

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

MATRICES

Solved Examples

1. If
$$A=egin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and X is a $2 imes 2$ matrix such that AX = I ,

find X.

2. Find
$$(AB)^{-1}$$
 if $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & -3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 1 & -2 \end{pmatrix}$
Watch Video Solution
3. Find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$ by using elementary row transformations.
Watch Video Solution
4. If $f(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix}$, show that $(f(x))^{-1} = f(-x)$

5. Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
 by using

column transformations.

Watch Video Solution

6. If
$$A = \begin{pmatrix} 2 & -2 \\ 4 & 3 \end{pmatrix}$$
 then find A^{-1} by adjoint method.

Watch Video Solution

7. Find the inverse of $\begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}$ by the adjoint method .

8. Solve the following equations by the reduction method :

$$x + 3y = 2, 3x + 5y = 4.$$

Watch Video Solution

9. Solve the following equations by using reduction method :

2x - y + z = 1, x + 2y + 3z = 8, 3x + y - 4z = 1.

10. The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is Rs. 60.

The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers

is Rs. 90 whereas the cost of 6 dozen pencils, 2 dozen pens

and 3 dozen erasers is Rs. 70. Find the cost of each item per

dozen by using matrices.

x + 2y = 2, 2x + 3y = 3.

Watch Video Solution

12. Solve the following equations by the invers method :

x+y+z = -1, x-y+z = 2, x+y-z = 3.

Watch Video Solution

Examples For Practice

1. find the matrix X such that AX = B where $A = \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix}, B = \begin{vmatrix} 0 & 1 \\ 2 & 4 \end{vmatrix}$

Watch Video Solution

2. Find the inverses of the following matrices (if they exist) :

(1)

$$\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} \quad (2)\begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix} \quad (3)\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \quad (4)\begin{pmatrix} 3 & -10 \\ 2 & -7 \end{pmatrix}$$
Watch Video Solution

3. Find the matrix X such that
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix} X = \begin{pmatrix} 2 & 2 & -5 \\ -2 & -1 & 4 \\ 1 & 0 & -1 \end{pmatrix}.$$

4. If
$$A = \begin{pmatrix} 3a & 2b \\ -a & b \end{pmatrix}$$
 and $B = \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix}$, then find a

matrix X such that XA = B.

Watch Video Solution

5. Find the inverse of each of the following matrices :

$$egin{pmatrix} 1 & 5 & 2 \ 0 & -1 & 2 \ 0 & 0 & 1 \ \end{pmatrix}$$

Watch Video Solution

6. Find the inverse of the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \text{ by using }$$

elementary column transformations .

7. Find the adjoints of the following matrices :

(1)
$$\begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}$$
 (2) $\begin{pmatrix} 5 & 6 \\ 3 & 4 \end{pmatrix}$.

Watch Video Solution

8. Find the inverses of the following matrices by adjoint method :

$$(1)\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \quad (2)\begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix} \quad (3)\begin{pmatrix} 3 & -2 \\ 6 & 8 \end{pmatrix} \quad (4)\begin{pmatrix} 2 & -3 \\ 3 & 5 \end{pmatrix}$$

9. Find the inverse of each of the following matrices, by using

adjoint method : $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{pmatrix}$

Watch Video Solution

10. If
$$A = egin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$$
, verify that A (adj A) = $|A| \cdot I$.

Watch Video Solution

11. Solve the following equations by reduction method :

$$2x+3y=9, y-x=-2$$

12. Solve the following equations by reduction method :

x+y=2, 3x+2y=5

13. Solve the following equations by reduction method :

2x - y = -2, 3x + 4y = 3

Watch Video Solution

14. Solve the following equations by inverse method :

 $2x+y=5, 3x+5y=\ -3$

15. Solve the following equations by reduction method : $x-y+z=4, \, 2x+y-3z=0, \, x+y+z=2$

Watch Video Solution

16. The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By addinig the first and the third numbers and then subtracting twice the second number from this sum , we get 6 . Use these informations and find the system of linear equations. Hence, find the three numbers using matrices.

17. The sum of three numbers is 6 . When second number is subtracted from thrice the sum of first and third numbers, we get number 10 . Four times of third number is subtracted from five times the sum of first and second numbers , the result is 3 . Using above informations , find these three numbers by matrix method .

18. The cost of 2 books, 6 notebooks and 3 pens is Rs. 40. The cost of 3 books, 4 notebooks and 2 pens is Rs. 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs. 61. Using these informations and matrix, find the cost of one book, one notebook and one pen separately.

19. Solve the following equations by inverse method :

2x + 5y = 1, 3x + 2y = 7

20. Solve the following equations by inverse method :

$$2x+y=5, 3x+5y=-3$$

21. Using matrices, solve the following system of equations:

$$x - y + z = 4; \ 2x + y - 3z = 0; \ x + y + z = 2$$

22. Solve the following equations by inverse method :

x + 3y + 3z = 12, x + 4y + 4z = 15, x + 3y + 4z = 13

Multiple Choice Questions

1.
$$A = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$$
 and $A(adjA) = kI$, then the value of 'k' is

 $\mathsf{A.}\ 2$

 $\mathsf{B.}-2$

C. 10

D. - 10.

Answer: B

2. The element in the first row and third column of the inverse

of the matrix
$$egin{bmatrix} 1&2&-3\0&1&2\0&0&1 \end{bmatrix}$$
 is

 $\mathsf{A.}-2$

Β.Ο

C. 1

D. 7

Answer: D

Watch Video Solution

If A is a matrix such that A (adj A) $= \begin{pmatrix} 20 & 0 \\ 0 & 20 \end{pmatrix}$, then |A| =

A. 400

.....

B. 20

C. 10

D. 0

Answer: B

4. If
$$A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$$
, then adjoint of matrix A is
A. $\begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix}$
B. $\begin{bmatrix} 1 & -3 \\ -4 & 2 \end{bmatrix}$
C. $\begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$
D. $\begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix}$

Answer: A

5. Select and write the most appropriate answer from the given alternatives in each of the following :

If the matrix
$$\begin{pmatrix} 6 & -5 & 1 \\ 4 & 2 & -1 \\ 14 & -1 & k \end{pmatrix}$$
 has no inverse, then
A. k = 1
B. $k = -1$
C. $k = 0$
D. $k = 2$

Answer: A::B

6. Select and write the most appropriate answer from the given alternatives in each of the following :

The inverse of the matrix
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 is

A.
$$\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

B.
$$\begin{pmatrix} -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

C.
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

D.
$$\begin{pmatrix} -\frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Answer: A::B

7. Select and write the most appropriate answer from the given alternatives in each of the following :

$$\text{If } A = \begin{pmatrix} 2 & 2 \\ -3 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \ \text{then} \ \ \left(B^{-1} \cdot A^{-1}\right)^{-1}$$

is equal to

A.
$$\begin{pmatrix} 2 & -2 \\ 2 & 3 \end{pmatrix}$$

B.
$$\frac{1}{10} \begin{pmatrix} 2 & 2 \\ -2 & 3 \end{pmatrix}$$

C.
$$\begin{pmatrix} 3 & -2 \\ 2 & 2 \end{pmatrix}$$

D.
$$\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$

Answer: A::B::C

8. Select and write the most appropriate answer from the

given alternatives in each of the following :

If
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{pmatrix}$$
 and $A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{pmatrix}$ then
A. $a = 2, c = -\frac{1}{2}$
B. $a = 1, c = -1$

C.
$$a = -1, c = 1$$

D.
$$a=rac{1}{2},c=rac{1}{2}$$

Answer: A::B::C

Watch Video Solution

9. Select and write the most appropriate answer from the given alternatives in each of the following :

The inverse of the matrix $\begin{pmatrix} -1 & 5 \\ -3 & 2 \end{pmatrix}$ is

A.
$$\frac{1}{13}\begin{pmatrix} 2 & -5\\ 3 & -1 \end{pmatrix}$$

B. $\frac{1}{13}\begin{pmatrix} -1 & 5\\ -3 & 2 \end{pmatrix}$
C. $\frac{1}{13}\begin{pmatrix} -1 & -3\\ 5 & 2 \end{pmatrix}$
D. $\frac{1}{13}\begin{pmatrix} 1 & 5\\ 3 & -2 \end{pmatrix}$.

Answer: A::B::C

10. The using elementary row transformation inverse of the

matrix $\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ is A. $\frac{1}{5}\begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$ B. $\frac{1}{5}\begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix}$ C. $\frac{1}{5}\begin{pmatrix} -3 & 1 \\ -2 & 1 \end{pmatrix}$ D. $\frac{1}{5}\begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix}$.

Answer: B

11. If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, then $A^6 =$

 $\mathsf{A.}\,6A$

 $\mathsf{B}.\,12A$

 $\mathsf{C}.\,16A$

 $\mathsf{D.}\ 32A.$

Answer: D

12. Select and write the most appropriate answer from the given alternatives in each of the following :

$${
m If}\, A^{-1} = rac{1}{3} \left(egin{array}{cccc} 1 & 4 & -2 \ -2 & -5 & 4 \ 1 & -2 & 1 \end{array}
ight) \,\, {
m and} \,\, |A| = 3,$$

then (adj A) = ...

A.
$$\frac{1}{9} \begin{pmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{pmatrix}$$

B. $\begin{pmatrix} 1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1 \end{pmatrix}$
C. $\begin{pmatrix} -2 & 4 & 1 \\ 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{pmatrix}$
D. $\begin{pmatrix} -1 & -4 & 2 \\ 2 & 5 & -4 \\ 1 & -2 & 1 \end{pmatrix}$

Answer: A::B::C::D

