©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

SIMILARITY

211 Mark Each

1. $\Delta A B C \sim \Delta P Q R$. If $A(\Delta A B C)=25, A(\Delta P Q R)=16$ find $A B: P Q$.
A. $25: 16$
B. $4: 5$
C. $16: 25$
D. 5: 4

Answer: D

D Watch Video Solution

2. In $\triangle A B C$ and $\triangle P Q R$, in a one-to-one correspondance
$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$ then......

A. $\triangle P Q R \sim \Delta A B C$
B. $\triangle P Q R \sim \Delta C A B$
C. $\triangle C B A \sim \Delta P Q R$
D. $\triangle B C A \sim \Delta P Q R$

Answer: B

- Watch Video Solution

3. If in $\triangle D E F$ and $\triangle P Q R, \angle D \cong \angle Q, \angle E \cong \angle R$, then which of the following statements is false?

A. $\frac{E F}{P R}=\frac{D F}{P Q}$
B. $\frac{D E}{P Q}=\frac{E F}{R P}$
C. $\frac{D E}{Q R}=\frac{D F}{P Q}$
D. $\frac{E F}{R P}=\frac{D E}{Q R}$

Answer:

- Watch Video Solution

4. $\triangle A B C$ and $\triangle D E F$ are equilateral triangles,
$A(\Delta A B C): A(\Delta D E F)=1: 2$.
If $A B=4$ then what is the length of $D E$?

A. $2 \sqrt{2}$
B. 4
C. 8
D. $4 \sqrt{2}$

Answer:

- Watch Video Solution

5. In figure, $X Y|\mid B C$. Which of the following statements is true

A. $\frac{A B}{A C}=\frac{A X}{A Y}$
B. $\frac{A X}{X B}=\frac{A Y}{A C}$
c. $\frac{A X}{Y C}=\frac{A Y}{X B}$
D. $\frac{A B}{Y C}=\frac{A C}{X B}$

Answer: A

- Watch Video Solution

6. In the figure, ray $Q S$ is the bisector of $\angle P Q R$ and $P Q=Q R$.

Then $\frac{P S}{S R}=\ldots$.

A. $1: 1$
B. 1: 2
C. 2:1
D. cannot be determined

Answer:

- Watch Video Solution

7. In the figure, $\triangle A B C \sim \triangle P Q R \angle R=30^{\circ}$, then $\angle A=$?

A. 45°
B. 90°
C. 30°
D. 60°

Answer: D

- Watch Video Solution

8. In the figure, seg $A B||\operatorname{seg} C D|| \operatorname{seg} E F A C=1.5$,
$B D=10, D F=6$ then $A E=?$

A. 26
B. 22
C. 20
D. 24

Answer:

- Watch Video Solution

221 Mark Each

1. In the figure, line $X Y|\mid$ side $B C . A X=2, X B=4$, $A Y=3$ and $Y C=a$ then the value of a is

- Watch Video Solution

2. Observe the figure and state whether ray $P M$ bisects
$\angle Q P R$ or not. Support your answer with a reason.

(D) Watch Video Solution

3. $\triangle P Q R \sim \Delta X Y Z$, write its corresponding sides in proportion.

D Watch Video Solution

4.

Observe the figure and state whether $\triangle A B C$ is similar to
$\triangle P Q R$? If so , by which test ?
5. The ratio of corresponding sides of similar triangles is $3: 5$, then what is the ratio of their areas.

(D) Watch Video Solution

232 Mark Each

1. In adjoining figure, $P Q \perp B C, A D \perp B C$ then find the following ratios.
(i) $\frac{A(\triangle P Q B)}{A(\Delta P B C)}$ (ii) $\frac{A(\triangle P B C)}{A(\Delta A B C)}$

- Watch Video Solution

2. In the figure $B C \perp A B, A D \perp A B, B C=4, A D=8$, then find $\frac{A(\Delta A B C)}{A(\Delta A D B)}$.

3. In the figure, if $A B\|C D\| F E$ then complete the following activity to find x.

Line $A B|\mid$ line $C D| \mid l$ line $E F$
\therefore by property of three parallel lines and their transveral,
$\frac{B D}{\square}=\frac{A C}{C E} \therefore \frac{8}{4}=\frac{\square}{x}$
$\therefore 8 \times x=4 \times \square$

- Watch Video Solution

4. In $\triangle A B C$, ray $B D$ bisects $\angle A B C . A-D-C$, side
$D E|\mid$ side $B C, A-E-B$.

Prove that, $\frac{A B}{B C}=\frac{A E}{E B}$.
Complete the activity by filling the boxes.

In $\triangle A B C$, ray $B D$ is the bisector of $\angle A B C$
$\therefore \frac{A B}{B C}=\square \ldots . . .(I)$ (By angle bisector theorem)
In $\triangle A B C$, seg $D E|\mid$ side $B C$
$\therefore \frac{A E}{E B}=\frac{A D}{D C} \ldots \ldots . . .(I I) \square$
$\therefore \frac{A B}{\square}=\frac{\square}{E B} \ldots . . .[\operatorname{From}(I)$ and $(I I)]$
5. Observe the figure and state whether ray $P M$ bisects
$\angle Q P R$ or not. Support your answer with a reason.

P

- Watch Video Solution

6. In $\triangle M N P, N Q$ is a bisector of $\angle N$. If $M N=5, P N=7, M Q=2.5$, the find QP.

- Watch Video Solution

7. In the adjoining figure, $B P \perp A C, C Q \perp A B, A-P-C$,
$A-Q-B$. Complete the following activity to Prove
$\triangle A P B \sim \triangle A Q C$.

In $\triangle A P B$ and $\triangle A Q C$

$$
\begin{equation*}
\angle A P B=\square^{\circ} \tag{1}
\end{equation*}
$$

$\angle A Q C=\square^{\circ}$
$\therefore \angle A P B \cong \angle A Q C \ldots \ldots . .(\square)$
$\therefore \Delta A P B \sim \Delta A Q C \ldots . . .(\square)$

(D) Watch Video Solution

8. As shown in the figures, two poles of height 8 m and 4 m are perpendicular to the groudn. If the length of shadow smaller
pole due to sunlight is 6 m then long will be the shadow of the bigger pole of the same time?

- Watch Video Solution

9. $\Delta L M N \sim \Delta P Q R, 9 \times A(\Delta P Q R)=16 \times A(\Delta L M N)$. If $Q R=20$, then find $M N$.

- Watch Video Solution

10. In the figure, seg $A C$ and seg $B D$ intersect each other in point P and $\frac{A P}{C P}=\frac{B P}{D P}$. Prove that $\triangle A B P \sim \Delta C D P$.

- Watch Video Solution

243 Mark Each

1. Two triangles are similar. The lengths of the sides of the smaller triangle are $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm respectively. The perimeter of the larger triangle is 90 cm then find the length of sides of larger triangle.
2. In $\triangle A B C$, seg $B D$ bisects $\angle A B C$. If $A B=x$, $B C=x+5, A D=x-2, D C=x+2$. Find the value of x.

A

- Watch Video Solution

3. In the figure X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg $P Q|\mid$ set DE , set $Q R| \mid$
set EF. Fill in the blanks to prove that set $P R|\mid$ seg DF.

- Watch Video Solution

4.

In
$\Delta A B C, A P \perp B C, B Q \perp A C . B-P-C, A-Q-C$, then prove that $\triangle C P A \sim \Delta C Q B$.

If $A P=7, B Q=8, B C=12$ then find AC .

- Watch Video Solution

5. In the figure in $\triangle A B C$, point D on side BC is such that $\angle B A C=\angle A D C$.

Prove that $C A^{2}=C B \times C D$.

- Watch Video Solution

6. In the figure, $P S=3, S Q=6, Q R=5, P T=x$ and $T R=y$. Give any two pairs of values of x and y such that line
$S T \mid$ | side $Q R$.

- Watch Video Solution

7. In the adjoining figure, seg $X Y|\mid$ seg $A C$, IF $3 A X=2 B X$ and $X Y=9$ then find the length of $A C$.

- Watch Video Solution

8. In trapezium $P Q R S$, side $P Q|\mid$ side $S R, A R=5 A P$, $A S=5 A Q$ then prove that $S R=5 P Q$ by completing the following activity.

In $\triangle P Q A$ and $\triangle R S A$,
$\angle P Q A \cong \angle R S A \ldots . . .(\square)$
$\angle P A Q \cong \angle R A S \ldots(\square)$
$\therefore \triangle P Q A \sim \Delta R S A \ldots . . .(\square)$
$\frac{P Q}{S R}=\frac{\square}{A R} \ldots \ldots . . .($ (Corresponding sides of similar triangles).....
(1)

Substituting $A R=5 A P$ in (1)
$\therefore \frac{P Q}{S R}=\frac{\square}{5 A P}$
$\therefore \frac{P Q}{S R}=\frac{\square}{5}$
$\therefore S R=5 P Q$

254 Mark Each

1. In $\triangle P Q R$, seg $X Y|\mid$ side $Q R . M$ and N are the midpoints of seg $P Y$ and side $P R$ respectively, $P-M-Y-N-R$.

Prove that $(i) \Delta P X M \sim \Delta P Q N$
(ii) seg $X M|\mid \operatorname{seg} Q N$.

2. In the figure, seg $D E|\mid$ side $A B . \quad D C=2 B D$, $A(\triangle C D E)=20 \mathrm{~cm}^{2}$. Find $A(\square A B D E)$.

- Watch Video Solution

3. Through the mid-point M of the side CD of a parallelogram $A B C D$, the line $B M$ is drawn, intersecting $A C$ in L and $A D$
produced in El. Prove that EL= 2BL

- Watch Video Solution

Assignment 21

1. The ratio of corresponding sides of similar triangles is $5: 7$, then what is the ratio of their areas?
A. $25: 49$
B. $49: 25$
C. $5: 7$
D. 7:5

Answer:

D Watch Video Solution

2. A verticl stick 40 m longs casts a shadow 20 m long on the ground. At the same time, a tower of height....... Casts a shadow 50 m long on the ground.
A. 100 m
B. 50 m
C. $25 m$
D. 150 m

D Watch Video Solution

3. The areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$.

The ratio of their corresponding sides are
A. $36: 121$
B. $121: 36$
C. 6: 11
D. 11: 6

Answer:

4. If $\triangle A B C \sim \triangle D E F$ and $\angle A=45^{\circ}, \angle E=87^{\circ}$, then $\angle C=$
A. 45°
B. 87°
C. 48°
D. cannot be determined

Answer:

- Watch Video Solution

5. In a $A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}$,

$$
B D=6 \mathrm{~cm} \text { and } D C=3 \mathrm{~cm} . \text { Find } A C 4 \mathrm{~cm} \text { (b) } 6 \mathrm{~cm} \text { (c) } 3 \mathrm{~cm}
$$

(d) 8 cm
A. 4 cm
B. 3 cm
C. 6 cm
D. 8 cm

Answer:

D Watch Video Solution

6.

In
the
figure
$\angle A E D=\angle A B C, A D=3, D B=5, A E=4$ then length
of $A C$ is ..

A. 2
B. 6
C. 8
D. 12

D Watch Video Solution

7. The areas of two similar triangles are $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$. The ratio of their corresponding heights is
A. $9: 16$
B. 3: 4
C. $4: 3$
D. $16: 9$

Answer:

8. The corresponding medians of two similar triangles are in the ratio $4: 7$. Let their respective areas be A_{1} and $A_{2} \cdot A_{1}: A_{2}=\ldots . . .$.
A. $16: 49$
B. $4: 7$
C. 7: 4
D. $49: 16$

Answer:

(D) Watch Video Solution

Assignment 22

1. In the figure, line $P Q|\mid$ side $B C$ then write the ratio in which sides $A B$ and $A C$ are divided proportionately. Also give your reason.

2. In the figure, line $A X|\mid$ line $B Y| \mid$ line $C Z$ then complete the ratio
$\frac{A B}{\square}=\frac{\square}{Y Z}$.

3. In the figure, ray $Q S$ bisects $\angle P Q R$. $P Q=7, Q R=5$, $S R=2.5$ and $P S=a$ then the value of a is \ldots.

4. If $\triangle A B C \sim \triangle D E F$ and $A B: P Q=5: 7$ then write the ratio of $A(\Delta A B C): A(\Delta P Q R)$.

(D) Watch Video Solution

5. In the figure, $B C=7$ and $B D=3$ then write the ratio of $A(\Delta A D C): A(\Delta A B C)$.

- Watch Video Solution

1. Observe the figure and complete the following activity. In $\triangle A B C$ and $\triangle E D C$,
$\angle A B C \cong \angle \square \ldots . . .\left(\right.$ Each measures $\left.46^{\circ}\right)$
$\angle C \cong \angle C \ldots . .(\square)$
$\therefore \Delta A B C \sim \Delta E D C$.......[\square test for similarity]

2. In $\triangle D E F$, line $P Q|\mid$ side $E F$, if $D P=2.4, P E=7.2$, $D Q=1.8$ then find $Q F$.

- Watch Video Solution

3. In $\triangle P Q R$, ray $P S$ is the bisector of $\angle Q P R, Q-S-R$. If $Q s=4.8 \mathrm{~cm}, S R=3.6 \mathrm{~cm}$, find $P Q: P R$.

- Watch Video Solution

4. $\triangle A B C \sim \triangle P Q R$. If $A B=4 \mathrm{~cm}, \quad P Q=6 \mathrm{~cm}$ and
$Q R=9 \mathrm{~cm}$. Find $B C$.
A. 5 cm
B. 6 cm
C. 7 cm
D. 8 cm

Answer: option 2

- Watch Video Solution

5. In the figure, $\triangle A B C \sim \Delta E D C, A C=15, \quad B C=10$,
$C E=12$. Find x

- Watch Video Solution

6. $\triangle A B C \sim \triangle P Q R$.

If $\quad A B: P Q=4: 5$, find
$A(\triangle A B C): A(\triangle P Q R)$.

- Watch Video Solution

7. $\triangle A B C \sim D E F . A(\Delta A B C): A(\Delta D E F)=49: 100$. Find the ratio of $A B: D E$.

D Watch Video Solution

8. In order to prove, 'The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.
(i) Draw a neat labelled figure.
(ii) Write 'Given' and 'To prove'.

(Watch Video Solution

9. In $\triangle P Q R, P M=15, M Q=10, P N=12$ and $N R=8$.

State whether line $N M$ is parallel to side $R Q$ or not. Give
reason.

- Watch Video Solution

10. Are the triangles in the following figures similar . If yes, by which test?

(Watch Video Solution

Assignment 24

1. In the figure, seg $D E|\mid$ side $A C$ and $\operatorname{seg} E F| \mid$ side $B A$
then prove that $\frac{A D}{D B} \times \frac{A F}{F C}=1$

- Watch Video Solution

2. In trapezium $P Q R S$,side $P Q|\mid$ side $S R$. Diagonals $P R$ and $Q S$ intersect each other at point $M . P Q=2 R S$. Prove that $P M=2 R M$ and $Q M=2 S M$.
3. In the adjoining figure, seg PA , seg QB, seg RC and seg SD are perpendicular to line $A D . A B=60, B C=70, C D=80, P S=$ 280, then find $P Q, Q R$ and $R S$.

4. In the figure, seg $A B \cong \operatorname{seg} A C$, ray $C E$ bisects $\angle A C B$, ray $B D$ bisects $\angle A B C$. Prove that ray $E D \|$ side $B C$.

5. In the figure, $\triangle A B C \sim \Delta M N O, D$ is the midpoint of side $A C$ and P is the midpoint of side $M O$.

Prove : $(i) \Delta A B D \sim \Delta M N P$
(ii) $\frac{B D}{N P}=\frac{A B}{M N}$
(iii) Write your conclusion of the result obtained in (ii).

6. $\square A B C D$ is a parallelogram. Point E is on side $B C$. Line $D E$ intersects ray $A B$ in point T. Prove that $D E \times B E=C E \times T E$.

D Watch Video Solution

In $\triangle P Q R$ seg PM is a median. Angle bisectors of $\angle P M Q$ and $\angle P M R$ interesect side PQ and side PR in points X and Y respectively. Prove that $X Y|\mid Q R$.

Complete the proof byfilling in the boxes:
8. Prove that, "If a line parallel to a side of a triangle intersects the remaining sides in two distinct points then the line divides the sides in the same proportion".

D Watch Video Solution

Assignment 25

1. In the figure, $\operatorname{seg} P Q|\mid$ side $B C$ and $\operatorname{seg} Q R| \mid$ side $A B$.
(i) Find $\frac{A Q}{Q C}$.
(ii) What would be $\frac{C R}{R B}$?
(iii) Is $\frac{B P}{P A}=\frac{B R}{R C}$?

- Watch Video Solution

2. In $\square A B C D$, side $B C|\mid$ side $A D$. Digonals $A C$ and $B D$ intersect each other at P. If $A P=\frac{1}{3} A C$ then prove $D P=\frac{1}{2} B P$.
3. यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हो तो सिद्ध कीजिए कि वे त्रिभुज सर्वांगसम होते है

- Watch Video Solution

4. A line cuts two sides $A B$ and $A C$ of $\triangle A B C$ at points P and Q respectively. Prove $\frac{A(\Delta A P Q)}{A(\Delta A B C)}=\frac{A P \times A Q}{A B \times A C}$.

(D) Watch Video Solution

5. In $\triangle A B C, E$ is the midpoint of the median $A D$. $B E$ produced meets $A C$ at F. Prove that $A F=\left(\frac{1}{3}\right) A C$

Example Type

1. Base of a triangle is 9 and height is 5 . Base of another triangle is 10 and height is 6 . Find the ratio of areas of these triangles.

D Watch Video Solution

2. In the figure $B C \perp A B, A D \perp A B, B C=4, A D=8$, then find $\frac{A(\triangle A B C)}{A(\Delta A D B)}$.

3. In the following figure set $P S \perp$ seg $R Q$,set $Q T \perp$ set PR. If $R Q=6, P S=6$ and $P R=12$, then find the QT.

- Watch Video Solution

4. In the following figure $A P \perp B C, A D| | B C$, then find $A(\triangle A B C): A(\Delta B C D)$.

- Watch Video Solution

5. In the adjoining figure $P Q \perp B C, A D \perp B C$, then find following ratios:

(i) $\frac{A(\Delta P Q B)}{A(\triangle P B C)}$ (ii) $\frac{A(\triangle P B C)}{A(\triangle A B C)}$
(iii) $\frac{A(\triangle A B C)}{A(\triangle A D C)}$ (iv) $\frac{A(\Delta A D C)}{A(\Delta P Q C)}$

- Watch Video Solution

6. Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of $\angle Q P R$.

7. In $\triangle P Q R, P M=15, P Q=25, P R=20, N R=8$. State whether line NM is parallel to side RQ or not. Given Reason.

D Watch Video Solution

8. In $\triangle M N P, N Q$ is a bisector of $\angle N$. If $M N=5, P N=7, M Q=2.5$, the find QP.

- Watch Video Solution

9. Measures of some angles in the figures are given. Prove that $\frac{A P}{P B}=\frac{A Q}{Q C}$

- Watch Video Solution

10. In trapezium $A B C D$ side $A B|\mid$ side $P Q| \mid$ side $D C, A P=15, P D=12, Q C=14$, find BQ.

- Watch Video Solution

11. Find QP using given information in the figure.

12. In the figure if $A B\|C D\| F E$ then find x and AE .

Watch Video Solution
13. In $\Delta L M N$, ray MT bisects $\angle L M N$. If $L M=6, M N=10$.
$T N=8$ then find LT.

- Watch Video Solution

14. In $\triangle A B C$ set BD bisects $\angle A B C$. If $A B-x, B C=x+5, A D=x-2, D C=x+2$, then find
the value of x.

D Watch Video Solution

15. In the figure X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg $P Q|\mid$ set DE, set $Q R|\mid$ set EF. Fill in the blanks to prove that set $P R| \mid$ seg

DF.

- Watch Video Solution

16. In $\triangle A B C$, ray BD bisects $\angle A B C$ and ray CE bisects $\angle A C B$. If $\operatorname{seg} A B \cong \operatorname{seg} A C$, then prove that $E D \| B C$.

D Watch Video Solution
17.
$B P \perp A C, C Q \perp A B, A-P-C, A-Q-B$, then prove that $\triangle A P B$ and $\triangle A Q C$ are similar.

- Watch Video Solution

18. In the figure $\angle A B C=75^{\circ}$
$\angle E D C=75^{\circ}$

State which two triangles are similar and by which test? Also

write the similarity of these two triangles by a proper one to one correspondence.

- Watch Video Solution

19. Are the triangles in following figures similar?

If yes by which test?

- Watch Video Solution

20. As shown in the figures, two poles of height 8 m and 4 m are perpendicular to the groudn. If the length of shadow smaller pole due to sunlight is 6 m then long will be the shadow of the bigger pole of the same time?

- Watch Video Solution

21.

$\triangle A B C, A P \perp B C, B Q \perp A C . B-P-C, A-Q-C$, then prove that $\triangle C P A \sim \Delta C Q B$.

If $A P=7, B Q=8, B C=12$ then find AC .

- Watch Video Solution

22. Given: In trapezium PQRS, sides $P Q|\mid$ sides $S R, A R=5 A P, A S=5 A Q$, then prove that $S R=5 P Q$.

- Watch Video Solution

23. In trapezium ABCD side $A B|\mid$ side DC , diagonals AC and BD intersect In point O. If $A B=20, D C=6, O B=15$ thn
find OD.

D Watch Video Solution

24. $\square A B C D$ is a parallelogram point E is on side BC . Line DE intersects ray AB in point T. Prove that
$D E \times B E=C E \times T E$.

- Watch Video Solution

25. In the figure, set aC and seg BD intersect each other in point P and $\frac{A P}{C P}=\frac{B P}{D P}$. Prove that $\triangle A B P \sim \Delta C D P$.

- Watch Video Solution

26. In the figure in $\triangle A B C$, point D on side BC is such that
$\angle B A C=\angle A D C$.

Prove that $C A^{2}=C B \times C D$.

- Watch Video Solution

27. The ratio of corresponding sides of similar triangles is $3: 5$, then what is the ratio of their areas.
28. If $\triangle A B C \sim \Delta P Q R$ and $A B: P Q=2: 3$, then fill in the blanks:
$\frac{A(\triangle A B C)}{A(\triangle P Q R)}=\frac{(A B)^{2}}{\square}=\frac{2^{2}}{3^{2}}=\frac{\square}{\square}$
$\frac{A(\triangle A B C)}{A(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{2^{2}}{3^{2}}=\frac{4}{9}$

- Watch Video Solution

29. If $\triangle A B C \sim \Delta P Q R, A(\triangle A B C)=80, A(\Delta P Q R)=125$, then fill in the blanks:
$\frac{A(\Delta A B C)}{A(\Delta \ldots \ldots \ldots)}=\frac{80}{125} \therefore \frac{A B}{P Q}=\frac{\square}{\square}$

D Watch Video Solution

30. $\triangle L M N \sim \Delta P Q R, 9 \times A(\Delta P Q R)=16 \times A(\Delta L M N)$. If $Q R=20$, then find $M N$.

(D) Watch Video Solution

31. Areas of two similar triangles are 225 sq cm and 81 sq cm . If a side of the smaller triangle is 12 cm , then find the corresponding side of the bigger triangle.

D Watch Video Solution

32. $\triangle A B C$ and $\triangle D E F$ are equilateral triangles. If $A(\triangle A B C): A(\Delta D E F)=1: 2$ and $A B=4$, find $D E$.

(D) Watch Video Solution

33. In the figure seg $P Q|\mid$ seg DE, $A(\triangle P Q F)=20$ units $P F=2 D P$,then find $A(\square D P Q E)$ by completing the
following activity:

Activity: $A(\triangle P Q F)=20$ sq units, $P F=2 D P$.

Let us assume $D P=x$
$\therefore P F=2 x$
$D F=D E+\square=\square+\square=3 x$
In $\triangle F D E$ and $\triangle F P Q$.
$\angle F D E \cong \angle \square \ldots(C o r r e s p o n d i n g$ angles)
$\angle F E D \cong \angle \square \ldots . .($ (Corresponding angles)
$\therefore \Delta F D E \sim \Delta F P Q($ (AA test $)$
$\therefore \frac{A(\Delta F D E)}{A(\Delta F P Q)}=\frac{\square}{\square}=\frac{(3 x)^{2}}{(2 x)^{2}}=\frac{9}{4}$
$A(\Delta F D E)=\frac{9}{4} A(\Delta F P Q)=\frac{9}{4} \times \square=\square$

$$
\begin{aligned}
& A(\square D P Q E)=A(\triangle F D E)-A(\Delta F P Q) \\
& =\square-\square \\
& =\square
\end{aligned}
$$

- Watch Video Solution

34. In $\triangle A B C$ and $\triangle P Q R$ in a one-to-one correspndence
$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$ then

A. $\triangle P Q R \sim \triangle A B C$
B. $\triangle P Q R \sim \triangle C A B$
C. $\triangle C B A \sim \Delta P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer: B

(D) Watch Video Solution

35. If in $\triangle D E F$ and $\triangle P Q R, \angle D \cong \angle Q, . \angle R \cong \angle E$, then when of the following statements is false?

A. $\frac{E F}{P R}=\frac{D F}{P Q}$
B. $\frac{D E}{P Q}=\frac{E F}{R P}$
c. $\frac{D E}{Q R}=\frac{D F}{P Q}$
D. $\frac{E F}{R P}=\frac{D E}{Q R}$

Answer: D

D Watch Video Solution

36. In $\triangle A B C$ and $\triangle D E F \angle B=\angle E, \angle F=\angle C$ and $A B=3 D E$ then which of the statements regarding the two

A. The triangles are not congruent and not similar.
B. The triangles are similar but not congruent.
C. The triangles are congruent and similar.
D. None of the statements above is true.

Answer: B

D Watch Video Solution

37. $\triangle A B C$ and $\triangle D E F$ are equilateral triangles,
$A(\Delta A B C): A(\Delta D E F)=1: 2$

If $A B=4$ then what is length of $D E$?

A. $2 \sqrt{2}$
B. 4
C. 8
D. $4 \sqrt{2}$

Answer: D
(D) Watch Video Solution
38. In figure sex $X Y|\mid$ set BC, thwn which of the following statements is true?

A. $\frac{A B}{A C}=\frac{A X}{A Y}$
B. $\frac{A X}{X B}=\frac{A Y}{A C}$
c. $\frac{A X}{Y C}=\frac{A Y}{X B}$
D. $\frac{A B}{Y C}=\frac{A C}{X B}$

- Watch Video Solution

39. In $\triangle A B C, B-D-C$ and $B D=7, B C=20$, then find followig ratios:

$\frac{A(\triangle A B D)}{A(\triangle A D C)}$
$\frac{A(\triangle A B D)}{A(\triangle A B C)}$
$\frac{A(\triangle A D C)}{A(\triangle A B C)}$
40. Ratio of areas of two triangles with equal height is $2: 3$. If base of the smaller triangle is 6 cm , the what is the corresponding base of the bigger triangle?

- Watch Video Solution

41.

In
the
figure
$\angle A B C=\angle D C B=90^{\circ}, A B=6, D C=8$,
then $\frac{A(\triangle A B C)}{A(\triangle D C B)}=$?

- Watch Video Solution

42. In the figure $P M=10 \mathrm{~cm}, A(\Delta P Q S)=100 \mathrm{sqcm}, A(\Delta Q R S)=110 \mathrm{sq} . \mathrm{cm}$,
then find NR.

- Watch Video Solution

43. $\Delta M N T \sim \Delta Q R S$. Length of altitude drawn from point T is

5 and length of altitude drawn from point S is 9 . Find the ratio $\frac{A(\Delta M N T)}{A(\Delta Q R S)}$.
44. In the figure $A-D-C$ and $B-E-C$ seg $D E|\mid$ side AB . If $A D=5, D C=3, B C=6.4$ then find BE .

- Watch Video Solution

45. In the adjoining figure, seg PA, seg QB, seg RC and seg SD are perpendicular to line $A D . A B=60, B C=70, C D=80, P S=$

280 , then find $P Q, Q R$ and $R S$.

D Watch Video Solution

46.

In $\triangle P Q R$ seg PM is a median. Angle bisectors of $\angle P M Q$ and $\angle P M R$ interesect side PQ and side PR in points X and Y respectively. Prove that $X Y|\mid Q R$.

Complete the proof byfilling in the boxes:

(D) Watch Video Solution

47. In the figure bisectors of $\angle B$ and $\angle C$ of $\triangle A B C$ intersect each other in point X. Line $A X$ intersects side $B C$ in pont Y.
$A B=5, A C=4, B C=6$ then find $\frac{A X}{X Y}$

- Watch Video Solution

48. In $\square A B C D$, seg $A D|\mid$ seg BC . Diagonal AC and digonal $B D$ intersect each other in point P. Then show that
$\frac{A P}{P D}=\frac{P C}{B P}$.

- Watch Video Solution

49. In figure $X Y|\mid$ seg AC. If $2 A X=3 B X$ and $X Y=9$, complete the activity to find the value of AC.

Activity: $2 A X=3 B X$
$\therefore \frac{A X}{B X}=\frac{\square}{\square}$
$\therefore \frac{A X+B X}{B X}=\frac{\square+\square}{\square}$........(By componendo)
$\therefore \frac{A B}{B X}=\frac{\square}{\square} \ldots$.
$\Delta B C A \sim \Delta B Y X$.......(\square test of similarity)
$\therefore \frac{B A}{B X}=\frac{A C}{X Y}$
.............(Corresponding sides of similar triangles)
$\therefore \frac{\square}{\square}=\frac{A C}{9}$
$\therefore A C=\square$
[From 1]
50. In figure, the vertices, of square DEFG are on the sides of $\triangle A B C . \angle A=90^{\circ}$. Then prove that $D E^{2}=B D \times E C$.

- Watch Video Solution

Challenging Questions

1. In $\square A B C D$, side $A B \cong$ side AD . Bisector of $\angle B A C$ cuts side BC at E and bisector of $\angle D A C$ cuts side CD at F . Prove
that set $E F|\mid \operatorname{seg} B D$.

- Watch Video Solution

2. A line cuts two sides $A B$ and $A C$ of $\triangle A B C$ at points P and Q respectively. Prove $\frac{A(\triangle A P Q)}{A(\triangle A B C)}=\frac{A P \times A Q}{A B \times A C}$.

D Watch Video Solution

3. In $\triangle A B C, L, M, N$ are points on side $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$ respectively.

Perpendiculars drawn at $\mathrm{L}, \mathrm{M}, \mathrm{N}$ form $\triangle P Q R$.
Prove that $\triangle A B C \sim \triangle P R Q$.

- Watch Video Solution

4. $\square A B C D$ is a parallelogram. P is the midpoint of side CD . Seg BP meets diagonal AC at X . Prove that $3 A X=2 A C$.

- Watch Video Solution

5. Points S is on the side PR of $\triangle P M R$ such that $3 S R=2 S P$, set $S T\left|\mid\right.$ side PM. If $A(\Delta P M R)=50 \mathrm{~cm}^{2}$ then find (i)

$A(\Delta R S T)$ (ii) $A(\square P M T S)$

- Watch Video Solution

6. In the same figure, $\triangle A B C$ and $\triangle D B C$ are on the same base $B C$. If $A D$ is intersects $B C$ at O, prove that

- Watch Video Solution

7. In $\triangle A B C$ and $\triangle P Q R, \angle A B C \cong \angle P Q R$ eg BD and seg
QS are angles bisectors . If
$\frac{l(A D)}{l(P S)}=\frac{l(D C)}{l(S R)}=$ then $\Delta A B C \sim \Delta P Q R$
`(\#\#NVT_21_MAT_P2_X_C09_E01_002_S01.png" width="80\%">

- Watch Video Solution

8. O is any point in the interior of $\triangle A B C$. Bisectors of
$\angle A O B, B O C$ and $A O C$ intersect side $A B$, side $B C$, side $A C$ in F,D and E respectively.

Prove that $B F \times A E \times C D=A F \times C E \times B D$.

- Watch Video Solution

Mcq Type

1. $\triangle A B C \sim \Delta D E F$, then $\frac{A B}{D E}=\frac{\ldots \ldots \ldots}{E F}$
A. AC
B. DF
C. BC
D. None of these

Answer: C

D Watch Video Solution

2. In the figure $B D=8, B C=12$ and $B-D-C$ then $\frac{A(\Delta A B D)}{A(\Delta A D C)}=$

A. 1: 2
B. 2: 1
C. 2: 3
D. $3: 2$

Answer: B

- Watch Video Solution

3. In the figure ray QS is the bisector of $\angle P Q R$ and $P Q=Q R$, then $\frac{P S}{S R}=\ldots \ldots . .$.

A. 1:1
B. 1: 2
C. 2:1
D. Cannot be determined

Answer: A
4. In the figure for what value of x will seg DE be parallel to Bc ?
A. 2
B. 3
C. 20
D. 2 and 20

Answer: A

(Watch Video Solution

5. A vertical pole 40 m long casts a shadow 20 m long on the ground. At the same time a. Tower casts a shadow 50 m
long on the ground.
A. 100 m
B. 50 m
C. 25 m
D. 150 m

Answer: A

(D) Watch Video Solution

6. Sides of two similar triangles are in the ratio $3: 5$, Areas of these triangles are in the ratio..
A. 1.0479166666667
B. 0.12847222222222
C. 0.39236111111111
D. 0.21041666666667

Answer: C

(D) Watch Video Solution

7. The areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$.

The ratio of their corresponding sides are
A. $36: 121$
B. $121: 36$
C. 6: 11
D. $11: 6$

(D) Watch Video Solution

8. If $\triangle A B C \sim \triangle D E F$ and $\angle A=45^{\circ}, \angle E=87^{\circ}$, then $\angle C=$
A. 45°
B. 87°
C. 48°
D. Cannot be determined

Answer: C

- Watch Video Solution

9. In a $A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}$, $B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. Find $A C 4 \mathrm{~cm}$ (b) 6 cm (c) 3 cm
(d) 8 cm
A. 4 cm
B. 3 cm
C. 6 cm
D. 8 cm

Answer: A

D Watch Video Solution

10.

In
the
figure
$\angle A E D=\angle A B C, A D=3, D B=5, A E=4$ then length
of $A C$ is ..

A. 2
B. 6
C. 8
D. 12

D Watch Video Solution

11. The areas of two similar triangles are $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$. The ratio of their correspoinding heights is.
A. 0.38611111111111
B. 0.12777777777778
C. 0.16875
D. 0.67291666666667

Answer: B

12. Which of the following is not the test of similarly : AAA test, SAS test, ASA test, SSS test?
A. AAA test
B. SAS test
C. SAA test
D. SSS test

Answer: C

- Watch Video Solution

13. The corresponding medians of two similar triangles are in the ratio 4:7. Let their respective areas be A_{1} and $A_{2} . A_{1}: A_{2}=.$.
A. 0.70069444444444
B. 0.17152777777778
C. 0.29444444444444
D. 2.0527777777778

Answer: A

D Watch Video Solution

14. In the figure line $A D|\mid$ line $B E| \mid$ line CFgt $A B=8, B C=4, D E=6$ then $E F=?$

A. 3
B. 12
C. 8
D. 4

Answer: A
15. If two similar triangles are of equal areas, then the two triangles are
A. similar but not congruent
B. similar and congruent
C. neither similar nor congruent
D. none fo the above

Answer: B

- Watch Video Solution

Subjective Type

1. The heights of $\triangle A B C$ and $\triangle D B C$ are 4 cm and 6 cm respectively. Find $\frac{A(\Delta A B C)}{A(\Delta D B C)}$.

- Watch Video Solution

2. In $\triangle P Q R$, ray PS is the bisector of $\angle Q P R$.
$Q-S-R$. If $Q S=4.8 \mathrm{~cm}, S R=3.6 \mathrm{~cm}$ then find $P Q: P R$.

(D) Watch Video Solution

3. If $\triangle A B C \sim \triangle E D C, A C=15, B C=10, C E=12$, then find CD.
4. $\triangle A B C \sim \triangle P Q R$. If $A B: P Q=4: 5$, find $A(\triangle A B C): A(\triangle P Q R)$.

- Watch Video Solution

5. The ratio of the areas of two triangles $A_{1}: A_{2}$ is $3: 2$. The corresponding bases are b_{1} and b_{2}. The height of the triangles are equal. If $b_{2}=12 \mathrm{~cm}$. Find b_{1}.

- Watch Video Solution

6. In the figure lien $P Q|\mid$ side $B C, A P=2.4 \mathrm{~cm}, P B=7.2 \mathrm{~cm}, Q C=5.4 \mathrm{~cm}$ then find $A Q$

- Watch Video Solution

7. $\triangle A B C \sim \triangle D E F, B C=4.8 \mathrm{~cm} E F=7.2 \mathrm{~cm}$. Complete the following activity to find $A(\triangle A B C): A(\triangle D E F)$.

Activity:
$\triangle A B C \sim \triangle D E F$
$\frac{A(\triangle A B C)}{A(\Delta D E F)}=\frac{B C^{2}}{\square^{2}}$
.....Theorem on \qquad

$$
\begin{aligned}
& \therefore \frac{A(\triangle A B C)}{A(\triangle D E F)}=\frac{4.8^{2}}{(\square)^{2}} \\
& \therefore \frac{A(\triangle A B C)}{A(\triangle D E F)}=\frac{4}{\square} \\
& A(\triangle A B C): A(\triangle D E F)=4: \square
\end{aligned}
$$

- Watch Video Solution

8. In $\triangle A B C$, D is the midpoint of side AB . Line $D E|\mid$ side BC .
$A-E-C$. Prove that pont E is the midpoint of side AC .

D Watch Video Solution

9.

In the figure seg $S P \perp$ side YK , and seg $Y t \perp$ side SK . If $S P=6, Y K=13, Y T=5 \quad$ and $\quad T K=12, \quad$ thenfidn $A(\Delta S Y K): A(\Delta Y T K)$.

D Watch Video Solution

10. Line m intersects sides AB and AC of $\triangle A B C$ in the points
P and \quad Q respectively.
$A P=4.2, P B=6.3, A Q=4, Q C=6$. State with reason whether line m is parallel to side BC or not.

- Watch Video Solution

11. In trapezium $P Q R S$,side $P Q|\mid$ side $S R$. Diagonals $P R$ and $Q S$ intersect each other at point $M . P Q=2 R S$. Prove that $P M=2 R M$ and $Q M=2 S M$.

- Watch Video Solution

12. In the figure D is a point on $B C$ such that $\angle A B D=\angle C A D . \quad$ If $\quad A B=5 \mathrm{~cm}, A D=4 \mathrm{~cm} \quad$ and $A C=3 \mathrm{~cm}$. Find (i) BC (ii) DC (iii) $A(\Delta A C D): A I \Delta B C A)$.

- Watch Video Solution

13. In the figure, set $D H \perp$ side EF and seg $G K \perp$ side EF. If $D H=12 \mathrm{~cm}, G K=20$ and $A(\Delta D E F)=300 \mathrm{~cm}^{2}$.

Find (i) EF(ii) $A(\Delta G E F)$ (iii) $A(\square D E G F)$.

- Watch Video Solution

14. Two triangles are similar. The lengths of the sides of the smaller triangle are $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm respectively. The
perimeter of the larger triangle is 90 cm then find the length of sides of larger triangle.

D Watch Video Solution

15. Bisector of $\angle B$ and $\angle C$ in $\triangle A B C$ meet each other at P.

Line $A P$ cuts the sides $B C$ at Q.

Prove: $\frac{A P}{P Q}=\frac{A B+A C}{B C}$.

- Watch Video Solution

16. In $\triangle A B C$ seg $M N|\mid$ side $A C$. Seg $M N$ divides $\triangle A B C$ into two parts equal in area. Determine $\frac{M B}{A B}$.
17. यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हो तो सिद्ध कीजिए कि वे त्रिभुज सर्वांगसम होते है

- Watch Video Solution

18. In the figure sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ of $\triangle A B C$ are produced upto points R,P,F respectively such that $A B=B R, B C=C P$ and $C A=A F$. Prove that:
$(\triangle P F R)=7 A(\Delta A B C)$

- Watch Video Solution

19. In $\square A B C D$, side $B C|\mid$ side $A D$. Digonals $A C$ and $B D$ intersect each other at P. If $A P=\frac{1}{3} A C$ then prove $D P=\frac{1}{2} B P$.

D Watch Video Solution

20. In $\triangle P Q R$, set $X Y|\mid$ sides QR, M and N are midpoints of seg PY and seg PR respectively. Prove that:
(i) $\triangle P X M \sim \Delta P Q N$ (ii) $\operatorname{seg} X M|\mid \sec Q N$.

