© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

PYTHAGORAS THEOREM

311 Mark Each

1. Out of the following which is a Pythagoream triplet?
A. $(5,12,14)$
B. $(3,4,2)$
C. $(8,15,17)$
D. $(5,5,2)$

Answer:

- Watch Video Solution

2. In a right angled triangle,if the sum of the squares of the sides making a right angle is 169 ,
then what is the length of the hypotenuse?
A. 15
B. 13
C. 5
D. 12

Answer:

- Watch Video Solution

3. If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$,
then name the type of the triangle.
A. Obtuse angled triangle
B. Acute angled triangle

C. Right angled triangle

D. Equilateral triangle

Answer:

- Watch Video Solution

4. Find the perimeter of a square, if its diagonal is
$10 \sqrt{2} \mathrm{~cm}$.
A. 10 cm
B. $40 \sqrt{2} \mathrm{~cm}$
C. 20 cm
D. 40 cm

Answer:

- Watch Video Solution

5. In $\triangle P Q R$, seg $P M$ is median. $P M=9$, $P Q^{2}+P R^{2}=290$ then find length of $\operatorname{seg} Q R$.
A. 6
B. 10
C. 16
D. 8

Answer:

- Watch Video Solution

6. The height and base of a right angled triangle
are 24 cm and 18 cm , find the length of its hypotenuse.
A. 24 cm
B. 30 cm
C. 15 cm
D. 18 cm

Answer:

- Watch Video Solution

7. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, \quad A C=12 \mathrm{~cm}$, $B C=6 \mathrm{~cm}$. Find the measure of $\angle A$.
A. 30°
B. 60°
C. 90°
D. 45°

- Watch Video Solution

8. In $\triangle A B C, \angle B=90^{\circ} . D$ is the midpoint of hypotenuse $A C$. If $B D=4.5 \mathrm{~cm}$, then find the length of hypotenuse $A C$.
A. 9 cm
B. 4.5 cm
C. 5 cm
D. 9.5 cm

Answer:

321 Mark Each

1. Observe the triplet $(4,5,8)$. State whether it is a Pythagorean triplet or not.

- Watch Video Solution

2. In $\triangle P Q R, \angle P Q R=90^{\circ}$. State the Pythagorean relation in the triangle.

- Watch Video Solution

3. In $\triangle A B C$, if $A B^{2}=A C^{2}+C B^{2}$. State with reason whether $\triangle A B C$ is a right angled triangle or not.

(Watch Video Solution

4. In the figure, $\angle A B C=90^{\circ}$ and seg $B d \perp$ side
$A C, A-D-C$ then by property of geometric mean. $B D^{2}=\square \times \square$. Fill in the boxes with the
correct answer.

- Watch Video Solution

5. In $\triangle X Y Z, \angle X Y Z=90^{\circ}, \angle Y Z X=30^{\circ}$,
$\angle Y X Z=60^{\circ}, X Y=4 \mathrm{~cm}$ then write the value of
$X Z$.

- Watch Video Solution

6. In $\triangle P Q R, \angle P Q R=90^{\circ}, P Q=6$ and $Q R=8$
then the length of seg $P R$ is.

332 Mark Each

1. Is $(3,5,4)$ a Pythagoren triplet ? Give reason.
2. In right angled $\triangle A B C, B D \perp A C$. If $A D=4$, $D C=9$, then find $B D$.

3. In the figure, $A C=8 \mathrm{~cm}, \angle A B C=90^{\circ}$.
$\angle B A C=60^{\circ}, \angle A C B=30^{\circ}$. Complete the following activity to find $A B$ and $B C$.

In $\triangle A B C$,
By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$\therefore A B=\frac{1}{2} \times A C$ and $B C=-A C$
$\therefore A B=\frac{1}{2} \times 8$ and $B C=-\times 8$
$\therefore A B=\square \mathrm{cm}$ and $B C=\square \mathrm{cm}$
4. In $\triangle A B C, A C=B C$ and $\angle A C B=90^{\circ}$ then prove $A B^{2}=2 A C^{2}$

5. Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm .

- Watch Video Solution

6. In order to prove, "In a right angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex, is the geometric mean of the
segments into which the hypotenuse is divided."
(i) Draw a neat labelled figure.
(ii) Write 'Given' and 'To prove' from the figure drawn by you.

- Watch Video Solution

7. Complete the following activity to find the length of median $A Q$ on side $B C$, if $A B^{2}+A C^{2}=122$ and $B Q=5$.

In $\triangle A B C$,
$\operatorname{seg} A Q$ is the median,
$A B^{2}+\square=2 A Q^{2}+2 B Q^{2} \ldots . . .$. (Apollonius
theorem)
$\therefore 122=2 A Q^{2}+2(5)^{2}$
$\therefore 2 A Q^{2}=122-\square$
On simplifying, $\therefore A Q^{2}=\square$
$\therefore A Q=\square$........(Taking square roots on both the
8. With the help of the information given in the
figure, fill in the boxes to find $A B$ and $B C$.
$A B=B C($ Given $)$
$\therefore \angle B A C=\angle B C A=\square$
$\therefore A B=B C=\square \times A C$
$=\square \times \sqrt{8}$
$=\square \times 2 \sqrt{2}$
$=2$

- Watch Video Solution

343 Mark Each

1. $\square A B C D$ is a parallelogram. The diagonals $A C$

 and $B D$ intersect at point M. The length of seg$A C, A B$ and $A D$ is 24,22 and 34 respectively. Find the length of seg $B D$.

- Watch Video Solution

2. Find the side and perimeter of a square whose diagonal is 10 cm .

- Watch Video Solution

3. In the figure, $\angle D F E=90^{\circ}$, seg $F G \perp$ side $D E$, $D G=8, F G=12$ then complete the following activity to find the length of seg $D E$.

D

In $\triangle D F E, \angle D F E=90^{\circ}$,
seg $F G \perp$ hypotenuse $D E$
\therefore by theorem of geometric mean,

$$
F G^{2}=\square \times E G
$$

$\therefore 12^{2}=\square \times E G$
$E G=\frac{12 \times 12}{\square}$
$\therefore E G=\square$
$D E=D G+G E=8+\square=\square$

- Watch Video Solution

4. In the figure, M is the midpoint of $Q R$.
$\angle P R Q=90^{\circ}$. Prove that $P Q^{2}=4 P M^{2}-3 P R^{2}$

- Watch Video Solution

5. In $\triangle A B C, \angle C$ is an acute angle, seg $A D \perp$ seg $B C$. Prove $A B^{2}=B C^{2}+A C^{2}-2 B C \times D C$ by completing the following activity.

Let $A B=c, A C=b, A D=p, B C=a, D C=x$
$\therefore B D=a-x$
In $\triangle A D B$, by Pythagoras theorem,
$c^{2}=(a-x)^{2}+\square$
$c^{2}=a^{2}-2 a x+x^{2}+\square \ldots(1)$
In $\triangle A D C$, by Pythagoras theorem,

$$
b^{2}=p^{2}+\square
$$

$$
\begin{equation*}
p^{2}=b^{2}-\square \tag{2}
\end{equation*}
$$

Substituting value of p^{2} from (2) in (1)
$c^{2}=a^{2}-2 a x+x^{2}+\square$
$c^{2}=a^{2}+b^{2}-\square$
$\therefore A B^{2}=B C^{2}+A C^{2}-2 B C \times D C$.

- Watch Video Solution

6. In $\triangle P Q R$, seg $P M$ is median. $P M=9$, $P Q^{2}+P R^{2}=290$ then find length of seg $Q R$.
7. The perpendicular sides of a right angled triangle are $3 x$ and $4 x$. The length of its hypotenuse is 30 .

Find the lengths of the perpendicular sides of the right angled triangle.

- Watch Video Solution

8. In the figure, $A D=17, A B=10, B C=15$.
$\angle A B C=\angle B C D=90^{\circ}$ seg $A E \perp$ side $C D$
then find the length of $(i) A E(i i) D E(i i i) D C$.

- Watch Video Solution

9. In $\Delta R S T, \angle S=90^{\circ} . \angle T=30^{\circ}, R T=12 \mathrm{~cm}$, then find $R S$ and $S T$.

- Watch Video Solution

354 Mark Each

1. Walls of two buildings on either side of a street are parallel to each othe. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of $4 m$. On turning the ladder over to the other side of the
street, its top touches the window of the other
building at a height 4.2 m . Find the width of the street.

- Watch Video Solution

2. In the adjoing figure, seg PS is the median of
$\Delta P Q R$ and $P T \perp Q R$.
i. $P R^{2}=P S^{2}+Q R \times S T+\left(\frac{Q R}{2}\right)^{2}$

- Watch Video Solution

3. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of
the squares of its sides.

- Watch Video Solution

4. $\triangle A B C$ is an equilateral triangle. Point D is on side $B C$ such that $B D=\frac{1}{5} B C$ then prove $25 A D^{2}=21 A B^{2}$.

D Watch Video Solution

Assignment 31

1. In $\triangle L M N$, if $L M=10 \mathrm{~cm}$ and $\angle L N M=90^{\circ}$, $\angle L M N=30^{\circ}$, then $N M=?$
A. $5 \sqrt{2}$
B. 5 cm
C. $10 \sqrt{3} \mathrm{~cm}$
D. $5 \sqrt{3} \mathrm{~cm}$

Answer:

- Watch Video Solution

2. Two poles of height 100 m and 111 m stand vertically upright on the surface of the levelled ground. If the distance between their bases is 60 m , what is the distance between their tops?
A. $61 m$
B. 60 m
C. $100 m$
D. $111 m$

Answer:
3. What is the length of a digonal of a square of side 10 cm ?
A. $10 \sqrt{3} \mathrm{~cm}$
B. $10 \sqrt{2} \mathrm{~cm}$
C. 10 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer:

- Watch Video Solution

4. If two sides of the right angled triangle are 3 and 4 , then what is the length of the third side?
A. 5
B. $\sqrt{7}$
C. 5 or $\sqrt{7}$
D. none of these

Answer:

- Watch Video Solution

5. Kartik and Pravin start cycling from some point A

. Kartik travels due east and Pravin travels due north. After 1 hour, Pravin covers 12 km and Kartik travels 5 km . How far are they from each other?
A. 12 km
B. 5 km
C. 13 km
D. 17 km

Answer:
6. If in $\triangle A B C$, seg $A M$ is the median, $A B^{2}+A C^{2}=410$ and $B C=12$ then $A M=?$
A. 12
B. 13
C. $\sqrt{17}$
D. $\sqrt{13}$

Answer:

- Watch Video Solution

7. The length of the hypotenuse $P R$ of an isosceles

right angled triangle $P Q R$, where $P Q$ is 4 cm , is
A. 4 cm
B. $4 \sqrt{3} \mathrm{~cm}$
C. $4 \sqrt{2} \mathrm{~cm}$
D. 16 cm

Answer:

- Watch Video Solution

8. $\triangle P Q R$ is an equilateral triangle having length of side as 8 cm . Find the height of $\triangle P Q R$.
A. $2 \sqrt{3} \mathrm{~cm}$
B. $4 \sqrt{8} \mathrm{~cm}$
C. $3 \sqrt{2} \mathrm{~cm}$
D. $4 \sqrt{3} \mathrm{~cm}$

Answer:

- Watch Video Solution

1. Observe the triplet $(11,12,17)$. State whether it

 is a Pythagorean triplet or not.
- Watch Video Solution

2. In $\triangle P Q R, P Q^{2}=P R^{2}+Q R^{2}$ then state which angle will be the right angle.

- Watch Video Solution

3. In the figure, $A B=6$ and $A C=12$, then what is the value of θ ? Why

- Watch Video Solution

4. In $\triangle X Y Z, \quad X Z=15, \angle Y Z X=30^{\circ}$,
$\angle Y X Z=60^{\circ}$ then $X Y=\ldots a n d Y Z=\ldots . . .$.

- Watch Video Solution

5. In $\triangle A B C, \angle B A C=\angle B C A=45^{\circ}$,
$\angle A B C=90^{\circ}$ then the value of $A B$.

- Watch Video Solution

6. In $\triangle A B C, D$ is the midpoint of side $B C$. Fill in the boxes with correct answer
$A B^{2}+A C^{2}=\square+\square$.

- Watch Video Solution

Assignment 33

1. Is $(5,12,13)$ a Pythagorean triplet ? Give reason.
2. In the figure, $\angle Q P R=90^{\circ}$, seg $P M \perp \operatorname{seg} Q R$ and $Q-M-R, P M=10 . Q M=8$, find $Q R$.

- Watch Video Solution

3. In $\triangle A B C, \angle A B C=90^{\circ}, A B=12, B C=16$
and seg $B P$ is the median drawn to side $A C$. Find
the length of $\operatorname{seg} B P$.

- Watch Video Solution

4. Do sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ form a right angled triangle? Give reason.

- Watch Video Solution

5. Find the length of a diagonal of a rectangle having sides 11 cm and 60 cm .
6. Find the length of the hypotenuse of a right angeled triangle, if the remaining sides are 9 cm and 12 cm .

- Watch Video Solution

7. Find the side of a square whose diagonal is $16 \sqrt{2} \mathrm{~cm}$.
8. In the figure, $\angle L M N=\angle L K N=90^{\circ}$
$\operatorname{seg} M K \perp \operatorname{seg} L N$.
Complete the following activity to prove R is the midpoint of seg $M K$.

Proof: In $\Delta L M N, \angle L M N=90^{\circ}$
seg $M R \perp$ hypotenuse $L N$
\therefore by property of geometric mean,
$M R^{2}=\square \times R N$
In $\Delta L K N, \angle L K N=90^{\circ}$
seg $K R \perp$ hypotenuse $L N$
\therefore by property of geometric mean,
$K R^{2}=L R \times \square$
From (1) and (2), we get
$M R^{2}=\square \therefore M R=\square$.
$\therefore R$ is the midpoint of seg $M K$.

- Watch Video Solution

9. In order to prove, 'In a right angled triangle, the square of the hypotenuse is equal to the sum of
the squares of remaining two sides
(i) Draw a near labelled figure.
(ii) Write 'Given' and 'To Prove' from the figure drawn by you.

- Watch Video Solution

Assignment 34

1. In obtuse angled $\triangle A B C, \angle B>90^{\circ}$. If seg
$A d \perp$ ray $C B$ and $D-B-C$, then prove that
$A C^{2}=A B^{2}+B C^{2}+2 B C \cdot D B$.

- Watch Video Solution

2. Find the length of the side and perimeter of an equilateral triangle whose height is $4 \sqrt{3} \mathrm{~cm}$.
3. Find the diagonal of a rectangle whose length is 16 cm and area 192 sqcm .

- Watch Video Solution

4. From the information given in the figure, prove that

$$
P M=P N=\sqrt{3} \times a .
$$

5. In the figure, $\square A B C D$ is a parallelogram.
$A B=8, \quad B C=12$ and $\angle B=30^{\circ} . \quad$ Find Area (ABCD).

- Watch Video Solution

6. D is the midpoint of side $B C$ of $\triangle A B C$. If
$A B=4, A C=6$ and $B C=8$, then find $l(A D)$
and hence perimeter of $\triangle A B D$.

- Watch Video Solution

7. In the figure, seg $A D \perp$ side $B C$ and $B-D-C$, then
prove
$A B^{2}-B D^{2}=A C^{2}-C D^{2}$.

- Watch Video Solution

8. In the figure, smaller diagonal $A C$ of a kite $A B C D$ is 18 cm long. $A B=15 \mathrm{~cm}$ and $A D=41 \mathrm{~cm}$. Find the length of
(i) $B E$
(ii) $E D$
$(i i i) B D$

9. In an equilateral $\triangle A B C, A D$ is the altitude drawn from A on the side $B C$. Prove that $3 A B^{2}=4 A D^{2}$

- Watch Video Solution

10. In the figure,

$$
A C=20, C B=15, A D=24
$$

Find $A B$ and $B D$.

- Watch Video Solution

11. Ramesh goes 24 km to south, then turns and goes to west for 10 km
(i) From the given information, drw a proportionate figure.
(ii) If starting point and end point are joined, then which type triangle do we get?
(iii) At last how far is he from the starting point?

- Watch Video Solution

12. $\triangle P Q R$ is an equilateral triangle. Seg $P S \perp$ side $Q R$ such that $Q-S-R$. Prove $P S^{2}=3 Q S^{2}$ by completing the following activity.

In $\triangle P Q S$,
$\angle P S Q=\square$. (Given)
$\angle Q=\square \ldots($ Angle of an equilateral triangle)
$\therefore \angle Q P S=30^{\circ} \ldots(R e m a i n i n g ~ a n g l e ~ o f ~$
$\triangle P Q S)$
$\therefore \triangle P Q S$ is a \square triangle
$P S=\square P Q \ldots\left(\right.$ Side opposite to $\left.60^{\circ}\right)$.
and $Q S=\square P Q \ldots\left(\right.$ Side opposite to 30°)

$$
P Q=2 Q S(2)
$$

Substituting value of $P Q$ from (2) in (1)
$P S=\frac{\sqrt{3}}{2} \times 2 Q S$
$\therefore P S=\square Q S$
$\therefore P S^{2}=3 Q S^{2} \ldots \ldots .$. (Square both the sides)

- Watch Video Solution

1. In the figure, point T is in the interior of rectangle $P Q R S$.

Prove that,

$T S^{2}+T Q^{2}=T P^{2}+T R^{2}$
(As shown in the figure, draw seg $A B|\mid$ side $S R$ and $A-T-B$.)

2. In $\triangle A B C$,
$\operatorname{seg} A D \perp \operatorname{seg} B C$,
$D B=3 C D$.
Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

3. In a trapezium $A B C D$, seg $A B|\mid \operatorname{seg} D C$, seg $B D \perp \operatorname{seg} A D$, seg $A C \perp \operatorname{seg} B C$, if $A D=15$, $B C=15$ and $A B=25$. Find $A(\square A B C D)$.

- Watch Video Solution

4. Show that if the diagonals of a quadrilateral cut each other in a right angle, then the sum of the squares of opposite sides are equal.

- Watch Video Solution

5. Starting from Madhav's house, John first goes
$12 m$ north, then $73 m$ west, then $67 m$ south and finally $25 m$ east and reaches Mohamad's house. The what is the direct distance between Madhav's and Mohamad's houses?

- Watch Video Solution

Examples For Practice 1 Mark Multiple Choice Questions

1. Out of the given triplets, which is not a Pythagorean triplet?
A. $(104,96,40)$
B. $(52,20,48)$
C. $(32,15,30)$
D. $(61,60,11)$

Answer: D

- Watch Video Solution

2. In $\triangle L M N$, if $L M=10 \mathrm{~cm}$ and $\angle L N M=90^{\circ}$, $\angle L M N=30^{\circ}$, then $N M=?$
A. $5 \sqrt{2} \mathrm{~cm}$
B. 5 cm
C. $10 \sqrt{3} \mathrm{~cm}$
D. $5 \sqrt{3} \mathrm{~cm}$

Answer: D

- Watch Video Solution

3. Two poles of height 100 m and 111 m stand vertically upright on the surface of the levelled ground. If the distance between their bases is 60 m , what is the distance between their tops?
A. 61 m
B. 60 m
C. 100 m
D. 111 m

Answer: A
4. $\triangle P Q R$ is an equilateral triangle. Seg $P S \perp$ side $Q R$ such that $Q-S-R$. Prove $P S^{2}=3 Q S^{2}$ by completing the following activity. In $\triangle P Q S$,
$\angle P S Q=\square($ (Given)
$\angle Q=\square \ldots($ Angle of an equilateral triangle)
$\therefore \angle Q P S=30^{\circ}(R e m a i n i n g ~ a n g l e ~ o f ~$
$\Delta P Q S)$
$\therefore \triangle P Q S$ is a \square triangle
$P S=\square P Q \ldots\left(\right.$ Side opposite to $\left.60^{\circ}\right)$.
and $Q S=\square P Q \ldots\left(\right.$ Side opposite to 30°)
$P Q=2 Q S(2)$
Substituting value of $P Q$ from (2) in (1)
$P S=\frac{\sqrt{3}}{2} \times 2 Q S$
$\therefore P S=\square Q S$
$\therefore P S^{2}=3 Q S^{2}$.....(Square both the sides)

A. $4 Q S^{2}$
B. $3 Q S^{2}$
C. $\frac{3}{2} Q S^{2}$
D. $2 Q S^{2}$

Answer: B

- Watch Video Solution

5. Find the diagonal of a square whose side is 10 cm.
A. $10 \sqrt{3} \mathrm{~cm}$
B. $10 \sqrt{2} \mathrm{~cm}$
C. 10 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer: B

- Watch Video Solution

6. In and $\operatorname{seg} B D$ bot side $A C$ and $\mathrm{AD}=\mathrm{DC}^{\prime}$ then
A. $B D^{2}=D C \times A C$
B. $B D^{2}=A D \times A C$
C. $B D^{2}=D C \times A C$
D. none of these

Answer: A

D View Text Solution

7. If two sides of the right angled triangle are 3 and 4 , then what is the length of the third side?
A. 5
B. $\sqrt{7}$
C. 5 or $\sqrt{7}$
D. none of these

- Watch Video Solution

8. Kartik and Pravin start cycling from some point A

. Kartik travels due east and Pravin travels due north. After 1 hour, Pravin covers 12 km and Kartik travels 5 km . How far are they from each other?
A. 12 km
B. 5 km
C. 13 km
D. cannot be determined
9. If in $\triangle A B C$, seg $A M$ is the median, $A B^{2}+A C^{2}=410$ and $B C=12$ then $A M=?$
A. 12
B. 13
C. $\sqrt{12}$
D. $\sqrt{13}$

Answer: B

10. The length of the hypotenuse $P R$ of an isosceles right angled triangle $P Q R$, where $P Q$ is 4 cm , is
A. 4 cm
B. $4 \sqrt{3} \mathrm{~cm}$
C. $4 \sqrt{2} \mathrm{~cm}$
D. 16 cm

Answer: C
11. Out of the following which is a Pythagorean triplet?
A. $(5,12,14)$
B. $(3,4,2)$
C. $(8,15,17)$
D. $(5,5,2)$

Answer: C

- Watch Video Solution

1. In right angled triangle , the lengtj of the

perpendicular sides are 15 cm and 8 cm . Find
the length of its hypotenuse .

- Watch Video Solution

2. If the sides of the triangle are 12,35 and 37 ,
determine whether the triangle is a right
angled triangle . Justify.
3. 10 m लंबी एक सीढी एक दीवार पर टिकाने पर भूमि से 8 m की उँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढी के निचले सिरे की दूरी ज्ञात कीजिए।

- Watch Video Solution

4. Determine whether $(11,12,15)$ is a Pythagorean triplet ? Justify .
5. Find the side of a square whose diagonal is $16 \sqrt{2} \mathrm{~cm}$.

- Watch Video Solution

6. Find the perimeter of an isosceles right angled triangle with each of its congruent sides as 7 cm .

- Watch Video Solution

7. Complete the following activity to find the length of median $A Q$ on side $B C$, if $A B^{2}+A C^{2}=122$
and $B Q=5$.

In $\triangle A B C$,
$\operatorname{seg} A Q$ is the median,
$A B^{2}+\square=2 A Q^{2}+2 B Q^{2}$. (Apollonius
theorem)
$\therefore 122=2 A Q^{2}+2(5)^{2}$
$\therefore 2 A Q^{2}=122-\square$
On simplifying, $\therefore A Q^{2}=\square$
$\therefore A Q=\square$........(Taking square roots on both the sides)

- Watch Video Solution

8. In the figure, $\angle L M N=\angle L K N=90^{\circ}$
$\operatorname{seg} M K \perp \operatorname{seg} L N$.

Complete the following activtiy
to prove R is the midpoint of seg MK.

- Watch Video Solution

9. In right angled $\triangle A B C, B D \perp A C$. If $A D=4$,
$D C=9$, then find $B D$.

- Watch Video Solution

Examples For Practice 3 Mark Questions

1. किसी समबाहु त्रिभुज में , सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।
2. In $\triangle P Q R$, seg $P M$ is median. $P M=9$, $P Q^{2}+P R^{2}=290$ then find length of seg $Q R$.

- Watch Video Solution

3. In $\triangle A B C, \angle A C B=90^{\circ}, \quad$ seg $C D \perp$ side AB and seg CE is angle bisector of $\angle A C B$

Prove : $\frac{A D}{B D}=\frac{A E^{2}}{B E^{2}}$

- Watch Video Solution

4. In right angled $\triangle B A C, \angle B A C=90^{\circ}$,segments $A D, B E$ and $C F$ are medians.Prove that $2\left(A D^{2}+B E^{2}+C F^{2}\right)=3 B C^{2}$
5. Three times the sum of square of the sides of a triangle is equal to four times the sum of the square of the medians of the triangle.

- Watch Video Solution

6. Suppose m and n are any two numbers. If $m^{2}-n^{2}, 2 m n$ and $m^{2}+n^{2}$ are the three sides of a triangle, then show that it is a right angled triangle and hence write any two pairs of Pythagorean triplet .
7. Show that if the diagonals of a quadrilateral cut each other in a right angle, then the sum of the squares of opposite sides are equal.

- Watch Video Solution

8. Starting from Madhav's house, John first goes
$12 m$ north, then $73 m$ west, then $67 m$ south and
finally $25 m$ east and reaches Mohamad's west, then $67 m$ south and finally $25 m$ east and reaches

Mohamad's house. The whast is the direct distance between Madhav's and Mohamad's houses?

- Watch Video Solution

Examples For Practice 2 Mark Questions

1. Each side of a rhombus is 10 cm long and one of
its diagonals measures 16 cm . Find the length of the other diagonal and hence find the area of the rhombus.
2. Adjacent sides of a parallelogram are 11 cm and

17 cm . If the length of one of its diagonal is 26 cm , find the length of the other.

- Watch Video Solution

Practice Set 21

1. Idenetify, with reason, which of the following are

Pythagorean triplets:
$(3,5,4)$
2. Idenetify, with reason, which of the following are Pythagorean triplets :
$(4,9,12)$

- Watch Video Solution

3. Is $(5,12,13)$ a Pythagorean triplet ? Give reason.

- Watch Video Solution

4. Idenetify, with reason, which of the following are Pythagorean triplets:
$(24,70,74)$

- Watch Video Solution

5. Idenetify, with reason, which of the following are Pythagorean triplets:
$(10,24,27)$

- Watch Video Solution

6. Idenetify, with reason, which of the following are Pythagorean triplets:
(11,60,61)

D Watch Video Solution

7. In the adjoining figure,
$\angle M N P=90^{\circ}, \operatorname{seg} N Q \perp \operatorname{seg} M P, \mathrm{MQ}=9, \mathrm{QP}=4$ find

NQ.

- Watch Video Solution

8. In the figure, $\angle Q P R=90^{\circ}$, seg $P M \perp$ seg $Q R$ and $Q-M-R, P M=10 . Q M=8$, find $Q R$.

- Watch Video Solution

9. See fiugre Find RP and PS using the ingormation given in $\triangle P S R$

- Watch Video Solution

10. For finding $A B$ and $B C$ with the help of information given in figure, complete following
activity :

D Watch Video Solution

11. Find the side and perimeter of a square whose diagonal is 10 cm .

- Watch Video Solution

12. In
the
adjoining
figure,
$\angle D F E=90^{\circ}, F G \perp E D . I f G D=8, F G=12$,
find
(i) EG
(ii) FD, and
(iii) EF

- Watch Video Solution

13. Find the diagonal of a rectangle whose length is

35 cm and breadth is 12 cm .

14. In the figure, M is the midpoint of $Q R$.
$\angle P R Q=90^{\circ}$.
Prove that,
$P Q^{2}=4 P M^{2}-3 P R^{2}$.

- Watch Video Solution

15. Walls of two buildings on either side of a street
are parallel to each othe. A ladder 5.8 m long is
placed on the street such that its top just reaches
the window of a building at the height of $4 m$. On
turning the ladder over to the other side of the
street, its top touches the window of the other building at a height $4.2 m$. Find the width of the street.

- Watch Video Solution

Practice Set 22

1. In $\triangle P Q R$, point S is the midpoint of side QR . If $P Q=11, P R=17 P S=13$, find $Q R$.

- Watch Video Solution

2. In $\triangle A B C, A B=10$
$A C=7, B C=9$
then find the length find the length of the median
drawn from point C to side $A B$.

- Watch Video Solution

3.

$\triangle P Q R \mathrm{seg} P$ is median of $\triangle P Q R$. And $P T \perp Q R$,
(i) $P R^{2}=P S^{2}+Q R \times S T+\left(\frac{Q R}{2}\right)^{2}$

- Watch Video Solution

4. In $\triangle A B C$, point M is the midpoint of BC ,
$A B^{2}+A C^{2}=290 \mathrm{~cm}, \mathrm{AM}=8 \mathrm{~cm}$, find BC .

- Watch Video Solution

5. In the figure, point T is in the interior of rectangle $P Q R S$.

Prove that,
$T S^{2}+T Q^{2}=T P^{2}+T R^{2}$
(As shown in the figure, draw seg $A B|\mid$ side $S R$
and $A-T-B$.)

- Watch Video Solution

Problem Set 2

1. Out of the following which is the Pythagorean triplet ?
A. $(1,5,10)$
B. $(3,4,5)$
C. $(2,2,2)$
D. $(5,5,2)$

Answer: B

- Watch Video Solution

2. In a right angled triangle,if the sum of the squares of the sides making a right angle is 169 , then what is the length of the hypotenuse?
A. 15
B. 13
C. 5
D. 12

Answer: B

- Watch Video Solution

3. out of the dates given below which date constitutes a Pythagorean triplet?
A. $15 / 18 / 16$
B. $16 / 08 / 16$
C. $3 / 5 / 17$
D. $4 / 9 / 15$

Answer: A

- Watch Video Solution

4. If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, then name the type of the triangle.
A. Obtuse angled triangle.
B. Acute angled triangle
C. Right engled triangle

D. Equilateral triangle

Answer: C

- Watch Video Solution

5. Find the perimeter of a square, if its diagonal is
$10 \sqrt{2} \mathrm{~cm}$.

- Watch Video Solution

6. Altitude on the hypotenuse of a right angled triangle triangle divides it in two parts of lengths 4 cm and 9 cm . Find the length of the altitude.
A. 9 cm
B. 4 cm
C. 6 cm
D. $2 \sqrt{6} \mathrm{~cm}$

Answer: C

7. The height and base of a right angled triangle

 are 24 cm and 18 cm , find the length of its hypotenuse.A. 24 cm
B. 30 cm
C. 15 cm
D. 18 cm

Answer: B
8.
$\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$
. Then $\angle B$ is
A. 30°
B. 60°
C. 90°
D. 45°

Answer: A
9. Find the length of the altitude of an equilateral triangle of side 2 acm .

- Watch Video Solution

10. Do sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ from a right angled triangle ? Give reason .

- Watch Video Solution

11. Find the length of a diagonal of a rectangle having sides 11 cm and 60 cm .
12. Find the length of the hypotenuse of a right angeled triangle, if the remaining sides are 9 cm and 12 cm .

- Watch Video Solution

13. A side of an isosceles right angled triangle is x.

Find its hypotenuse.
14.
$\triangle P Q R, P Q=\sqrt{8}, Q R=\sqrt{5}, P R=\sqrt{3} . I s \Delta P Q R$
a right angled triangle? If yes, which angle is of 90° ?

- Watch Video Solution

15. In $\Delta R S T, \angle S=90^{\circ} . \angle T=30^{\circ}, R T=12 \mathrm{~cm}$,
then find $R S$ and $S T$.

- Watch Video Solution

16. Find the diagonal of a rectangle whose length is 16 cm and area 192 sqcm .

- Watch Video Solution

17. Find the length of the side and perimeter of an equilateral triangle whose height is $\sqrt{3} \mathrm{~cm}$

- Watch Video Solution

18. In $\triangle A B C$, seg AP is a median. If $\mathrm{BC}=18$,
$A B^{2}+A C^{2}=260$ then find the length of AP.
19. $\triangle A B C$ is an equilateral triangle. Point P is on
base BC such that $P C=\frac{1}{3} B C$, if $A B=6 \mathrm{~cm}$ find AP.

- Watch Video Solution

20. From the information given in the figure, prove that
$P M=P N=\sqrt{3} \times a$.

D Watch Video Solution

21. Prove by vector method that the sum of the square of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

22. Paranali and Prasad started walking to the East and to the Noorth respectively, from the same point and at the same speed. After 2 hours distance between then was $15 \sqrt{2} \mathrm{~km}$. Find their speed per hour.

- Watch Video Solution

23. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$
24. Sum of the squares of adjacent sides of a parallelogram is 130 cm length of one of its diagonals is 14 cm . Find the length of the other diagonal.

- Watch Video Solution

25. In $\triangle A B C$,
$\operatorname{seg} A D \perp \operatorname{seg} B C$,
$D B=3 C D$.

Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

- Watch Video Solution

26. In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm . Find the
distance between the vertex opposite the base and the centroid.

- Watch Video Solution

27. In a trapezium $A B C D$, seg $A B|\mid \operatorname{seg} D C$, seg
$B D \perp \operatorname{seg} A D, \operatorname{seg} A C \perp \operatorname{seg} B C$, if $A D=15$, $B C=15$ and $A B=25$. Find $A(\square A B C D)$.

28. In the figure $2.35, \triangle P Q R$ is an equilatral triangle. Point S is on seg $Q R$ such that $Q S=\frac{1}{3} Q R$. Prove that : $9 P S^{2}=7 P Q^{2}$

- Watch Video Solution

29. Seg Pm is a median of 'Delta $P Q R$. If $P Q=40, P R=$

42 and $P M=29$, find $Q R$.
30. Seg AM is a median of $\triangle A B C$. If $\mathrm{AB}=22, \mathrm{AC}$
$=34, B C=24$, find $A M$.

- Watch Video Solution

Challenging Questions

1. In $\triangle A B C$,
$\angle A C B=90^{\circ}$,
$C D \perp A B$ and
$D E \perp C B$

Prove that $C D^{2} \times A C=A D \times A B \times D E$.

- Watch Video Solution

2. Using $8^{2}-7^{2}=15$, draw a square of area 15 sq cm

- Watch Video Solution

3. In the figure $\angle B=90^{\circ}$,
$A D^{2}=A B^{2}+B C^{2}+C D^{2}$.
Prove $\angle A C D=90^{\circ}$.

- Watch Video Solution

4. P and Q are points on the sides $C A$ and $C B$ respectively of $A B C$, right angled at C. Prove that

$A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$.

- Watch Video Solution

5. $\triangle A B C$ is an equilateral triangle. Point D is on side $B C$ such that $B D=\frac{1}{5} B C$ then prove $25 A D^{2}=21 A B^{2}$.
