

MATHS

BOOKS - GURUKUL BOOKS & PACKAGING MATHS (HINGLISH)

MARCH 2019

Section A

1. Find the principal solution of $\cot x = -\sqrt{3}$

A.
$$\frac{\pi}{6}, \frac{5\pi}{6}$$

B.
$$\frac{5\pi}{6}, \frac{7\pi}{6}$$

c.
$$\frac{5\pi}{6}$$
, $\frac{11\pi}{6}$

D.
$$\frac{\pi}{6}$$
, $\frac{11\pi}{6}$

Answer: C

- **2.** The acute angle between the two planes x+y+2z
- = 3 and 3x 2y + 2z = 7 is

A.
$$\sin^{-1}\!\left(rac{5}{\sqrt{102}}
ight)$$

B.
$$\cos^{-1}\left(\frac{5}{\sqrt{102}}\right)$$

$$\mathsf{C.}\sin^{-1}\!\left(\frac{15}{\sqrt{102}}\right)$$

D.
$$\cos^{-1}\left(\frac{15}{\sqrt{102}}\right)$$

Answer: b

Watch Video Solution

3. Direction ratios of the line which is perpendicular to the lines with direction ratios (-1,2,2) and (0,2,1) are

A.
$$-2, -1, -2$$

B.
$$2, 1, 2$$

$$\mathsf{C.}\ 2,\ -1,\ -2$$

D.
$$-2, 1, -2$$

Answer:

Watch Video Solution

4. If $f(x)=(1+2x)^{1/x}, f \,\, ext{or} \,\, x
eq 0$ is continous at

$$x = 0$$
, then $f(0) =$

A. e

B. e^2

C. 0

D. 2

Answer: B

5.
$$\int \frac{dx}{9x^2+1}$$

A.
$$\frac{1}{3} \tan^{-1}(2x) + c$$

B.
$$\frac{1}{3} \tan^{-1} x + c$$

C.
$$\frac{1}{3} \tan^{-1}(3x) + c$$

D.
$$\frac{1}{3} \tan^{-1}(6x) + c$$

Answer: C

6. If $y=ae^{5x}+be^{-5x}$, then the differential equation

is

A.
$$\dfrac{d^2y}{dx^2}=25y$$

B.
$$rac{d^2y}{dx^2}=\ -\ 25y$$

C.
$$rac{d^2y}{dx^2}=\ -5y$$

D.
$$\frac{d^2y}{dx^2} = 5y$$

Answer: A

- 1. Write the truth values of the following statement
- 2 is a rational number and $\sqrt{2}$ is an irrational number.

Watch Video Solution

2. Write the truth values of the following statement

$$2+3=5 \text{ or } \sqrt{2}+\sqrt{3}=\sqrt{5}$$

Watch Video Solution

3. Find the volume of the parallelopiped, if the coterminus edges are given by the vectors $2\hat{i} + 5\hat{j} - 4\hat{k}$. $5\hat{i} + 7\hat{j} + 5\hat{k}$, $4\hat{i} + 5\hat{j} - 2\hat{k}$

4. Find the value of p, if the vectors
$$\,\hat{i}\,-2\hat{j}+\hat{k}$$
,

$$2\hat{i} - 5\hat{j} + p\hat{k} \; ext{and} \; 5\hat{i} - 9\hat{j} + 4\hat{k}$$
 are coplanar .

5. Show the equation of the points A (-7, 4, -2), B (-2,

1,0) and

C(3, -2, 2) are collinear.

6. Write the equation of the plane 3x + 4y - 2z = 5

the vector form .

in

7. If
$$y=x^x$$
 , find $\dfrac{dy}{dx}$ at $x=e$.

8. The equation of tangent to the curve $y=x^2+4x+1$ at (-1, -2) is

9. Evaluate: $\int \frac{(x+1)e^x}{\cos^2(xe^x)} dx$

Watch Video Solution

10. Evaluate : $\int_0^{\frac{\pi}{2}} \sin^2 x dx$.

Watch Video Solution

Section C

1. In ΔABC , prove that :

$$\sin\left(\frac{B-C}{3}\right) = \left(\frac{b-c}{a}\right)\cos\left(\frac{A}{2}\right)$$

Watch Video Solution

2. Show that \sin^{-1} , $\frac{5}{13} + \cos^{-1}$, $\frac{3}{5} = \tan^{-1}$, $\frac{63}{16}$.

Watch Video Solution

3. If $A(\bar{a})$ and $B(\bar{b})$ are any two points in the space and $R(\bar{r})$ be a point on the line segment AB dividing it internally in the ratio m : n , then prove that

:

$$ar{r}=rac{mar{b}+nar{a}}{m+n}$$

Watch Video Solution

4. The equation of line is 2x-2=3y+1=6z-2 find its direction ratios and also find the vector equation of the line .

Watch Video Solution

5. Discuss the continunity of the funcation

$$f(x) = rac{\log(2+x) - (\log(2-x))}{ an x} ext{for x}
otag
otag$$

$$= 1 \text{ for } x = 0$$

at the point x= 0

Watch Video Solution

6. The probablity distribution of a random variable X, the number of defects per 10 meters of a fabric is given by

x	0	1	2 2	3	4
$P\left(X=x\right)$	0.45	0.35	0.15	0.03	0.02

Find the variance of X.

7. For the following probability density function (p.d.f)

of X find : (i) P (X < 1), (ii)p(|X| < 1) if $f(x) = rac{x^2}{18'} - 3 < x < 3$, f(x) = 0 , otherwise

8. Given $X \sim B(n, p)$ if E(X) = 6, Var(X) = 4.2, find the value of n and p.

Section D

1. Find the symbolic form of the given switching circuit. Construct its switching table and interpret your result.

2. If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum

of first and third numbers we get 8 and if three times the first number added to the sum of second and third numbers we get 4. Find the numbers using matrices.

Watch Video Solution

3. In $\triangle ABC$, with usual notations prove that : $b^2 = c^2 + a^2 - 2ca \cos B$.

Watch Video Solution

4. In
$$\Delta ABC$$
, prove $\left(a-b\right)^2\cos^2$. $\frac{C}{2}+\left(a+b\right)^2\sin^2$. $\frac{C}{2}=c^2$

that

5. Find P and k if the equation

$$px^2 - 8xy + 3y^2 + 14x + 2y + k = 0$$

represents a pair of perpendicular lines.

Watch Video Solution

Maximize z = 3x + 5y subject to

6.
$$x + 4y \le 24 \quad 3x + y \le 21,$$
 $x + y \le 9 \quad x \ge 0, \ y \ge 0$

7. If $x=f(t),\,y=g(t)$ are differentiable functions of parameter 't' then prove that y is a differentiable function of 'x' and

$$rac{dy}{dx}=rac{rac{dy}{dt}}{rac{dx}{dt}},rac{dx}{dt}
eq 0$$

Hence find $\frac{dy}{dx}$ if $x = a \cos t$, $y = a \sin t$.

8.

$$f(x) = (x-1)(x-2)(x-3), x \in [0,4] \;\; ext{find} \;\; \, 'c' \;\; ext{if}$$

LMVT can be applied .

9. A rod of 108 meters long is bent to from a rectangle. Find its dimensions if the area is maximum.

Watch Video Solution

10.
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \log \Big(x + \sqrt{x^2 + a^2} + c \Big)$$

11. Evaluate $\int_0^{\frac{\pi}{4}} \log(1+\tan x) dx$

Watch Video Solution

13. Solve the differential equation :

$$(x+y)\frac{dy}{dx} = 1.$$

