

PHYSICS

BOOKS - GURUKUL BOOKS & PACKAGING PHYSICS (HINGLISH)

FEBRUARY 2019

Section A

1. If a detergent is dissolved in water, the surface tension of water

B. decreases
C. remains
D. becomes infinite
Answer:
Watch Video Solution
2. Specific heat capacity of water is
A. 8 R

A. increases

B.
$$\frac{7}{8}R$$

C. 9 R

$$\mathrm{D.}\,\frac{9}{7}R$$

Answer:

Watch Video Solution

3. The electric field intensity outisde the charged conductiong shpere of radius 'R' placed in a medium of permittivity \in at a

distance 'r' from the centre of the shhere in

terms of surface charge density σ is :

A.
$$\frac{\sigma}{\in} \left(\frac{R}{r}\right)^2$$

B.
$$\frac{\sigma}{\in} \left(\frac{r}{R}\right)^2$$

C.
$$\dfrac{\sigma}{\in} \left(\dfrac{R}{r^2}\right)^2$$

D.
$$\frac{\sigma}{\in} \left(\frac{r}{R}\right)^2$$

Answer:

4. An electron of energy 150 e V has wavelength of 10^{-10} m. The wavelength of a 0.60 keV electron is :

- A. 0.50Å
- B. 0.75Å
- C. 1.2Å
- D. 1.5 Å

Answer:

5. What is the value of tangential acceleration in U.C.M ?

Watch Video Solution

6. On heating a ferromagnetic substance above curie temperature

7. At which position of the plane of the rotating coil with the direction of magnetic field the e.m.f induced in the coil is maximum?

Watch Video Solution

8. Name the logic gate which generates high output when at least one input is high.

1. In Young's experiment interference bands were produced on a screen placed at 150 cm from two slits, 0.015 mm apart and illuminated by the light of wavelength $6500 \mbox{Å}$. Calculate the fringe width.

Watch Video Solution

2. The susceptibility of magnesium at 300 K is 1.2×10^{-5} What will be its susceptibility at 200 K?

3. The length of the second's pendulum in a clock is increases to 4 times its initial length.

Calculate the number of oscillations completed by the new pendulum in one minute.

4. A body of mass 1 kg is made to oscillate on a spring of force constant 16 N/m. Calculate (a) Angular frequncy, (b) Frequency of vibrations.

Watch Video Solution

5. Define capacitance of a capacitor and its SI unit.

6. RADIUS OF GYRATION

Watch Video Solution

7. Distinguish between p type and n type semiconductors

Watch Video Solution

8. Explain the terms (a) Transducer and (b)

Attenuation in communication system.

Section C

1. Obtain expression of energy of a particle at dfferent positions in the vertical circular motion.

Watch Video Solution

2. What is binding energy of a satellite?

3. State Hook's low. Define elastic limit and modulus of elasticity.

4. The rise of a liquid in a capillary tube depends on

5. Explain the reflection of transverse and longitudinal waves from a denser and a rarer medium.

Watch Video Solution

6. What is photelectric effect ? Define (i) Stopping potential (ii) Photoelectric work function.

7. PERFECTLY BLACK BODY

Watch Video Solution

8. When a resistor of 5Ω is connected across a cell, its terminal potential differnce is balanced by 140 cm of potentiometer wire and when a resistance of 8Ω is connected across the cell, the terminal potential difference is balanced by 160 cm of the potentiometer wire. Find the internal resistance of the cell.

Watch Video Solution

9. A cyclotron is used to acclerate protons to a kinetic energy of 5 MeV. If the radius and the frequency field in the cyclotron is 2T. Find the radius and the frequency needed for the applied alternating voltage of the cyclotron. (Given: Velocity of proton $= 3 \times 10^7 m/s$)

Watch Video Solution

10. The L-C parallel resonant circuit

11. Derive an expression for the frequency of spectral series by assuming the expression for the total energy of the election of hydrogen.

Watch Video Solution

12. State the low of radioactive decay. Hence derive the relation N= $\mathrm{Noe}^{-\lambda t}$. Represent it graphically.

Section D

1. Show that even as well as odd harmonics are present as overtones in the case of an air column vibrating in a pipe open at both the ends.

A wheel of momen of intertia 1 kg m^2 is rotating at a speed of 30 rad/s Due to friction on the axis, it comes to rest i n 10 mintes.

Calculate the average torque of the friction.

2. Explain the formation of stationary waves by analytical method. Shwo that nodes and antinodes are equally spaced in sationary waves.

The radius gyration of a body about an axis, at a distance of 0.4 m from its centre of mass is 0.5m. Find its radius of gyrtion about a parallel axis passing through its centre of mass.

3. Obtain an expression for potential of a particle performing S.H.M. What is the value of potential energy at (i) Mean position and (ii) Extreme position.

A stretched sonometer wiere is in unison with a tunning fork. When the length of the wire is increases by 5%, the number of bats heard paer second is 10. Final the frequency of the tuning fork.

4. From differential equation of linear S.H.M obtain an expression for acceleration. Velocity and displacement of a particle performing S.H.M.

A sononmeter wire 1 meter long weighing 2 g is in resonsnace with a tunning fork of frequency 300 Hz. Find tension in the sonometer wire.

5. Explain refraction of light the basis of wave theory: Hence prove the laws of refraction.

Two coherent sources of light having intensity ratio 81:1 produce interference frings Calculate the ratio of intensitites at the maxima and minima in the interference pattern.

6. State Brewster law and show that when light is incident at polarzing angle the reflected and refracted rays are mutually perpendicular to each other.

Mono chromatic light of wavelenght 4300 Å falls on slit of width 'a' For what value of a the first maximum falls at 30° ?

