

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

MODEL QUESTION PAPER FOR PRACTICE

Section A Select And Write The Correct Answer From The Given Alternatives In Each Of The Following Questions

1. The negation of contrapositive of $p o \,$ ~q is

A. $P \wedge q$

 $\mathsf{B.}\,q \to p$

 $\mathsf{C}.\,P\lor q$

D. ~q
ightarrow ~p

Answer:

2. The polar coordinates of the point whose cartesian coodinates are

$$\left(-rac{1}{\sqrt{2}}, -rac{1}{\sqrt{2}}
ight)$$
 are
A. $\left(1, rac{\pi}{4}
ight)$
B. $\left(1, rac{5\pi}{4}
ight)$
C. $\left(\sqrt{2}rac{\pi}{4}
ight)$
D. $\left(\sqrt{2}, 200^\circ
ight)$

Answer:

Watch Video Solution

3. If \bar{a}, \bar{b} and \bar{c} are unit coplanar vetors then

 $\begin{bmatrix} 2ar{a}-ar{b} & 2ar{b}-ar{c} & 2ar{c}-ar{a} \end{bmatrix} =$

A. $\sqrt{3}$

B. 1

$$C. - \sqrt{3}$$

D. 0

Answer:

Watch Video Solution

4. If a line makes angles α,β,γ with coordinate axes , then

 $\sin^2lpha+\sin^2eta+\sin^2\gamma$

A. 1

B. -1

C. 2

D. -2

Answer:

5. The function f(x) is condtions at the point x=0 where

$$f(x)=rac{\log(1+kx)}{\sin x},\,\mathrm{for}x
eq 0$$

= 5 for x=0 then value of k is

D. -2

Answer:

6. If
$$y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x} + \dots \infty}}$$
, then $\frac{dy}{dx}$ is
A. $\frac{1}{y} - 1$
B. $\frac{1}{x(2y-1)}$

C.
$$\frac{1}{2\log y}$$

D.
$$\frac{1}{y}$$

Answer:

Watch Video Solution

7.
$$\int \frac{x+3}{(x+4)^2} e^x dx \text{ is equal to}$$

A.
$$\frac{1}{(x+4)^2} + c$$

B.
$$\frac{e^x}{(x+4)^2} + c$$

C.
$$\frac{e^x}{x+4} + c$$

D.
$$\frac{e^x}{x+3} + c$$

Answer:

8. The differential equation whose general solution is $y = \log x + c$ is

A.
$$x. \frac{dy}{dx} = 0$$

B. $x. \frac{dy}{dx} + 1$
C. $\frac{dy}{dx} + x = 0$
D. $\frac{1}{x}. \frac{dy}{dx} = 0$

Answer:

Watch Video Solution

9. If $f(x) = \sec^{-1} x$, then write the range of f.

10. Find the joint equation of the lines x+y-3 =0 and 2x+y-1 =0

11. If
$$y = \sec^{-1}\left(rac{\sqrt{x}-1}{x+\sqrt{3}}
ight) + \sin^{-1}\left(rac{x+\sqrt{3}}{\sqrt{x}-1}
ight)$$
 then find $rac{dy}{dx}$

Watch Video Solution

12. Test whether the following functions are increasing or decreasing :

$$f(x)=x-rac{1}{x}, x\in R, x
eq 0.$$

Watch Video Solution

Section B Attempt Any Eight Of The Following

1. Write the truth values of the following statements :

(i) Two is the only even prime number

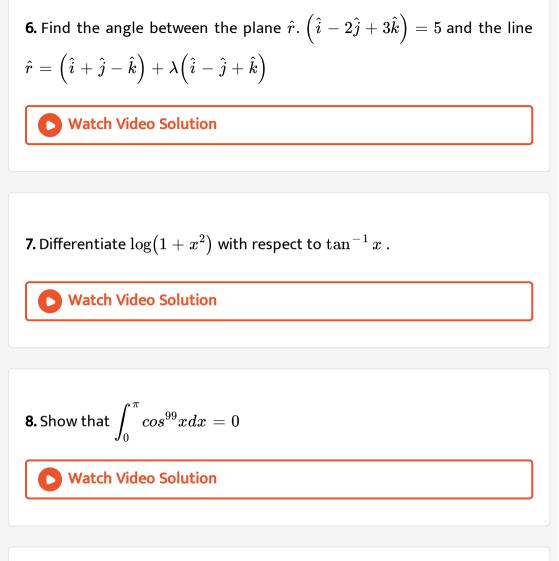
(ii) $\cos 2 heta = \cos^2 heta - \sin^2 heta$ for all $heta \in R$

2. If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ then what is determinant of AB

Watch Video Solution

3. If the acute angle between the lines $ax^2+2hxy+by^2=0$ is 60° then

show that $(a+3b)(3a+b)=4h^2$



4. If the vector are collinear , then find the vlaue of q .

5. Find the vector equation of the line passing through the points A(3,4,

-7) and B (6,-1, 1)

9. Find the area of the region bounded by $y^2=24x$ and line x = 1

10. By eliminating arbitary constant of equation $y = c^2 + \frac{c}{x}$ find differential equation .

11. Detemine k such that the following funciton is a p.d.f $P(X=x)=kigg(rac{2^x}{x!}igg), x=0,1,2,3$ =0 otherwise .

Watch Video Solution

12. Given X ~ B (n,p)If p =0 .6 E (X) =6, find n and Var (X)

Section C Attempt Any Eight Of The Following

1. Show that a homogeneous equations of degree two in x and y , i.e., $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines passing through the origin if $h^2 - 2ab \ge 0$.

Watch Video Solution

2. If \bar{a} and \bar{b} any two non-collinear vectors lying in the same plane, then prove that any vector \bar{r} coplanar with them can be uniquely expressed as $\bar{r} = t_1 \bar{a} + t_2 \bar{b}$, where t_1 and t_2 are scalars.

3. If M is the foot of pependicular drawn from the origin on the line joining the points A(3,5-1) and B(4,3-1) find the coordinates of M.

4. A line passes through (3, -1, 2) and perpendicualr to the lines $\bar{r} = \left(\hat{i} + \hat{j} - \hat{k}\right) + \lambda \left(2\hat{i} - 2\hat{j} + \hat{k}\right)$ and $\bar{r} = \left(2\hat{i} + \hat{j} - 3\hat{k}\right) + \mu \left(\hat{i} - 2\hat{j}\right)$

find its equation .

Watch Video Solution

5. Find the value of μ if the points with position vectors $\hat{i} - \hat{j} + 3\hat{k}$ and $3\hat{i} + 4\hat{j} + \mu\hat{k}$ are equidistant form the plane \hat{r} . $\left(5\hat{i} + 2\hat{j} - 7\hat{k}\right) + 8 = 0$

Watch Video Solution

6. If y = f(x) is a derivable function of x such that the inverse function

 $x=f^{-1}(y)$ is defined, then show that $rac{dx}{dy}=rac{1}{(dy/dx)}$, where $rac{dy}{dx}
eq 0.$

7. The displacement 's ' of a particle at time 't' is given by $s = t^3 - 4t^2 - 5t$. Find its velocity and acceleration at ime t= 2 seconds . Also, find t when its acceleration is zero .

Watch Video Solution

8. Elvalue :
$$\int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x} dx.$$

Watch Video Solution

9. Solve the differential equation :

$$xyrac{dy}{dx}=x^2+2y^2$$

Watch Video Solution

10. The p.d.f of continuous random variable X is given by $f(x) = \frac{x}{8}, 0 < x < 4 = 0$ otherwise. Find (i)

 $P(X < 2)(ii)P(2 < X \le 3)(iii)P(X > 3.)$

11. Supose that 80 % of all families own a elevision set. If 10 families are interviewed at random, find the probability that seven famileis own a television set .

Section D Atempt Any Five Of The Following

1. Using truth table ,prove that $p \leftrightarrow q \equiv (p \wedge q) v(\ensuremath{\,^{\sim}} p \wedge \ensuremath{\,^{\sim}} q).$

2. If
$$f(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 then $\{f(\theta)^{-1}\}$ is equal to

3. Show that
$$\sin^{-1}$$
 , $\frac{5}{13} + \cos^{-1}$, $\frac{3}{5} = \tan^{-1}$, $\frac{63}{16}$

4. Solve the following LPP using graphical method : Minimiz
$$z = 8x + 10y,$$
 subject to

$$2x+y\geq ,$$
 $2x+3y\geq 15,$ $y\geq 2,$ $x\geq 0,$ $y\geq 0$

View Text Solution

5. If
$$f(x) = \frac{\sin \pi x}{x-1} + a$$
, for $x < 1$
 $= 2\pi$, for $x = 1$
 $= \frac{1 + \cos \pi x}{\pi (1-x)^2} + b$, for $x > 1$ is continuous at x =1, find a and b

6. The surface area of a spherical balloon is increasing at the rate of $2 \text{ cm}^2/\text{sec.}$ At what rate is the volume of the ballon is increasing, when the radius of the ballon is 6 cm ?

7. Evaluate:
$$\int \sec^3(2x) dx$$
.

View Text Solution

8. Prove that :

$$\int_{-a}^{a}f(x)dx=2{\int_{a}^{0}f(x)dx}, \hspace{1em} ext{if} \hspace{1em} f(x) \hspace{1em} ext{is even funtion}$$

=0, if f(x) is off fuction.

