©゙doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(ENGLISH)

CHEMICAL KINETICS

Solved Examples

1. From the concetration of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ (butyl chloride) at different times given below, calculate the average rate of reaction:
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HCl}$
during different intervals of time.
$\left|\begin{array}{ll}{\left[C_{4} H_{9} C l\right]\left(\mathrm{molL}^{-1}\right)} & t(s) \\ 0.100 & 0 \\ 0.0905 & 50 \\ 0.0820 & 100 \\ 0.0741 & 150 \\ 0.0671 & 200 \\ 0.0549 & 300 \\ 0.0439 & 400 \\ 0.0210 & 700 \\ 0.017 & 800\end{array}\right|$

D Watch Video Solution

2. The decompoistion of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCI_{4} solution at $318 K$ has been studied by monitoring the concentration of $N_{2} O_{5}$ in the solution. Initially,
the concentration of $\mathrm{N}_{2} \mathrm{O}$ is 2.33 M and after 184 min , it is reduced to 2.08 M . The reaction takes place according to the equation:
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Calculate the average rate of this reaction in terms of hours, minutes, and seconds. What is the rate of Production of NO_{2} during this period?

- Watch Video Solution

3. Calculate the overall order of a reaction which
has the rate expresison.
(a) Rate $=k[A]^{\frac{1}{2}}[B]^{\frac{3}{2}}$, (b) Rate $=k[A]^{\frac{3}{2}}[B]^{-1}$

- Watch Video Solution

4. Identify the reaction order from each of the following rate constants.
(i) $\mathrm{k}=2.3 \times 10^{-5} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
(ii) $\mathrm{k}=3 \times 10^{-4} s^{-1}$

- Watch Video Solution

5. The initial concentration of $N_{2} O_{5}$ in the following first order reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

was $1.24 \times 10^{-2} \mathrm{molL} L^{-1}$ at 318 K . The
concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 60 min was
$0.20 \times 10^{-2} \mathrm{molL}^{-1}$. Calculate the rate constant of the reaction at $318 K$.

(D) Watch Video Solution

6. The following data were obtained during the
first thermal decompoistion of $N_{2} O_{5}(g)$ at constant volume.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(g)+\mathrm{O}_{2}(g)$
$\left|\begin{array}{lll}\text { S.No. } & \text { Time (s) } & \text { Total pressure }(\mathrm{atm}) \\ i . & 0 & 0.5 \\ i i . & 100 & 0.512\end{array}\right|$
Calculate the rate constant.

D Watch Video Solution

7. A first order reaction is found to have a rate constant $k=5.5 \times 10^{-14} s^{-1}$. Find half-life of the reaction.
8. When reaction is completed 99.9%, $[R]_{n}=[R]_{0}-0.999[R]_{0}$

- View Text Solution

9. The rate constant of a reaction at $500 K$ and $700 K$ are $0.02 s^{-1}$, respectively. Calculate the values of E_{a} and A at $500 K$.
10. The first order rate constant for the decomposition of $C_{2} H_{5} I$ by the reaction.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HI}(g)$
at $600 \mathrm{Kis} 1.60 \times 10^{-5} s^{-1}$. Its energy of activation is $209 \mathrm{kJmol}^{-1}$. Calculate the rate constant at $700 K$

D Watch Video Solution

11. In a reaction, $2 A \rightarrow$ Products the concentration of A decreases from 0.5 mol
litre ${ }^{-1}$ to 0.4 mol litre ${ }^{-1}$ in 10 minutes.

Calculate rate during this interval.

(D) Watch Video Solution

12. For a reaction, $A+B \rightarrow$ Product, the rate law is given by $r=k[A]^{\frac{1}{2}}[B]^{2}$. What is the order of the reaction?

(D) Watch Video Solution

13. The conversion of molecules X to Y follows second order kinetics. If the concenration of X is
increased to three times, how will it affect the rate of formation of Y ?

D Watch Video Solution

14. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will $5 g$ of this reactant take to reduce to $3 g^{`}$?

D Watch Video Solution

15. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its intial amount is 60 min . If the decomposition
is a first order reaction, calculate the rate constant of the reaction.

D Watch Video Solution

16. What will be effect of temperature on rate constant ?

(D) Watch Video Solution

17. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate Ea.
18. The activation energy for the reaction :
$.2 \mathrm{Hl}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
is $209.5 \mathrm{kJmol}^{-1}$ at 581 K . Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy ?

- Watch Video Solution

19. From the rate expression for the following reactions, determine their order of reaction and
dimensions of the rate constants.
a. $3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} O(g)$, Rate $=k[N O]^{2}$
b. $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 I^{-}(a q)+2 \mathrm{H}^{\oplus} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+I_{3}^{-}$,

Rate $=k\left[H_{2} O_{2}\right]\left[I^{-}\right]$
c. $\mathrm{CH}_{3} \mathrm{CHO}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g), \quad$ Rate
$=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$
d. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$,

Rate
$k\left[C_{2} H_{5} \mathrm{Cl}\right]$

- Watch Video Solution

20. For the reaction :
$2 A+B \rightarrow A_{2} B$
the rate $=k[A][B]^{2}$
$k=2.0 \times 10^{-6} \mathrm{~mol}^{-2} L^{2} \mathrm{~s}^{-1}$. Calculate the initial
rate of the reaction when
$[A]=0.1 \mathrm{~mol}^{-},[B]=0.2 \mathrm{molL}^{-1} . \quad$ Calculate the rate of reaction after $[A]$ is reduced to $0.06 \mathrm{~mol}^{-1}$.

- Watch Video Solution

21. The rate for the decomposition of NH_{3} on platinum surface is zero order. What are the rate of production of N_{2} and H_{2} if $K=2.5 \times 10^{-4} \mathrm{~mol}$ litre $^{-1} s^{-1}$?
22. The decomposition of dimethyl ether leads to the formation of $\mathrm{CH}_{4}, \mathrm{H}_{2}$, and CO and the reaction rate is given by

Rate $=k\left[\mathrm{CH}_{3} \mathrm{OCH}_{3}\right]^{3 / 2}$

The rate of reaction is followed by increase in the pressure in a closed vessel, so the rate can also
be expressed in terms of the partial pressure of dimethyl either, i.e.,

Rate $=k\left[p_{\left.\mathrm{CH}_{3} \mathrm{OCH}_{3}\right]^{3 / 2}}\right.$
If the pressure is measured in bar and time in
minutes, then what are the units of rate and rate constant?

- Watch Video Solution

23. Mention the factors that affect the rate of a chemical reaction.

D Watch Video Solution
24. A reaction is second order with respect to a reaction. How is the rate of reaction affected if
the
(a) doubled, (b) reduced to $1 / 2$?

- Watch Video Solution

25. What is the effect of temperature on the rate constant of a reaction ? How can this temperature effect on rate constant be represented quantitatively ?

D Watch Video Solution
26. In a pseudo first order hydrolysis of ester in water the following results were obtained:
$t / s \quad 0 \quad 30 \quad 60 \quad 90$
$\begin{array}{lllll}\text { [Ester] } & 0.55 & 0.31 & 0.17 & 0.085\end{array}$
(i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.
(ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.

D Watch Video Solution

27. A reaction is first order in A secod order in B :
(i) write differential rate equation.
(ii) How is the rate affected when the concentration of B is tripled ?
(iii) How is the rate affected when the concentration of both A and B is doubled?

D Watch Video Solution

28. In a reaction between A and B, the initial rate of reaction was measured for different initial concentrations of A and B as given below:
AM
0.20
0.20
0.40
B/M
0.30
0.10
0.05
r_{0} / Ms^{-1} $5.07 \times 10^{-5} 5.07 \times 10^{-5} \quad 7.6 \times 10^{-5}$

What is the order of reaction with respect to A and B ?

Watch Video Solution

29. The following rate data were obtained at $303 K$ for the following reaction:
$2 A+B \rightarrow C+D$
$\mathrm{ZA}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$

Exp	$[\mathrm{A}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathrm{B}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial rate of formation of D
I	0.1	0.1	$6.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
II	0.3	0.2	$7.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
III	0.3	0.4	$2.88 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
IV	0.4	0.1	$2.4 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$

What is the rate law? What is the order with
respect to each reactant and the overall order?
Also calculate the rate constant and write its units.

- Watch Video Solution

30. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	$\mathrm{A} / \mathrm{mol} \mathrm{L}^{-1}$	$\mathrm{~B} / \mathrm{mol} \mathrm{L}^{-1}$	Initial rate/ $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$
I	0.1	0.1	2.0×10^{-2}
II	--	0.2	4.0×10^{-2}
III	0.4	0.4	--
IV	--	0.2	2.0×10^{-2}

31. Calculate the half life of a first order reaction from their rate constants given below :
a. $200 s^{-1}, b .2$ min $^{-1}, c .4 y e a r s^{-1}$

D Watch Video Solution

32. The half life for radioactive decay of.${ }^{14} C$ is

5730 years. An archaeological artifact containing
wood had only 80% of the $\cdot{ }^{14} C$ found in a living tree. Estimate the age of the sample.
33. The rate constant for the first order reaction is
$60 s^{-1}$. How much time will it take to reduce the concentration of the reactant to $1 / 16$ th value?

D Watch Video Solution

34. During nuclear explosion, one of the products is.${ }^{99} S r$ with half - life of 28.1 years. If $1 \mu g$ of
. ${ }^{90} S r$ was absorbed in the bones of a newly born baby instead of calcium, how much of its will
remain after 10 years and 60 years if it is not lost metabolically.

- Watch Video Solution

35. For a first order reaction, show that the time required for 99% completion is twice the time required for the completion of 90% of reaction.

(D) Watch Video Solution

36. A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1 / 2}$.
37. For the decomposition of azoisopropane to hexane and nitrogen at 54

K , the following data are obtained.

Calculate the rare constant.

- Watch Video Solution

38. The following data were obtained during the first order thermal
decomposition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at a constant volume
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Experiment	Time/s	
$\mathbf{- 1}$	Total pressure/atm	
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm

Watch Video Solution

39. The rate constant for the decomposition of
$\mathrm{N}_{2} \mathrm{O}_{5}$ at various temperatures
is given below:

$T /{ }^{\circ} \mathrm{C}$	0	20	40	60	80
$10^{5} \times \mathrm{k} / \mathrm{s}^{-1}$	0.0787	1.70	25.7	178	2140

Draw a graph between In k and 1/T and calculate the values of A and
E_{a}. Predict the rate constant at 30° and $50^{\circ} \mathrm{C}$.

- View Text Solution

40. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} s^{-1}$ at $546 K$. If the energy of activation is $179.9 \mathrm{kJmol}^{-1}$, what will be the value of pre - exponential factor?
41. Consider a certain reaction $A \rightarrow$ Products
with $\quad k=2.0 \times 10^{-2} s^{-1} . \quad$ Calculate the
concentration of A remaining after $100 s$ if the initial concentration of A is $1.0 \mathrm{~mol}^{-1}$.

Watch Video Solution

42. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1 / 2}=3.00 \mathrm{hr}$. What fraction of sample of sucrose remains after $8 h r$?

- Watch Video Solution

43. The decomposition of hydrocarbon follows the equation $k=\left(4.5 \times 10^{11} s^{-1}\right) e^{-28000 K / T}$ Calculate E_{a}.

D Watch Video Solution

44. The rate constant for the first order decomposition of a certain reaction is described by the equation

$$
\log k\left(s^{-1}\right)=14.34-\frac{1.25 \times 10^{4} K}{T}
$$

(a) What is the energy of activation for the reaction?
(b) At what temperature will its half-life period be $256 \mathrm{~min} ?$

- Watch Video Solution

45. The decomposition of A into product has
value of k as $4.5 \times 10^{3} \mathrm{~s}^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation of $60 \mathrm{kJmol}^{-1}$. At what temperature would k be $1.5 \times 10^{4} s^{-1} ?$
46. The time required for 10% completion of a first order reaction at $298 K$ is equal to that required for its 25% completion at $308 K$. If the value of A is $4 \times 10^{10} s^{-1}$, calculate k at $318 K$ and E_{a}.

(D) Watch Video Solution

47. The rate of a reaction quadruples when the temperature changes from $293 K$ to $313 K$.

Calculate the energy of activation of the reaction
assuming that it does not change with temperature.

D Watch Video Solution

Exercise

1. The concentration of a reactant changes form
$0.03 M$ to $0.02 M$ in 25 min . Calculate the average rate of reaction uisng of time both in minutes and seconds.
2. The experimental data for decomposition of
$\mathrm{N}_{2} \mathrm{O}_{5}$
$\left[2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\right]$
in gas phase at 318 K are given below:

$t(\mathrm{~s})$	0	400	800	120 0	160 0	200 0	240 0	280 0	320 0
$10^{2} \times\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{molL}^{-1}$	1.6 3	1.3 6	1.1 4	0.93	0.78	0.64	0.53	0.43	0.35

(i) Plot $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ against t.
(ii) Find the half-life period for the reaction.
(iii) Draw a graph between $\log \left[N_{2} O_{5}\right]$ and t.
(iv) What is the rate law?
(v) Calculate the rate constant.
(vi) Calculate the half-life period from k and compare it with (ii).

- View Text Solution

