©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - GURUKUL BOOKS \& PACKAGING

MATHS (HINGLISH)

JULY 2018

Section I

1. If the sum of the slopes of the lines represented by
$x^{2}+k x y-3 y^{2}=0$ is twice their product, thent the
vlaue of ' k ' is
A. 2
B. 1
C. -1
D. -2

Answer: D

D Watch Video Solution

2.

the
vectors
$\hat{i}-2 \hat{j}+\hat{k}, a \hat{i}-5 \hat{j}+3 \hat{k}$ and $5 \hat{i}-9 \hat{j}+4 \hat{k}$
are
coplanar, then the value of a is
A. 3
B. -3
C. 2
D. -2

Answer: C

(Watch Video Solution

3. The acute angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6} \quad$ and \quad the plane $10 x+2 y-11 z=8$ is
A. $\sin ^{-1}\left(\frac{8}{21}\right)$
B. $\cos ^{-1}\left(\frac{8}{21}\right)$

$$
\begin{aligned}
& \text { C. } \sin ^{-1}\left(\frac{1}{8}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{1}{8}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. Wirte the dual of each of the following statements
(a) $\sim p \wedge(q \vee c)$
(b) Shweta is a doctor or Seema is a teacher.
5. In any $\triangle A B C$, prove that $a c \cos B-b c \cos A=\left(a^{2}-b^{2}\right)$

- Watch Video Solution

6.

Show
that
the
equation
$2 x^{2}+x y-y^{2}+x+4 y-3=0$ represents a pair of lines.

- Watch Video Solution

7. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the points
A, B, C respectively such that $3 \vec{a}+5 \vec{b}=8 \vec{c}$ then
find the ratio in which C divides $A B$.

D Watch Video Solution

8.

If the
$A(-1,3,2), B(-4,2,-2) \operatorname{and} C(5,5, \lambda) \quad$ are
collinear, find the value of λ.

- Watch Video Solution

9. Show that $[(p \vee q) \vee r] \leftrightarrow[p \vee(q \vee r)]$ is a tautology
10. Find the inverse of $\left(\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right)$ by the adjoint method.

- Watch Video Solution

11. If the angle between the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is equal to the angle between the lines $2 x^{2}-5 x y+3 y^{2}=0$, then show that $100\left(h^{2}-a b\right)=(a+b)^{2}$.
12. Prove that three vectors \vec{a}, \vec{b} and \vec{c} are coplanar if and only if there exists non-zero linear combination $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$.

D Watch Video Solution

13. Maximize $z=6 x+4 y$ subject to constraints,
$x \leq 2, x+y \leq 3,-2 x+y \leq 1, x y \geq 0$
Also find the maximum value of ' z '.

D Watch Video Solution

14. Find the general solution of the equation $\sin 2 x+\sin 4 x+\sin 6 x=0$.

- Watch Video Solution

15. Write the following statements in symbolic form and write their negatins :
(1) Mangoes are delicious, but expensive.
(2) A person is rich if and only if he is a software engineer.
(3) If diagonals of a parallelogram are perpendicular, then it is a rhombus. solution :
16. Express the following equations in matrix form and solve them by the method of reduction :
$x+y+z=6,3 x-y+3 z=6$ and $5 x+5 y-4 z=3$

D Watch Video Solution
17. The vector equation of the line passing through the point ($-1,-1,2$) and parallel to the line $2 x-2=3 y+1$
$=6 z-2$ is
18. A plane meets the coordinate axes in A, B, C such that eh centroid of triangle $A B C$ is the point (p, q, r). Show that the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$.

- Watch Video Solution

19. If α, β, γ are direction angles of a line I, then
prove that
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.
Hence, deduce that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.

D Watch Video Solution

20. Using the sine rule , prove the cosine rule.

D Watch Video Solution

Section Ii

1. Equation of the tangent to the curve $2 x^{2}+3 y^{2}-5=0$ at $(1,1)$ is
A. $2 x-3 y-5=0$
B. $2 x+3 y-5=0$
C. $2 x+3 y+5=0$
D. $3 x+2 y+5=0$

Answer: B

(D) Watch Video Solution

2. The order and degree of the differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{1}{6}}-\left(\frac{d y}{d x}\right)^{\frac{1}{3}}=0$ are respectively.
A. 3, 2
B. 2, 3
C. 6,3
D. 3,1
3. Given $X \sim B(n, p)$ if $p=0.6 E(X)=6$, then the value of $\operatorname{Var}(\mathrm{X})$ is
A. 2.4
B. 2.6
C. 2.5
D. 2.3

Answer: A
4. The displacement s of a particle at a time t is given bys $=t^{3}-4 t^{2}-5 t . \quad$ Find \quad its velocity and acceleration at $\mathrm{t}=2$.

D Watch Video Solution

5. If $y=\cos ^{-1}\left(1-2 \sin ^{2} x\right)$, find $\frac{d y}{d x}$

- Watch Video Solution

6. Evaluate : $\int \frac{1}{\sin x \cdot \cos ^{2} x} d x$
7. Solve the following differential equation: $\frac{x^{2} d y}{d x}=x^{2}+x y+y^{2}$

- Watch Video Solution

8. Obtain the probobility distribution of the number of sixes in two tosses of a fair die.

D Watch Video Solution

9. If $(x)=\frac{1-\sqrt{3} \tan x}{\pi-6 x}$, for $x \neq \frac{\pi}{6}$ is continous at $x=\frac{\pi}{6}$, find $f\left(\frac{\pi}{6}\right)$.
10. If $\sec ^{-1}\left(\frac{x+y}{x-y}\right)=a^{2}$, show that $\frac{d y}{d x}=\frac{y}{x}$.

D Watch Video Solution

11. Evaluate: $\int \frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)} d x$

D Watch Video Solution

12. A stone is dropped into a pand. Waves in the form of circles are generated and the radius of the outermost ripple increases at the rate of $2 \mathrm{inch} / \mathrm{sec}$.

How fast will the area of the wave increase?
(a) when the radius is 5 inch?
(b) after 5 seconds ?

D Watch Video Solution

13. Evaluate: $\int_{0}^{a} \frac{d x}{x+\sqrt{\left(a^{2}-x^{2}\right)}}$ or $\int_{0}^{\frac{\pi}{2}} \frac{d t h \eta}{1+\tan \theta}$

- Watch Video Solution

14. The rate o growth of bacteria is proportional to
the number present . IT intially, there were 1000 bacteria and the number doubles in 1 hours. Find the
number of bacteria after $2 \frac{1}{2}$ hours . [take $\sqrt{2}=1.414]$

- Watch Video Solution

15. Discuss the continous of the following function on its domain, where

$$
\begin{aligned}
& f(x)=x^{2}-4, \text { for } 0 \leq x \leq 2 \\
& =2 x+3, \text { for } 2<x \leq 4 \\
& =x^{2}-05, \text { for } 4<x \leq 6
\end{aligned}
$$

16. If $y=f(u)$ is differentiable function of u, and $u=g(x)$ is a differentiable function of x, then prove that $y=f$ $[g(x)]$ is a differentiable function of x and $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$.

D Watch Video Solution

17. Supose that 80% of all families own a elevision set. If 10 families are interviewed at random, find the probability that seven famileis own a television set.
18. If u and v are integrable function of x, then, show that $\int u . v . d x=u \int v d x-\int\left[\frac{d u}{d x} \int v d x\right] d x$. Hence evaluate $\int \log x d x$.

D Watch Video Solution

19. Property 6: If $f(x)$ is a continuous function defined on

$$
[0 ; 2 a]
$$

$\int_{0}^{2} a=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x$

- Watch Video Solution

20. Find k if the function $f(x)$ is defined by
$f(x)=k x(1-x)$, for $0<x<1$
$=0$, otherwise, is the probability density function (p.d.f.) of a random varible (r.v) X. Also find P $\left(X<\frac{1}{2}\right)$
