

MATHS

BOOKS - GURUKUL BOOKS & PACKAGING MATHS (HINGLISH)

JULY 2017

1. Select and write the most appropriate answer from the

given alternatives in each of the following :

The inverse of the matrix $egin{pmatrix} 1 & -1 \ 2 & 3 \end{pmatrix}$ is

A.
$$\frac{1}{5} \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$$

B. $\frac{1}{5} \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$
C. $\frac{1}{5} \begin{bmatrix} -3 & 1 \\ -2 & 1 \end{bmatrix}$
D. $\frac{1}{5} \begin{bmatrix} 3 & -1 \\ 2 & -1 \end{bmatrix}$

Answer:

Watch Video Solution

2. Select and write the appropriate answer from the given alternatives in each of the following sub-questions:

if

 $\widehat{a}=3\widehat{i}-\widehat{j}+4\widehat{k}, ar{b}=2\widehat{i}+3\widehat{j}-\widehat{k}, ar{c}=-5\widehat{i}+2\widehat{j}+3\widehat{k}$ then $ar{a}.~ig(ar{b} imesar{c}ig)$ =

A. 100

B. 101

C. 110

D. 109

Answer:

3. If a line makes angles 90o, 135o, 45o with the x, y and z-axes respectively, find its direction cosines.

Answer:

Watch Video Solution

4. If the line $\bar{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ is parallel to the plane $\bar{r} \cdot (3\hat{i} - 2\hat{j} + p\hat{k})$ find the value of p.

5. If a line makes angles $lpha, eta, \gamma$ with the coordinate axes,

prove that $\cos 2lpha + \cos 2eta + \cos 2\gamma + 1 = 0.$

8. If $\bar{a}, \bar{b}, \bar{c}$ are the position vectors of the points A,B,C respectively such that $3\bar{a} + 5\bar{b} = 8\bar{c}$, the ratio in which A divides BC is

9. If
$$an^{-1}(2x) + an^{-1}(3x) = rac{\pi}{4}$$
, then find the value

of x.

Watch Video Solution

10. Write the convere, inverse and contrapositive following statement: "If it rains then match will be cancelled."

11. Find P and k if the equation

$$px^2 - 8xy + 3y^2 + 14x + 2y + k = 0$$

represents a pair of perpendicular lines.

13. Let $A(\bar{a})$ and $B(\bar{b})$ be any two points in the space and $R(\bar{r})$ be a point on the line segment AB dividing it internally in the ration m : n the prove that $\bar{r} = \frac{m\bar{b} + n\bar{a}}{m+n}$. Hence find the position vector of R which divides the line segment joining the point A(1,-2,1) and B(1,4,-2) internally in the ratio 2: 1.

14. The angles of riangle ABC are in A.P. and $b{:}c=\sqrt{3}{:}\sqrt{2}$

find $\angle A$, $\angle B$, $\angle C$.

15. Find the vector wuation of the line passing through

the points A(3,4, -7) and B (6,-1, 1)

17. Express the following switching circuit in symbolic form of logic . Costruct its switching table and write your

conlusion form it :

View Text Solution

18. If
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$$
, verify that A (adj A) = $|A| \cdot I$.

19. A company manufacture is bicyles and tricycles each of which must be processed through machines A and B. Machine A has maximum of 120 hours avaiable and machine B has maximum of 180 hours available hours on machine A and 3 hours on machine B. Machine A and 10 hours on machine B.

If profit are \gtrless 180 for a bicyle and \gtrless 220 for a tricyle , formulate and solve the L.P.P to determine the number of bicycles and tricycle that should be manufactured in order to maximize the profit .

20. If heta is the measure of acute angle between the pair of line repseented by $ax^2+2hxy+by^2=0$, then prove that

$$an heta = igg| rac{2\sqrt{h^2-ab}}{a+b} igg|, a+b
eq 0$$

Hence find the acture angle between the lines $x^2 - 4xy + y^2 = 0$

Watch Video Solution

1. Given $f(x)=2x, x>0\,, 0, x\leq 0$ then f(x) is

A. discontinus and not differentiable at x = 0

B. continuous and differentiable at x = 0

C. discontinous and differentiable at x = 0

D. continuous and not differentiable at x= 0

Answer:

Vatch Video Solution

2. If
$$\int_0^\infty ig(3x^2+2x+1ig) dx = 1$$
4, then $\ \propto \ = \dots \dots$

B. 2

C. -1

 $\mathsf{D.}-2$

Answer:

- 3. Prove that the function given by $f(x) = x^3 3x^2 + 3x 100$ is increasing in R.
 - A. increasing
 - B. decreasing
 - C. increasing and decreasing
 - D. neither increasing nor decreasing

Answer:

7. Find the area of the region bounded by the curve $x^2 = 16y$, lines y = 2, y = 6 and Y - axis lying in the first quadrant.

9. It the function
$$f(x) = rac{\left(5^{\sin x}-1
ight)^2}{x\log(1+2x)}$$
 for $x
eq 0$ is

continous at x = 0 find f(0).

10. The probability mass function for X number of major defects in a randomly selected appliance of a certain type is :

X = x	0	1	2	3	4
P(X=x)	0.08	0.15	0.45	0.27	0.05

Find the expected value and variance of X.

11. Suppose that 80% of all families own a television set.

If 5 families are inervised at random, find the probability

that :

(a) three families own a television set.

(b) at least two families own a television set.

13. The rate o growth of bacteria is proportional to the number present . IT intially, there were 1000 bacteria and

the number doubles in 1 hours. Find the number of bacteria after $2rac{1}{2}$ hours . [take $\sqrt{2}=1.414$]

Watch Video Solution

14.
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
, if f is an even function

0, if f is an odd function.

Watch Video Solution

15. If f (x) is continuous on 0-4, 2], defined as

$$f(x)=6b-3ax, ext{for}-4\leq x<\ -2$$

 $x=4x+1, \hspace{1em} ext{for} -2\leq x\leq 2,$

find the value of a + b.

16. If u and v are two functions of x then prove that:

Watch Video Solution

17. Probability distribution of X is given by

X = x	1	2	3	4
P(X = x)	0.1	0.3	0.4	0.2

Find $P(X \leq 2)$ and obtain cumulative distribution

function of X.

18. Solve the differential equation. $\frac{dy}{dx} - y = e^x$ Hence

find the particluar solution for x = 0 and y = 1.

Watch Video Solution

19. If y = f(x) and x = g(y), where g is the inverse of f, i.e., $g = f^{-1}$ and if $\frac{dy}{dx}$ and $\frac{dx}{dy}$ both exist and $\frac{dx}{dy} \neq 0$, show that $\frac{dy}{dx} = \frac{1}{(dx/dy)}$. Hence, (1) find $\frac{d}{dx}(\tan^{-1}x)$ (2) If $y = \sin^{-1}x$, $-1 \le x \le 1$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, then show that $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ where |x| < 1.

20.
$$\int \frac{8}{(x+2)(x^2+4)} dx$$