

MATHS

BOOKS - GURUKUL BOOKS & PACKAGING MATHS (HINGLISH)

FEBRUARY 2020

Others

1. In
$$\triangle ABC$$
 , if a=2,b=3 and $\sin A = rac{2}{3}$, then $\angle B =$

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{2}$$

$$\operatorname{C.}\frac{\pi}{3}$$

D.
$$\frac{\pi}{6}$$

Watch Video Solution

2. If
$$\overrightarrow{a}=3\hat{i}-\hat{j}+4\hat{k}, \overrightarrow{b}=2\hat{i}+3\hat{j}-\hat{k}$$
 $\overrightarrow{c}=-5\hat{i}+2\hat{j}+3\hat{k}$, then $\overrightarrow{a}.\left(\overrightarrow{b}\times\overrightarrow{c}\right)$ is

and

A. 100

B. 110

C. 109

D. 108

Watch Video Solution

3. The cartesian equation of the line passing through the points A(4, 2, 1) and B (2, -1, 3) is

A.
$$\frac{x+4}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$$

B.
$$\frac{x-4}{-2} = \frac{y-2}{-3} = \frac{z-1}{-2}$$

C.
$$\frac{x-4}{2} = \frac{y-2}{3} = (z-1)(-2)$$

D.
$$\frac{x-4}{-2} = \frac{y-2}{3} = \frac{z-1}{-2}$$

Answer:

4. If the line $\overrightarrow{r}=\left(\hat{i}-2\hat{j}+3\hat{k}\right)+\lambda\left(2\hat{i}+\hat{j}+2\hat{k}\right)$ is parallel to the plane $\overrightarrow{r}\left(3\hat{i}-2\hat{j}+m\hat{k}\right)=10$ then value of m is

$$A.-2$$

$$\mathsf{C}.\pm 2$$

Answer:

$$\mathsf{C.}\,\frac{1}{e}$$

$$\mathrm{D.} - \frac{1}{e}$$

Watch Video Solution

7. If $\int_{0^k} 4x^3 dx = 16$ then the value of k is

A. 1

B. 2

C. 3

Watch Video Solution

8. Order and degree of differential equations

$$rac{d^4y}{dx^4} = \left[1 + \left(rac{dy}{dx}
ight)^2
ight]^3$$
 respectively are

A. order:1, degree:4

B. order:4, degree:1

C. order:6, degree:1

D. order:1, degree:6

Watch Video Solution

9. Answer the following questions: Write the dual of $p \wedge {\mbox{-}} p = F$

Watch Video Solution

10. Answer the following questions: Find the general solution of an 2x = 0

11. Answer the following questions: Differentiate $\sin(x^2+x)$ w.r.t. x

Watch Video Solution

12. Answer the following questions: If X o B(n,p) and n=10. E(X)=5 , then find the value of p.

A. -

В.

C.

D.

Answer:

13. Using truth table verify that
$$extstyle (p ee q) \equiv extstyle p \wedge extstyle q$$

14. Find the matrix of co - factors for matrix
$$\begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$$

15. Find the angle between the lines represented by

$$3x^2 + 4xy - 3y^2 = 0$$

16. ar a and ar b are non-collinear vectors. If ar c=(x-2)ar a+ar b and ar d=(2x+1)ar a-ar b are collinear, then find the value of x

Watch Video Solution

17. If a line makes angles 90° , 135° , 45° with X,Y and Z axes respectively , then find its direction cosines.

18. Express the following circuit in symbolic form S_1, S_2, S_3

Watch Video Solution

19. Differentiate $\log(\sec x + \tan x)$ w.r.t. x

Watch Video Solution

20. Evaluate $\int \!\! rac{1}{x^2+4x+8} dx$

21. Evaluate $\int_0^{\frac{\pi}{2}} \cos^2 x dx$

Watch Video Solution

22. Solve the differential equation $\frac{dy}{dx} = x^2y + y$

Watch Video Solution

23. Find expected value of the random Variable X whose probability mass function is $X=x,1,2,3P(X=x)\frac{1}{5},\frac{2}{5},\frac{2}{5}$

24. If $y = x \log x$, then find $\frac{d^2y}{dx^2}$

Watch Video Solution

25. State the converse, inverse and contrapositive of the conditional statement : 'If a sequence is bounded, then it is convergent'

Watch Video Solution

26. Show that

$$\sin^{-1}\!\left(\frac{8}{17}\right) + \sin^{-1}\!\left(\frac{3}{5}\right) = \sin^{-1}\!\left(\frac{77}{85}\right)$$

27. Show that the points A(2,1, -1), B(0, -1, 0), C(4, 0, 4) and D(2,0,1) are coplanar.

Watch Video Solution

28. If $\triangle ABC$ is right angled at B , where A(5,6,4), B(4,4,1) and C(8,2,x) , then find the value of x.

29. Find the equation of the line passing through the point (3,1,2) and perpendicular to the lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3} \text{ and } \frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$

30. Find the distance of the point $\hat{i}+2\hat{j}-\hat{k}$ from the plane \overrightarrow{r} . $\left(\hat{i}-2\hat{j}+4\hat{k}\right)=10$

- **31.** If $e^x + e^y = e^{x+y}$, show that $\frac{dy}{dx} = -e^{y-x}$
 - Watch Video Solution

32. The surface area of a spherical balloon is increasing at the rate of $2\frac{cm^2}{\sec}$. At what rate the volume of the balloon is increasing when the radius of the balloon is 6 cm?

Watch Video Solution

33. Find the apporximate value of e^{1005} : given e=2.7183

34. Evaluate: $\int \frac{x^2 \tan^{-1} x^3}{1 + x^6} dx$

Watch Video Solution

35. Solve the differential equation $\dfrac{dy}{dx} + y = e^{-x}$

Watch Video Solution

36. If f(x)=kx, 0 It x It 2 = 0 otherwise, is a probability density function of a random variable X , then find (i) value of k, (ii) P(1 It x It 2).

37. Show that a homogeneous equations of degree two in x and y , i.e., $ax^2+2hxy+by^2=0$ represents a pair of lines passing through the origin if $h^2-2ab\geq 0$.

Watch Video Solution

38. Solve the following linear programming problem:

Maximize : z=150x+250y Subject to :

$$4x + y \le 40, 3x + 2y \le 60, x \ge 0, y \le 0$$

39. Solve the following equations by inverse method:

$$x + 3y + 3z = 12, x + 4y + 4z = 15, x + 3y + 4z = 13$$

Watch Video Solution

40. In triangle ABC, if a+b+c = 2s, then prove that $\sin\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{bc}}$ with usual notations

41. Function f(x) is continuous on its domain [-2,2],where f(x) = $\frac{\sin ax}{x}$ +2, for $-2 \le x < 0$

$$=3x+5$$
, for $0\leq x\leq 1$

$$=\sqrt{x^2+8}-b, f \text{ or 1 lt x le 2}$$

Find the value of a+b+2

Watch Video Solution

42. prove that :
$$\int\!\!\sqrt{x^2+a^2}dx$$
 = $\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log\!\left|x+\sqrt{x^2+a^2}\right|$ +c

- 43. A fair coin is tossed 8 times. Find the probability that:
- (1) it shows no head
- (2) it shows head at least once.

44. prove that :
$$\int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_0^a f(2a-x) dx$$

