

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

GEOMETRIC CONSTRUCTIONS

5 1 1 Mark Each

1.
$$\Delta AMT \sim \Delta AHE$$
 and $\frac{MA}{HA} = \frac{7}{5}$ then which of the following is true

A. A-H-M

?

B. A-M-H

C. M-A-H

D. A-T-E

Answer: A

Watch Video Solution

- **2.** $\Delta RHP \sim \Delta NED$ and $\frac{HP}{ED} = \frac{4}{5}$ then which of the following is true
 - A. ΔRHP is a bigger triangle
 - B. ΔRHP is a smaller triangle
 - C. Both the triangles are congruent
 - D. Bigger or smaller triangle cannot be determined

Answer: B

Watch Video Solution

3. For the construction of a tangent to a circle without using its centre, the property used is

- A. tangent segment theorem B. inscribed angle theorem C. tangent secant theorem D. intersectiong chords theorem **Answer: C Watch Video Solution** 5 2 1 Mark Each 1. Draw seg AB of length 4.2 cm. Construct its perpendicular bisector. **Watch Video Solution**
 - Watch Video Solution

2. Draw $\angle ABC = 115^{\circ}$, construct its bisector

3. To devide a given line segment in a given ratio :

Draw seg PQ of length 7 cm. Divide it in the ratio 3:2

Watch Video Solution

5 3 2 Marks Each

1. Draw a circle of radius 3 cm. Mark a point P on the circle. Draw tangent to the circle through point P using the centre of the circle Analysis

A circle of radius 3 cm can be drawn. Let the cemntre of the given circle

be O and line I be the required tangent

We know, converse of tangent theorem states that , 'A line perpendicular to radius at its outer end is tangent .

 \therefore We construct perpendicular to radius OP at point, then line I is the

required tangent .

2. Draw a circle of radius 3 cm. Take any point P on it. Draw tangent to the circle through point P without using the centre of the circle

Analysis:

Through P, a chord can be drawn. Let it be PA. Draw any $\angle PBA$ in the alternate segment. Now and $\angle aPC$ can be constructed congrument to $\angle ABP$, then by converse of tangent secant angle theorem line PC is the required tangent.

1. Draw a cirle with centre P. Draw an are AB of 100° measure

Draw tangent to the circle at point A and B

2. Draw a circle of radius 3.3 cm. Draw diameter PQ. Draw tangents at P and Q. Write observation about the tangents.

3. Draw a circle with radiuys 3.4 cm. Draw a chord MN of length 5.7 cm in

it. Construct tangents at point M and N to the circle

4. Draw a circle of radius 4.2 cm and centre O. Mark a point P at a distance of 7 cm from the centre. Draw tangents to the circle from Points P. (March '19)

Watch Video Solution

5 5 4 Marks Each

1. ΔABC ~ ΔLMN . In ΔABC , AB=5.5cm, BC = 6 cm, CA = 4.5 cm. If

2. \triangle PQR \sim \triangle PMN. In \triangle PQR, PQ = 4 cm , QR = 5 cm and PR = 6

Construct $\triangle PQR$ and $\triangle PMN$ such that $\frac{PR}{PN} = \frac{5}{3}$

MN = 4.8 cm then construct ΔABC and ΔLMN

cm.

Assigment 5 1

1. The number of tangents that can be drawn to a circle at a point on the	e
circle is	

- A. 3
- B. 2
- C. 1
- D. infinite

Answer: C

Watch Video Solution

2. The maximum number of tangents that can be drawn to a circle from a point outside it is......

- A. 2
- B. 1
- C. one and only one
- D. 0

Answer: A

Watch Video Solution

- **3.** If AD and PS are medians of $\triangle ABC$ and $\triangle PQR$ respectively where \triangle ABC \sim \triangle PQR, Prove that $\frac{AB}{PQ}=\frac{AD}{PS}$.
 - A. $\triangle ABC$ is bigger
 - B. $\triangle PQR$ is bigger
 - C. Both triangles will be equal
 - D. cannot be decided

Answer: A

Assigment 5 2

- 1. Draw seg AB of length 5.1 cm. Draw its perpendicular bisector
 - Watch Video Solution

- 2. Draw AB = 9.7 cm. Take a point P on it such that A P B and AP = 3.5 cm. Through P draw a line perpendicular to seg AB.
 - Watch Video Solution

- 3. Draw segment AB of length 4 cm. Divide it in ratio 2:3
 - Watch Video Solution

4. Draw $\angle PQR = 125^{\circ}$.	Construct its bisector

Assigment 5 3

1. Construct tangent to a circle with centre A and radius 3.4 cm at any point P on it.

2. Draw any circle. Take any point on it and construct tangent at A without using the centre of the circle.

3. Complete the following activity to draw a tangent to a circle at a point on the circle

Assigment 5 4

1. Draw a circle of radius 2.7 cm and draw chord PQ of length 4.5 cm.

Draw tangents at point P and Q without using the centre

2. Draw a circle with centre P and radius 3.1 cm. Draw a chord MN of length 3.8 cm. Draw tangents to the circle through points M and N.

3. Draw a circle with radius 3.2 cm. Construct tangents to the circle from a point at a distance of 6 cm from the centre

Assigment 5 5

1. \triangle XYZ^{\sim} \triangle PYR . In \triangle XYZ, $\angle Y=60^{\circ}$, XY = 4.5 cm and YZ = 5.1 cm and $\frac{XY}{PV}=\frac{4}{7}$ then construct \triangle XYZ and \triangle PYR

2. Draw a circle of radius 3.4 cm and centre F.

Take a point F on the circle. Take another point A such that E-F-A and

FA=4.1 cm.

Draw tangents to the circle from point A.

3. \triangle RST \sim \triangle UAY. In \triangle RST, RS = 6 cm, $\angle S = 50^{\circ}$, sT = 7.5 cm ,

$$rac{RS}{UA} = rac{5}{4}$$
 . Construct $riangle RST$ and $riangle UAY$.

4. Construct $\triangle PYQ$ such that, PY=6.3 cm, YQ=7.2cm, PQ=5.8cm.lf $\frac{YZ}{YQ}=rac{6}{5}, ext{ then construct } riangle XYZ ext{ similar to } riangle PYQ.$

5. Draw a sector, whose arc has angular measure 60° and radius 6 cm. Draw a circle touching the sides of the sector and the arc.

Examples For Practice

1. Construct tangent to a circle with centre A and radius 3.4 cm at any point P on it.

2. Draw a circle of radius 2.6 cm. Draw a tangent to the circle from any point on the circle.

3. Draw a circle of radius 4.2 cm. Take any point K on it. Draw a tangent to the circle without using centre of the circle.

4. Draw a circle with centre P and radius 3.1 cm. Draw a chord MN of length 3.8 cm. Draw tangents to the circle through points M and N.

5. Draw a circle with radius 4.2 cm . Construct tangents to the circle from a point at a distance of 7 cm from the centre .

6. \triangle ABC~ \triangle PQR, in \triangle ABC, AB=3.6 cm, BC= 4cm and AC=4.2 cm.

The corresponding sides of $\ \triangle \ ABC \ {
m and} \ \ \triangle \ PQR$ are in the ratio 2 :

3. Construct $\triangle ABC$ and $\triangle PQR$.

$$\angle R = 60^{\circ}\,, \angle K = 50^{\circ}\,\,\, ext{and}\,\,\,rac{RN}{SV} = rac{4}{3}\, ext{then construct}$$

8. \triangle PSE- \triangle TSV. In \triangle PSE, PS = 4.4cm, SE=5.1cm,PE=5.5cm

7. $\triangle RKN \sim \triangle SPV$. In $\triangle RKN$, RK = 6.4cm,

 \triangle RKN and \triangle SPV.

Construct $\triangle PSE$ and $\triangle TSV$.

and $\frac{PS}{TS} = \frac{5}{3}$.

Watch Video Solution

 \wedge AMT~ \wedge AHE. 9.

 $riangle AMT, MA=6.3cm, riangle MAT=120^{\circ}, AT=4.9cm ext{ and } rac{MA}{HA}=rac{7}{5},$

In

Construct $\triangle AMT$ and $\triangle AHE$.

Watch Video Solution

 $\Delta SHR \sim \Delta SVU$. 10. In $\Delta SHR, SH = 4.5cm, HR = 5.2cm, SR = 5.8cm \text{ and } \frac{SH}{SV} = \frac{3}{5}$ construct ΔSVU .

Watch Video Solution

11. Two different points P and Q are given on one side of line AB. Draw a circle passing through the points P and Q touching the line AB in point R.

Watch Video Solution

12. Draw $\angle ABC = 50^{\circ}$. Take a point S in the interior of $\angle ABC$. Draw a circle passing through point S and touching the sides of $\angle ABC$.

Example

1. (B) Solve any two of the following subquestions :

$$\Delta XYZ$$
 \sim ΔDEF , XY = 5.1 cm , Y Z = = 3.9 cm, XZ = 6 cm, XY : DE = 3: 2, Construct ΔXYZ and ΔDEF .

2.
$$\triangle$$
 PQR ~ \triangle PMN . In \triangle PQR , , PQ=4cm, QR=5cm, and PR=6cm.

Match Video Solution

3. \triangle PQR^{2} \triangle PMN. In \triangle PQR, , PQ=4cm, QR=5cm, and PR=6cm.

Construct $\triangle PQR$ and $\triangle PMN$ such that $\frac{PR}{PN}=\frac{3}{5}$.

Construct $\triangle PQR$ and $\triangle PMN$ such that $\frac{PR}{PN} = \frac{5}{2}$.

Lets Revise Certain Constructions Studied In The Previous Standards

1. Draw seg AB of length 4.2 cm. Construct its perpendicular bisector.

2. Draw $\angle ABC=115^{\circ}$, construct its bisector

3. To construct perpendicular to a line from a point P outside it.

Question: Draw line KL such that KL=4.5 cm.

Consider point outside it. Through P, draw a line perpendicular to line

KL.

Watch Video Solution

4. To construct an angle congruent to the given angle.

Question : Construct $\angle PQR$ congruent to given $\angle LMN$.

Watch Video Solution

5. To construct a line parallel to a given line and passing through a given point outside the line.

Question: Draw a line I, take a point P outside it. Draw a line m | line I passing through point P.

Watch Video Solution

6. To divide a given line segment into given number of equal parts.

Question: Draw segment PQ of length 5 cm. Divide it into 4 equal parts.

Watch Video Solution

7. To divide a line segment in the given ratio.

Question: Draw segment PQ of length 5 cm. Divide it in the ratio 3:2.

Watch Video Solution

8. To construct a triangle whose sides are given. Question: Construct

 \triangle ABC such that AB=4.2 cm, BC=5.3 cm and AC=3.7 cm.

Watch Video Solution

Practice Set 4 1

1. ΔABC ~ ΔLMN . In ΔABC , AB=5.5cm, BC = 6 cm, CA = 4.5 cm. If

MN = 4.8 cm then construct ΔABC and ΔLMN

 \triangle PQR~ \triangle LTR.

In

 $\triangle PQR$

,PQ=4.2cm,QR=5.4cm,PR=4.8cm.Construct \triangle PQR and \triangle LTR such that $\frac{PQ}{LT} = \frac{3}{4}$.

Watch Video Solution

3.

$$\triangle$$
 RST ~ \triangle XYZ.

In

 \triangle RST, RS = 4.5cm, \angle RST = 40°, ST = 5.7cm.

Construct

 $\triangle RST$ and $\triangle XYZ$ such that $\frac{RS}{XY} = \frac{3}{5}$.

Watch Video Solution

4.

 \triangle AMT~ \triangle AHE.In

 $\triangle \ AMT, AM = 6.3cm, \angle TAM = 50^{\circ}, AT = 5.6cm. \ \frac{AM}{AH} = \frac{7}{5}.$

 $Construct \triangle AHE.$

Watch Video Solution

1. Construct a tangent to a circle with centre P and radius 3,2 cm at any point M on it.

2. Draw a circle of radius 2.7 cm. Draw a tangent to the circle at any point on it.

3. Draw a circle of radius 3.6 cm. Draw a tangent to the circle at any point on it without using the centre.

4. Draw a circle of radius 3.3 cm. Draw diameter PQ. Draw tangents at P and Q. Write observation about the tangents.

5. Draw a circle with radiuys 3.4 cm. Draw a chord MN of length 5.7 cm in it. Construct tangents at point M and N to the circle

6. Draw a circle with centre P and radius 3.4 cm. Take a point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q.

7. Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Problem Set 4

1. The number of tangents that can be drawn to a circle at a point on the circle is

A. 3

B. 2

C. 1

D. 0

Answer: C

2. The maximum number of tangents that can be drawn to a circle from a point outside it is......

A. 2

B. 1

C. One and only one

D. 0

Answer: A

Watch Video Solution

3. If $\triangle ABC \sim \triangle PQR$ and $\frac{AB}{PQ} = \frac{7}{5}$, then.....

A. \triangle ABC is bigger

B. \triangle PQR is bigger

C. Both triangles will be equal

D. Cannot be decided

Answer: A

4. Draw a circle with centre O and radius 3.5 cm. Take a point P at a distance 5.7 cm from the centre. Draw tangents to the circle from point P.

5. Draw any circle. Take any point A on it and construct tangents at A without using the centre of the circle.

6. Draw a circle of diameter 6.4 cm. Take a point R at a distance equal to its diameter from the centre. Draw tangents from point R.

7. Draw a circle with centre P. Draw an arc AB of 100° measure. Draw tangents to the circle at point A and B.

8. Draw a circle of radius 3.4 cm and centre E.

Take a point F on the circle. Take another point A such that E-F-A and

FA=4.1 cm.

Draw tangents to the circle from point A.

$$riangle ABC, AB=5.1cm, riangle B=40^\circ, BC=4.8cm, rac{AC}{LN}=rac{4}{7}$$

.Construct $\triangle ABC$ and $\triangle LBN$.

Watch Video Solution

10. Construct $\triangle PYQ$ such that, PY=6.3 cm, YQ=7.2cm, PQ=5.8cm.lf $\frac{YZ}{YQ}=rac{6}{5}, ext{ then construct } riangle XYZ ext{ similar to } riangle PYQ.$

Challenging Question

1. Construct a right angled triangle with hypotenuse $\sqrt{13}cm$. Draw a circumcircle of this triangle.

2. Draw a circle with centre O and radius 3.2 cm. Take a points A and B on the circle Such that $\angle AOB=60^\circ$. Let the bisector of $\angle AOB$ intersect the circle in point K. Draw a circle passing through K such that ray OA and ray OB are tangents to it.

3. Construct \triangle XYZ such that YZ=5 cm, XY+XZ=6.8 cm and $\angle XYZ=35^\circ$. \triangle XPQ- \triangle XYZ such that $\frac{XP}{XY}=\frac{7}{5}$. Construct \triangle XPQ.

4. Draw \triangle ABC such that, AB=8cm,BC=6cm and $\angle B=90^\circ$. Draw seg BD perpendicular to hypotenuse AC. Draw a circle passing through points B,D,A. Show that line CB is tangent of the circle.

