watch Video Solution

18. A solid wooden sphere rolls down two different inclined planes of the same height
but of different inclinations. (a) Will it reach the bottom with same speed in each case?
(b) Will it take longer to roll down one inclined plane than other ? Explain.

D Watch Video Solution

19. A hoop of radius $2 m$ weight 100 kg .lt rolls
along a horizontal floor so that its centre of mass has a speed of $20 \mathrm{cms}^{-1}$. How much work has to be done to stop it ?
20. The oxygen molecule has a mass of
$5.30 \times 10^{-26} \mathrm{~kg}$ and a moment of inertia of
$1.94 \times 10^{-46} \mathrm{kgm}^{2}$ about an axis through its
centre perpendicular to the line joining the two
atoms. Suppose the mean speed of such a molecule in a gas is $500 \mathrm{~m} / \mathrm{s}$ and that its kinetic energy of rotation is two thirds of its kinetic energy of translation. Find the average angular velocity of the molecule.

D Watch Video Solution

21. A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane, the centre of mass of the cylinder has a speed of $5 \mathrm{~m} / \mathrm{s}$.
(a) How far will the cylinder go up the plane ?
(B) How long will it take to return to the bottom ?

D Watch Video Solution

22. As shown in Fig. the two sides of a step
ladder $B A$ and $C A$ are $1.6 m$ long and hinged
at A. A rope $D E, 0.5 m$ is tied half way up. A weight 40 kg is suspended from a point $F, 1.2 m$ from B along the ladder $B A$. Assuming the floor to be fricionless and neglecting the weight of the ladder, find the tension in the rope and forces exerted by the floor on the ladder. (Take $g=9.8 m / s^{2}$)
(Hint. Consider the eqilibrium of each side of
the ladder separately.)

Floor

D View Text Solution
23. A man stands on a rotating platform, with his arms stretched horizontal holding a 5 kg
weight in each hand. The angular speed of the
platform is 30 revolutions per minute. The man
then brings his arms close to his body with the
distance of each weight from the axis changing
from 90 cm to 20 cm . moment of inertia of the man together with the platform may be taken to be constant and equal $t 7.6 \mathrm{kgm}^{2}$. (a) What is
the his new angular speed ? (Neglect friction.)
(b) Is kinetic energy conserved in the process ?

If not, from where does the change come about ?
(D) Watch Video Solution
24. A bullet of mass $10 g$ and speed $500 \mathrm{~m} / \mathrm{s}$ is
fired into a door and gets embedded exactly at
the centre of the door. The door is 1.0 m wide
and weight 12 kg . It is hinged at one end and rotates about a vertical axis practically without friction. Find the angular speed of the door just after the bullet embeds into it.(Hint. The moment of inertia of the door about the vertical axis at one end is $M L^{2} / 3$)

- Watch Video Solution

25. Two discs of moments of inertia I_{1} and I_{2} about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident . What is the angular speed of the two-disc system ?

Datch Video Solution

26. (a) Prove the theorem of perpendicular axes.
(Hint : Square of the distance of a point (x, y) in
the $x-y$ plane from an axis through the origin
and perpendicular to the plane is
^ $\left.(x 2)+y^{2}\right)$.
(b) Prove the theorem of parallel axes.
(Hint : If the centre of mass of a system of n particles is chosen to be the origin $\left.\sum m_{i} r_{i}=0\right)$.

- View Text Solution

27. Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined
plane of a height h is given by
$v^{2}=\frac{2 g h}{\left(1+k^{2} / R^{2}\right)}$
using
dynamical
consideration (i.e. by consideration of forces
and torque). Note k is the radius of gyration of
the body about its symmetry axis, and R is the radius of the body. The body starts from rest at the top of the plane.

- Watch Video Solution

28. A disc rotating about its axis with angular speed ω_{0} is placed lightly (without any
translational pull) on a perfectly frictionless table. The radius of the disc is R. What are the linear velocities of the points A, B and C on the disc shown in Fig. Will the disc roll in the direction indicated ?

D Watch Video Solution

29. (i) Explain why friction is necessary to make the disc to roll in the direction indicated. (ii)

Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins. (iii) What is the force of friction after perfect rolling begins?

30. A solid disc and a ring, both of radius 10 cm are placed on a horizontal table simultaneously, with initial angular speed equal to $10 \pi \mathrm{rad} / \mathrm{s}$. Which of the two will start to roll earlier ? The coefficient of kinetic friction is $\mu_{k}=0.2$.

- Watch Video Solution

31. A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°.

The coefficient of static friction is $\mu_{s}=0.25$.
(a) How much is the force of friction acting on the cylinder?
(b) What is the work done against friction during rolling ?
(c) If the inclination θ of plane is increased, at what value of θ does the cylinder begin to skid and not roll perfectly?

D Watch Video Solution

32. Read each statement below carefully and
state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the same direction as the direction of motion of c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero. (c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).
33. Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass :
(a) Show $P=P_{i}+m_{i} V$
where p_{i} is the momentum of the ith particle
(of mass m_{i}) and $p_{i}=m_{i} v_{t} \operatorname{Notev}_{i}$ is the velocity of the ith particle relative to the centre of mass.

Also, prove using the definition of the centre of mass $\sum p_{t}=0$
(b) Show $K=K^{\prime}+1 / 2 M V^{2}$
where K is the total kinetic energy of the system of particles. K^{\prime} is the total kinetic energy
of the system when the particle velocities are
taken with respect to the centre of mass and
$M V^{2} / 2$ is the kinetic energy of the translation
of the system as a whole (i.e. of the centre of mass motion of the system). The result has been used in Sec. 7.14.
(c) Show $L=L^{\prime}+R \times M V$
where $L^{\prime}=\sum r_{t}^{\prime} \times p_{t}^{\prime}$ is the angular momentum of the system about the centre of mass with velocities taken relative to the centre of mass. Remember $r_{i}^{\prime}=r_{i}-R$, rest of the notation is the standard notation used in the chapter. Note L' and $M R \times V$ can be said to be
angular momenta, respectively, about and of
the centre of mass of the system of particles.
(d) Show $\frac{d L^{\prime}}{d t}=\sum r_{i}^{\prime} \times \frac{d p^{\prime}}{d t}$

Further, show that
$\frac{d L^{\prime}}{d t}=\tau^{\prime}{ }^{\prime}{ }^{\text {ext }}$
where $\tau_{\text {ext }}$ is the sum of all external torques
acting on the system about the centre of mass.
(Hint : Use the definition of centre of mass and
third law of motion. Assume the internal forces
between any two particles act along the line
joining the particles.)

D View Text Solution

