đず doubtnut

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

GEOMETRIC CONSTRUCTIONS

511 Mark Each

1. $\triangle A M T \sim \triangle A H E$ and $\frac{M A}{H A}=\frac{7}{5}$ then which of the following is true ?
A. A-H-M
B. $A-M-H$
C. $\mathrm{M}-\mathrm{A}-\mathrm{H}$
D. A-T-E

- Watch Video Solution

2. $\Delta R H P \sim \Delta N E D$ and $\frac{H P}{E D}=\frac{4}{5}$ then which of the foloowing is true
A. $\Delta R H P$ is a bigger triangle
B. $\triangle R H P$ is a smaller triangle
C. Both the triangles are congruent
D. Bigger or smaller triangle cannot be determined

Answer: B

- Watch Video Solution

3. For the construction of a tangent to a circle without using its centre, the property used is
A. tangent segment theorem
B. inscribed angle theorem
C. tangent secant theorem
D. intersectiong chords theorem

Answer: C

- Watch Video Solution

521 Mark Each

1. Draw seg $A B$ of length 4.2 cm . Construct its perpendicular bisector.

D Watch Video Solution

2. Draw $\angle A B C=115^{\circ}$, construct its bisector
3. To devide a given line segment in a given ratio :

Draw seg PQ of length 7 cm . Divide it in the ratio $3: 2$

- Watch Video Solution

532 Marks Each

1. Draw a circle of radius 3 cm . Mark a point P on the circle. Draw tangent to the circle through point P using the centre of the circle Analysis

A circle of radius 3 cm can be drawn. Let the cemntre of the given circle be O and line I be the required tangent

We know, converse of tangent theorem states that , 'A line perpendicular to radius at its outer end is tangent .
\therefore We construct perpendicular to radius OP at point, then line I is the
required tangent .

2. Draw a circle of radius 3 cm . Take any point P on it. Draw tangent to the circle through point P without using the centre of the circle Analysis:

Through P, a chord can be drawn. Let it be PA. Draw any $\angle P B A$ in the alternate segment. Now and $\angle a P C$ can be constructed congrument to $\angle A B P$, then by converse of tangent secant angle theorem line PC is the required tangent.

1. Draw a cirle with centre P. Draw an are $A B$ of 100° measure Draw tangent to the circle at point A and B

- Watch Video Solution

2. Draw a circle of radius 3.3 cm . Draw diameter PQ. Draw tangents at P and Q . Write observation about the tangents.

- Watch Video Solution

3. Draw a circle with radiuys 3.4 cm . Draw a chord MN of length 5.7 cm in it. Construct tangents at point M and N to the circle
4. Draw a circle of radius 4.2 cm and centre O . Mark a point P at a distance of 7 cm from the centre. Draw tangents to the circle from Points P. (March '19)

- Watch Video Solution

554 Marks Each

1. $\triangle A B C \sim \Delta L M N$. In $\triangle A B C, A B=5.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=4.5 \mathrm{~cm}$. If $\mathrm{MN}=4.8 \mathrm{~cm}$ then construct $\triangle A B C$ and $\Delta L M N$

- Watch Video Solution

2. $\triangle P Q R \sim \triangle P M N$. In $\triangle P Q R, P Q=4 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$ and $\mathrm{PR}=6$ cm.

Construct $\triangle P Q R$ and $\triangle P M N$ such that $\frac{P R}{P N}=\frac{5}{3}$

Assigment 51

1. The number of tangents that can be drawn to a circle at a point on the circle is
A. 3
B. 2
C. 1
D. infinite

Answer: C

- Watch Video Solution

2. The maximum number of tangents that can be drawn to a circle from a point outside it is
A. 2
B. 1
C. one and only one
D. 0

Answer: A

- Watch Video Solution

3. If AD and PS are medians of $\triangle A B C$ and $\triangle P Q R$ respectively where $\triangle A B C \sim \triangle P Q R$, Prove that $\frac{A B}{P Q}=\frac{A D}{P S}$.
A. $\triangle A B C$ is bigger
B. $\triangle P Q R$ is bigger
C. Both triangles will be equal
D. cannot be decided

Answer: A

Assigment 52

1. Draw seg AB of length 5.1 cm . Draw its perpendicular bisector

- Watch Video Solution

2. Draw $A B=9.7 \mathrm{~cm}$. Take a point P on it such that $A-P-B$ and $A P=3.5$ cm . Through P draw a line perpendicular to seg AB.

- Watch Video Solution

3. Draw segment $A B$ of length 4 cm . Divide it in ratio $2: 3$
4. Draw $\angle P Q R=125^{\circ}$. Construct its bisector

- Watch Video Solution

Assigment 53

1. Construct tangent to a circle with centre A and radius 3.4 cm at any point P on it.

- Watch Video Solution

2. Draw any circle. Take any point on it and construct tangent at A without using the centre of the circle.
3. Complete the following activity to draw a tangent to a circle at a point on the circle

Draw a circle of radius 2.2 cm with O as centre

Take a point P on the circle and draw ray $O P$

Draw a perpendicular line to ray OP at point P

Name the perpendicular line as l, l is the tangent at point P

- Watch Video Solution

Assigment 54

1. Draw a circle of radius 2.7 cm and draw chord $P Q$ of length 4.5 cm .

Draw tangents at point P and Q without using the centre

- Watch Video Solution

2. Draw a circle with centre P and radius 3.1 cm . Draw a chord MN of length 3.8 cm . Draw tangents to the circle through points M and N.

- Watch Video Solution

3. Draw a circle with radius 3.2 cm . Construct tangents to the circle from a point at a distance of 6 cm from the centre

- Watch Video Solution

Assigment 55

1. $\triangle X Y Z \sim \triangle P Y R$. In $\triangle X Y Z, \angle Y=60^{\circ}, \mathrm{XY}=4.5 \mathrm{~cm}$ and $\mathrm{YZ}=5.1$ cm and $\frac{X Y}{P Y}=\frac{4}{7}$ then construct $\triangle X Y Z$ and $\triangle P Y R$
2. Draw a circle of radius 3.4 cm and centre E .

Take a point F on the circle.Take another point A such that E-F-A and $F A=4.1 \mathrm{~cm}$.

Draw tangents to the circle from point A.

- Watch Video Solution

3. $\triangle R S T \sim \triangle U A Y$. In $\triangle R S T$, $\mathrm{RS}=6 \mathrm{~cm}, \angle S=50^{\circ}$, $\mathrm{sT}=7.5 \mathrm{~cm}$, $\frac{R S}{U A}=\frac{5}{4}$. Construct $\triangle R S T$ and $\triangle U A Y$.

- Watch Video Solution

4. Construct $\triangle P Y Q$ such that, $\mathrm{PY}=6.3 \mathrm{~cm}, \mathrm{YQ}=7.2 \mathrm{~cm}, \mathrm{PQ}=5.8 \mathrm{~cm} . \mathrm{If}$ $\frac{Y Z}{Y Q}=\frac{6}{5}$, then construct $\triangle X Y Z$ similar to $\triangle P Y Q$.

- Watch Video Solution

5. Draw a sector, whose arc has angular measure 60° and radius 6 cm . Draw a circle touching the sides of the sector and the arc.

- Watch Video Solution

Examples For Practice

1. Construct tangent to a circle with centre A and radius 3.4 cm at any point P on it.

- Watch Video Solution

2. Draw a circle of radius 2.6 cm . Draw a tangent to the circle from any point on the circle.
3. Draw a circle of radius 4.2 cm . Take any point K on it. Draw a tangent to the circle without using centre of the circle.

- Watch Video Solution

4. Draw a circle with centre P and radius 3.1 cm . Draw a chord $M N$ of length 3.8 cm . Draw tangents to the circle through points M and N .

- Watch Video Solution

5. Draw a circle with radius 4.2 cm . Construct tangents to the circle from a point at a distance of 7 cm from the centre .

- Watch Video Solution

6. $\triangle A B C \sim \triangle P Q R$, in $\triangle A B C, \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{AC}=4.2 \mathrm{~cm}$. The corresponding sides of $\triangle A B C$ and $\triangle P Q R$ are in the ratio 2:
7. Construct $\triangle A B C$ and $\triangle P Q R$.

- Watch Video Solution

7. $\triangle R K N \sim \triangle S P V$. In $\triangle R K N, R K=6.4 \mathrm{~cm}$,
$\angle R=60^{\circ}, \angle K=50^{\circ}$ and $\frac{R N}{S V}=\frac{4}{3}$ then construct
$\triangle R K N$ and $\triangle S P V$.

- Watch Video Solution

8. $\triangle P S E \sim \triangle T S V$. In $\triangle P S E, P S=4.4 \mathrm{~cm}, \quad \mathrm{SE}=5.1 \mathrm{~cm}, \mathrm{PE}=5.5 \mathrm{~cm}$ and $\frac{P S}{T S}=\frac{5}{3}$.

Construct $\triangle P S E$ and $\triangle T S V$.

- Watch Video Solution

9.

$$
\triangle A M T \sim \triangle A H E
$$

$\triangle A M T, M A=6.3 \mathrm{~cm}, \angle M A T=120^{\circ}, A T=4.9 \mathrm{~cm}$ and $\frac{M A}{H A}=\frac{7}{5}$,

- Watch Video Solution

10.

$\Delta S H R \sim \Delta S V U$.
$\Delta S H R, S H=4.5 \mathrm{~cm}, H R=5.2 \mathrm{~cm}, S R=5.8 \mathrm{~cm}$ and $\frac{S H}{S V}=\frac{3}{5}$ construct $\triangle S V U$.

- Watch Video Solution

11. Two different points P and Q are given on one side of line AB. Draw a circle passing through the points P and Q touching the line $A B$ in point R.

- Watch Video Solution

12. Draw $\angle A B C=50^{\circ}$. Take a point S in the interior of $\angle A B C$. Draw a circle passing through point S and touching the sides of $\angle A B C$.

- Watch Video Solution

Example

1. (B) Solve any two of the following subquestions:
$\Delta X Y Z \sim \Delta D E F, X Y=5.1 \mathrm{~cm}, \mathrm{Y} \mathrm{Z}==3.9 \mathrm{~cm}, \mathrm{XZ}=6 \mathrm{~cm}, \mathrm{XY}: \mathrm{DE}=3: 2$, Construct $\triangle X Y Z$ and $\triangle D E F$.

- Watch Video Solution

2. $\triangle P Q R \sim \triangle P M N$. In $\triangle P Q R$, $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$, and $\mathrm{PR}=6 \mathrm{~cm}$. Construct $\triangle P Q R$ and $\triangle P M N$ such that $\frac{P R}{P N}=\frac{5}{3}$.

- Watch Video Solution

3. $\triangle P Q R \sim \triangle P M N$. In $\triangle P Q R$, $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$, and $\mathrm{PR}=6 \mathrm{~cm}$.

Construct $\triangle P Q R$ and $\triangle P M N$ such that $\frac{P R}{P N}=\frac{3}{5}$.

Lets Revise Certain Constructions Studied In The Previous Standards

1. Draw seg AB of length 4.2 cm . Construct its perpendicular bisector.

- Watch Video Solution

2. Draw $\angle A B C=115^{\circ}$, construct its bisector

- Watch Video Solution

3. To construct perpendicular to a line from a point P outside it.

Question : Draw line KL such that KL=4.5 cm.
Consider point outside it. Through P, draw a line perpendicular to line KL.
4. To construct an angle congruent to the given angle. Question : Construct $\angle P Q R$ congruent to given $\angle L M N$.

- Watch Video Solution

5. To construct a line parallel to a given line and passing through a given point outside the line.

Question : Draw a line I, take a point P outside it. Draw a line m || line I passing through point P.

- Watch Video Solution

6. To divide a given line segment into given number of equal parts.

Question : Draw segment PQ of length 5 cm . Divide it into 4 equal parts.
7. To divide a line segment in the given ratio.

Question : Draw segment PQ of length 5 cm . Divide it in the ratio 3:2.

- Watch Video Solution

8. To construct a triangle whose sides are given. Question : Construct
$\triangle A B C$ such that $\mathrm{AB}=4.2 \mathrm{~cm}, \mathrm{BC}=5.3 \mathrm{~cm}$ and $\mathrm{AC}=3.7 \mathrm{~cm}$.

- Watch Video Solution

Practice Set 41

1. $\Delta A B C \sim \Delta L M N$. In $\triangle A B C, A B=5.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=4.5 \mathrm{~cm}$. If
$\mathrm{MN}=4.8 \mathrm{~cm}$ then construct $\triangle A B C$ and $\triangle L M N$

- Watch Video Solution

2.

$, \mathrm{PQ}=4.2 \mathrm{~cm}, \mathrm{QR}=5.4 \mathrm{~cm}, \mathrm{PR}=4.8 \mathrm{~cm}$. Construct $\triangle P Q R$ and $\triangle L T R$ such that $\frac{P Q}{L T}=\frac{3}{4}$.

- Watch Video Solution

3. $\triangle R S T \sim \triangle X Y Z$.
$\triangle R S T, R S=4.5 \mathrm{~cm}, \angle R S T=40^{\circ}, S T=5.7 \mathrm{~cm}$.
Construct
$\triangle R S T$ and $\triangle X Y Z$ such that $\frac{R S}{X Y}=\frac{3}{5}$.

- Watch Video Solution

4.

$\triangle A M T \sim \triangle A H E . I n$
$\triangle A M T, A M=6.3 \mathrm{~cm}, \angle T A M=50^{\circ}, A T=5.6 \mathrm{~cm} \cdot \frac{A M}{A H}=\frac{7}{5}$. Construct $\triangle A H E$.

1. Construct a tangent to a circle with centre P and radius $3,2 \mathrm{~cm}$ at any point M on it.

- Watch Video Solution

2. Draw a circle of radius 2.7 cm . Draw a tangent to the circle at any point on it.

- Watch Video Solution

3. Draw a circle of radius 3.6 cm . Draw a tangent to the circle at any point on it without using the centre.
4. Draw a circle of radius 3.3 cm . Draw diameter PQ. Draw tangents at P and Q . Write observation about the tangents.

- Watch Video Solution

5. Draw a circle with radiuys 3.4 cm . Draw a chord MN of length 5.7 cm in it. Construct tangents at point M and N to the circle

- Watch Video Solution

6. Draw a circle with centre P and radius 3.4 cm .Take a point Q at a distance 5.5 cm from the centre.Construct tangents to the circle from point Q .

- Watch Video Solution

7. Draw a circle with radius 4.1 cm . Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

- Watch Video Solution

Problem Set 4

1. The number of tangents that can be drawn to a circle at a point on the circle is
A. 3
B. 2
C. 1
D. 0

Answer: C

2. The maximum number of tangents that can be drawn to a circle from a point outside it is
A. 2
B. 1
C. One and only one
D. 0

Answer: A

- Watch Video Solution

3. If $\triangle A B C \sim \triangle P Q R$ and $\frac{A B}{P Q}=\frac{7}{5}$, then.
A. $\triangle A B C$ is bigger
B. $\triangle P Q R$ is bigger
C. Both triangles will be equal
D. Cannot be decided

Answer: A

D Watch Video Solution

4. Draw a circle with centre O and radius 3.5 cm . Take a point P at a distance 5.7 cm from the centre. Draw tangents to the circle from point P.
(D) Watch Video Solution
5. Draw any circle. Take any point A on it and construct tangents at A without using the centre of the circle.

D Watch Video Solution

6. Draw a circle of diameter 6.4 cm . Take a point R at a distance equal to its diameter from the centre. Draw tangents from point R.

- Watch Video Solution

7. Draw a circle with centre P. Draw an arc $A B$ of 100° measure. Draw tangents to the circle at point A and B .

- Watch Video Solution

8. Draw a circle of radius 3.4 cm and centre E .

Take a point F on the circle.Take another point A such that E-F-A and $F A=4.1 \mathrm{~cm}$.

Draw tangents to the circle from point A.

- Watch Video Solution

9.

$\triangle A B C, A B=5.1 \mathrm{~cm}, \angle B=40^{\circ}, B C=4.8 \mathrm{~cm}, \frac{A C}{L N}=\frac{4}{7}$
.Construct $\triangle A B C$ and $\triangle L B N$.

- Watch Video Solution

10. Construct $\triangle P Y Q$ such that, $\mathrm{PY}=6.3 \mathrm{~cm}, \mathrm{YQ}=7.2 \mathrm{~cm}, \mathrm{PQ}=5.8 \mathrm{~cm} . \mathrm{If}$ $\frac{Y Z}{Y Q}=\frac{6}{5}$, then construct $\triangle X Y Z$ similar to $\triangle P Y Q$.

(D) Watch Video Solution

Challenging Question

1. Construct a right angled triangle with hypotenuse $\sqrt{13} \mathrm{~cm}$. Draw a circumcircle of this triangle.
2. Draw a circle with centre O and radius 3.2 cm . Take a points A and B on the circle Such that $\angle A O B=60^{\circ}$. Let the bisector of $\angle A O B$ intersect the circle in point K. Draw a circle passing through K such that ray $O A$ and ray $O B$ are tangents to it.

- Watch Video Solution

3. Construct $\triangle X Y Z$ such that $\mathrm{YZ}=5 \mathrm{~cm}, \mathrm{XY}+\mathrm{XZ}=6.8 \mathrm{~cm}$ and $\angle X Y Z=35^{\circ}$. $\triangle X P Q \sim \triangle X Y Z$ such that $\frac{X P}{X Y}=\frac{7}{5}$. Construct $\triangle X P Q$.

- Watch Video Solution

4. Draw $\triangle A B C$ such that, $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\angle B=90^{\circ}$. Draw seg BD perpendicular to hypotenuse AC. Draw a circle passing through points B, D, A. Show that line $C B$ is tangent of the circle.

- Watch Video Solution

