©゙’ doubtnut
 India's Number 1 Education App

MATHS

BOOKS - GURUKUL BOOKS \& PACKAGING MATHS (HINGLISH)

JULY 2017

Section I

1. Select and write the most appropriate answer from the given alternatives in each of the following :

The inverse of the matrix $\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$ is
A. $\frac{1}{5}\left[\begin{array}{ll}3 & -1 \\ -2 & 1\end{array}\right]$
B. $\frac{1}{5}\left[\begin{array}{ll}3 & 1 \\ -2 & 1\end{array}\right]$
C. $\frac{1}{5}\left[\begin{array}{ll}-3 & 1 \\ -2 & 1\end{array}\right]$
D. $\frac{1}{5}\left[\begin{array}{ll}3 & -1 \\ 2 & -1\end{array}\right]$

Answer:

- Watch Video Solution

2. Select and write the appropriate answer from the given alternatives in each of the following subquestions:
if
$\widehat{a}=3 \hat{i}-\hat{j}+4 \hat{k}, \bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}, \bar{c}=-5 \hat{i}+2 \hat{j}+3 \hat{k}$
then $\bar{a} .(\bar{b} \times \bar{c})=\ldots$.
A. 100
B. 101
C. 110
D. 109

Answer:

D Watch Video Solution

3. If a line makes angles $900, \quad 1350, \quad 450$ with the x, y and z -axes respectively, find its direction cosines.
A. $0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$
B. $0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$
C. $1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. $0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

Answer:

- Watch Video Solution

4. If the line $\bar{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ is parallel to the plane $\bar{r} \cdot(3 \hat{i}-2 \hat{j}+p \hat{k})$ find the value of p.
5. If a line makes angles α, β, γ with the coordinate axes, prove that $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=0$.

D Watch Video Solution

6. the negation of $\forall, n \in N, n+7>6$ is \ldots

D Watch Video Solution

7. Find the angle between the vectors with direction ratios proportional to $4,-3,5$ and $3,4,5$.
8. If $\bar{a}, \bar{b}, \bar{c}$ are the position vectors of the points A, B, C respectively such that $3 \bar{a}+5 \bar{b}=8 \bar{c}$, the ratio in which A divides $B C$ is

(D) Watch Video Solution

9. If $\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}$, then find the value of x.

D Watch Video Solution

10. Write the convere, inverse and contrapositive following statement:
"If it rains then match will be cancelled."

- Watch Video Solution

11. Find P and k if the equation
$p x^{2}-8 x y+3 y^{2}+14 x+2 y+k=0$
represents a pair of perpendicular lines.

- Watch Video Solution

12. Find the equation of the plane through the intersection of the planes
$3 x$
$y+2 z$
$4=0$
and
x $+$ $y+z$
$2=0$ and the point (2 ,
$2,1)$.
13. Let $A(\bar{a})$ and $B(\bar{b})$ be any two points in the space and $R(\bar{r})$ be a point on the line segment AB dividing it internally in the ration $m: n$ the prove that $\bar{r}=\frac{m \bar{b}+n \bar{a}}{m+n}$. Hence find the position vector of R which divides the line segment joining the point $A(1,-2,1)$ and $B(1,4,-2)$ internally in the ratio $2: 1$.

- Watch Video Solution

14. The angles of $\triangle A B C$ are in A.P. and $b: c=\sqrt{3}: \sqrt{2}$ find $\angle A, \angle B, \angle C$.
15. Find the vector wuation of the line passing through the points $A(3,4,-7)$ and $B(6,-1,1)$

- Watch Video Solution

16. Find the general solution of
$\cot x+\tan x=2 \cos e c x$

- Watch Video Solution

17. Express the following switching circuit in symbolic
form of logic. Costruct its switching table and write your
conlusion form it :

D View Text Solution

18. If $A=\left(\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$, verify that $\mathrm{A}(\operatorname{adj} \mathrm{A})=|A| \cdot I$.
19. A company manufacture is bicyles and tricycles each of which must be processed through machines A and B.

Machine A has maximum of 120 hours avaiable and machine B has maximum of 180 hours available hours on machine A and 3 hours on machine B. Machine A and 10 hours on machine B.

If profit are ₹ 180 for a bicyle and ₹ 220 for a tricyle , formulate and solve the L.P.P to determine the number of bicycles and tricycle that should be manufactured in order to maximize the profit .

- View Text Solution

20. If θ is the measure of acute angle between the pair of line repseented by $a x^{2}+2 h x y+b y^{2}=0$, then prove that
$\tan \theta=\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|, a+b \neq 0$
Hence find the acture angle between the lines $x^{2}-4 x y+y^{2}=0$

- Watch Video Solution

Section li

1. Given $f(x)=2 x, x>0,0, x \leq 0$ then $\mathrm{f}(\mathrm{x})$ is
A. discontinus and not differentiable at $\mathrm{x}=0$
B. continuous and differentiable at $x=0$
C. discontinous and differentiable at $\mathrm{x}=0$
D. continuous and not differentiable at $\mathrm{x}=0$

Answer:

D Watch Video Solution

2. If $\int_{0}^{\propto}\left(3 x^{2}+2 x+1\right) d x=14$, then $\propto=\ldots \ldots$.
A. 1
B. 2
C. -1
D. -2

D Watch Video Solution

3. Prove that the function given by $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing in R.
A. increasing
B. decreasing
C. increasing and decreasing
D. neither increasing nor decreasing

Answer:

4. Differentiate 3^{x} w.r.t. $\log (3 x)$

- Watch Video Solution

5. Check whether the conditions of Rolle's theorem are satisfied by the following functions or not:

$$
f(x)=(x-1)(x-2)(x-3), x \in[1,3]
$$

D Watch Video Solution

6. Evaluate $\int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} d x$
7. Find the area of the region bounded by the curve $x^{2}=16 y$, lines $y=2, y=6$ and Y - axis lying in the first quadrant.

D Watch Video Solution

8. Given $X \sim B(n, P)$

If $n=10$ and $p=0.4$, find $E(X)$ and $\operatorname{Var}(X)$.

D Watch Video Solution

9. It the function $f(x)=\frac{\left(5^{\sin x}-1\right)^{2}}{x \log (1+2 x)}$ for $x \neq 0$ is continous at $\mathrm{x}=0$ find $\mathrm{f}(0)$.
10. The probability mass function for X number of major defects in a randomly selected appliance of a certain type is :

$X=x$	0	1	2	3	4
$P(X=x)$	0.08	0.15	0.45	0.27	0.05

Find the expected value and variance of X.

D Watch Video Solution

11. Suppose that 80% of all families own a television set.

If 5 families are inervised at random, find the probability that:
(a) three families own a television set.
(b) at least two families own a television set.

- Watch Video Solution

12. Find the approximate values of:
$\cos \left(60^{\circ} 30^{\prime}\right)$, given $1^{\circ}=0.0175^{c}$ and $\sin 60^{\circ}=0.8660$

(D) Watch Video Solution

13. The rate o growth of bacteria is proportional to the number present . IT intially, there were 1000 bacteria and
the number doubles in 1 hours. Find the number of bacteria after $2 \frac{1}{2}$ hours . [take $\left.\sqrt{2}=1.414\right]$

D Watch Video Solution

14. $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$, if f is an even function 0 , if f is an odd function.

- Watch Video Solution

15. If $f(x)$ is continuous on $0-4,2$], defined as

$$
f(x)=6 b-3 a x, \text { for }-4 \leq x<-2
$$

$=4 x+1$, for $-2 \leq x \leq 2$,
find the value of $a+b$.
16. If u and v are two functions of x then prove that:
$\int u v d x=u \int v d x-\int\left[\frac{d u}{d x} \int v d x\right] d x$

D Watch Video Solution

17. Probability distribution of X is given by

$X=x$	1	2	3	4
$P(X=x)$	$0 \cdot 1$	$0 \cdot 3$	0.4	0.2

Find $P(X \leq 2)$ and obtain cumulative distribution function of X .
18. Solve the differential equation. $\frac{d y}{d x}-y=e^{x}$ Hence find the particluar solution for $\mathrm{x}=0$ and $\mathrm{y}=1$.

- Watch Video Solution

19. If $y=f(x)$ and $x=g(y)$, where g is the inverse of f, i.e.,
$g=f^{-1}$ and if $\frac{d y}{d x}$ and $\frac{d x}{d y}$ both exist and $\frac{d x}{d y} \neq 0$, show that $\frac{d y}{d x}=\frac{1}{(d x / d y)}$.
Hence, (1) find $\frac{d}{d x}\left(\tan ^{-1} x\right)$
(2) If $y=\sin ^{-1} x,-1 \leq x \leq 1,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, then
show that $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$ where $|x|<1$.
20. $\int \frac{8}{(x+2)\left(x^{2}+4\right)} d x$

- Watch Video Solution

