# ©゙" doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - NAVBODH MATHS (HINGLISH)

## THEOREMS

Similarity

1. Prove that, "If a line parallel to a side of a
triangle intersects the remaining sides in two
distinct points then the line divides the sides
in the same proportion".

## D Watch Video Solution

2. In order to prove, 'The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.
(i) Draw a neat labelled figure.
(ii) Write 'Given' and 'To prove'.

## - Watch Video Solution

3. Theorem 6.6 : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

## D Watch Video Solution

Pythagoras Theorem

1. Theorem 6.7 : If a perpendicular is drawn
from the vertex of the right angle of a right
triangle to the hypotenuse then triangles on
both sides of the perpendicular are similar to
the whole triangle and to each other.

## D Watch Video Solution

2. In order to prove, "In a right angled triangle,
the perpendicular segment to the hypotenuse
from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided."
(i) Draw a neat labelled figure.
(ii) Write 'Given' and 'To prove' from the figure drawn by you.

## - Watch Video Solution

3. In order to prove, 'In a right angled triangle,
the square of the hypotenuse is equal to the sum of the squares of remaining two sides
(i) Draw a near labelled figure.
(ii) Write 'Given' and 'To Prove' from the figure drawn by you.
4. In $\triangle A B C$, if M is the midpiont of BC and $\operatorname{seg} A M \perp \operatorname{seg} B C$, then prove that prove that $A B^{2}+A C^{2}=2 A M^{2}+2 B M^{2}$.

## D Watch Video Solution

## Circle

1. Theorem:A line drawn through the end point of a radius and perpendicular to it is a tangent to the circle.
2. Theorem: The length of two tangents drawn from an external point to a circle are equal.

## - Watch Video Solution

3. If two circles touch each other (internally or externally); the point of contact lies on the
line through the centres.

## - Watch Video Solution

4. If two arcs of a circle (or of congruent circles) are congruent, then corresponding chords are equal.

## D Watch Video Solution

5. If two chords of a congruent circle are equal; then their corresponding arcs.

## D Watch Video Solution

6. Inscribed Angle Theorem

The measure of an inscribed angle is half of
the measure of the arc intercepted by it.
Given : In a circle with centre $0, \angle B A C$ is inscribed in an arc BAC. $\angle B A C$ intercepts are BXC of the circle.

To prove : $m \angle B A C=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{BXC})$.

## D Watch Video Solution

7. Corollaries of inscribed angle theorem :

Angle inscribed in the same arc arc contruent

Given : (1) A circle with centre O
(2) $\angle A B D$ and $\angle A C D$ are inscribed in arc

ABC and intercepts arc APD.

To prove : $\angle A B D \cong \angle A C D$

8. In the figure, O is the centre of the circle.

Seg AC is the diameter $\angle A B C$ is inscribed in arc $A B C$ and intercepts arc AMC then prove
$\angle A B C=90^{\circ}$

9. The sum of either pair of opposite angles of a cyclic quadrilateral is $180^{\circ}$ OR The opposite angles of a cyclic quadrilateral are supplementary.

## D Watch Video Solution

10. Given :
$\square \mathrm{ABCD}$ is cyclic. $\angle D C E$ is an exterior angle of $\square \mathrm{ABCD}$.

To Prove : $\angle D C E=\angle B A D$

Complete the proof by filling the boxes.


## - Watch Video Solution

11. If a line segment joining two points
subtends equal angles at two other points
lying on the sae side of the line segment; the four points are concyclic.

## - Watch Video Solution

12. Theorem of angle between tangent and secant

If an angle has its vertex on the circle, its one side touches the circle and the other intersects the circle in one more point, then the measure of the angle is half the measure of its intercepted arc .
(a)
(b)
(c)


Given : Let O be the centre of the circle. Line

DBC is tangent to the circle at point $B$. Seg $B A$ is a chord of the circle. Point $X$ of the circle is on $C$ side of line $B A$ and point $Y$ of the circle is on $D$ side of line $B A$.

To prove : $\mathrm{m} \angle A B C=\frac{1}{2} m(\operatorname{arc} A X B)$.

## D Watch Video Solution

13. Theorem of internal division of chords.

Suppose two chords of a circle intersect each other in the interior of the circle, then the product of the lengths of the two segments of one chord is equal to the product of the lengths of the two segments of the other chord.


Given : (1) A circle with centre O .
(2) chords $P R$ and $Q S$ intersect at point $E$ inside the circle.

To prove : PE $\times \mathrm{ER}=\mathrm{QE} \times \mathrm{ES}$ Construction
: Draw seg PQ and seg RS

D Watch Video Solution
14. Theorem of external division of chords.

If secants containing chords $A B$ and $C D$ of a circle intersect outside the circle in point $E$,
then $A E \times E B=C E \times E D$

Given : (1) A circle with centre O
(2) Secants $A B$ and $C D$ intersect at point $E$ outside the circle.

To prove : $A E \times E B=C E \times D E$

Construction : Draw seg AD and seg BC


## - Watch Video Solution

## 15. Tangent Secant Theorem

Point E is in the exterior of a circle. A secant through E intersects the circle at points A and $B$, and a tangent through $E$ touches the circle
at point T , then $E A \times E B=E T^{2}$.
Given : (1) A circle with centre O
(2) Tangent ET touches the circle at pointT
(3) Secant EAB intersects the circle at points A and $B$.

To prove : $E A \times E B=E T^{2}$



