

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

PROBABILITY DISTRIBUTION

Solved Examples

1. Verify whether each of the following functions can be

regarded as p.mf for the given value of X :

2. Three balance coins are tossed simultaneoulsy. If X denotes the number of heads, find probaility distribution of X.

3. Two cards are drawn form a pack of 52 cards . If X = number of red cards darwn, find probability mass

function of X.

4. Find k ,such that the function

$$P(x)=iggl\{iggl(kiggl({a\over x}iggr),\,x=0,\!1,\!2,\!3,\!4,\,k>0iggr),\,(0, ext{ otherwise.}iggr)$$

is a probability mass function (p.m.f.)

Watch Video Solution

5. A random variable X has the follwing probability

distribution:

X = x	0	1	2	3	4	5	6
P[X=x]	k	3k	5k	7k	9k	11k	13k

Find k.

6. A random variable X has the follwing probability

distribution:

X = x	0	1	2	3	4	5	6
P[X=x]	k	3k	5k	7k	9k	11k	13k

Find P(0 < X < 4)

7. A random variable X has the follwing probability

distribution:

X = x	0	1	2	3	4	5	6
P[X=x]	k	3k	5k	7k	9k	11k	13k

Obtain cumulative distribution function (c.d.f)of x.

8. The probability distribution of a random variable X is

as below:

X = x	- 1.5	- 0.5	0.5	1.5	2.5
P[X=x]	0.05	0.2	0.15	0.25	0.35

(1) Construct c.d.f F(x) of X.

(2) obtain $P(X \le 0.5), F(-0.5), F(2), P(X \le 4)$

View Text Solution

9. Following is the distribution function F(x) of a X.

X	1	2	3	4	5	6
$F(\mathbf{x})$	0.2	0.37	0.48	0.62	0.85	1

Find the probability distribution of X.

10. Following is the distribution function F(x) of a X.

X	1	2	3	4	5	6
F(x)	0.2	0.37	0.48	0.62	0.85	1

Find $P(X \leq 3), P(2 \leq X \leq 5)$

Watch Video Solution

11. Following is the distribution function F(x) of a X.

X	1	2	3	4	5	6
F (x)	0.2	0.37	0.48	0.62	0.85	1

Find $P(X \leq 5 \mid X \geq 3)$

12. A fair coin is tossed 3 times. Let X be the number of heads obtained. Find E(X) and V(X).

13. A backerman sells 5 types of cakes .Profit due ot sale of each type of cake is respectively 3,2.5,2,1.5 and 1. The demands for these cakes are 10%,5%,20%,50 and 15% respectivley. What is the expected profit per cake ?

14. Let X have p.m.f
$$egin{array}{cc} P(x) = kx^2 & x = 1,2,3,4 \ = 0 & ext{otherwise} \end{array}$$

Find mean and varince of X.

$$f(x) = egin{cases} kx^2(1-x) & 0 < x < 1 \ 0 & ext{otherwise} \end{cases}$$

Watch Video Solution

16. For the following p.d.f of X, find
$$P(X < 1)$$
 and $P(|X| \le 1)$:
 $f(x) = \begin{cases} \frac{x+2}{18} & -2 < x < 4\\ 0 & \text{otherwise} \end{cases}$

17. The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f $f(x) = \begin{cases} \frac{1}{10} & 25 \le x \le 35\\ 0 & \text{otherwise} \end{cases}$ What is the probability

that preparation time exceeds 33 minutes ? . Also find the c.d.f of X.

18. Let X = time (in minutes) that lapses between the bell and the end of the lectures in cases of a collge professor. Suppose X has p.d.f

 $f(x) = egin{cases} kx^2 & 0 \leq x \leq 2 \ 0 & ext{otherwise} \end{cases}$

Find the value of k.

19. Let X = time (in minutes) that lapses between the bell and the end of the lectures in cases of a collge professor. Suppose X has p.d.f

$$f(x) = egin{cases} kx^2 & 0 \leq x \leq 2 \ 0 & ext{otherwise} \end{cases}$$

What is the probability that lecture ends within 1 minute

of the bell ringing ?

Watch Video Solution

20. Let the random variable X is defined as time (in minutes) that elapses between the bell and end of the lecture in case of collagen professor whrer pdf is defined

as $f(x) = iggl\{ egin{array}{c} kx^2, 0 \leq x < 2 \ 0, \ ext{elsewhere} \end{array} iggr\}$

find the probability that lecture continue for atleast 90s

beyond the bell

O Watch Video Solution

Example For Practice

1. Verify whether the following functions can be regarded

as the p.m.f for the given value of X :

(1)
$$P(X = x) = \begin{cases} rac{x^2}{5} & x = 0, 1, 2 \\ 0 & ext{otherwise} \end{cases}$$

(2) $P(X = x) \begin{cases} rac{x-2}{5} & x = 1, 2, 3, 4 \\ 0 & ext{otherwise} \end{cases}$

2. Find the probability distribution of the number of sixes

in three tosses of a die.

3. It is know that a box of 8 batteries contains 3 defective pieces and a person randomly selects 2 batteries form this box. Find the probability distrubtion of the number of defective batteries.

4. Two cards are drawn successively with replacement

from a well shuffled pack of 52 cards. Find the probability

distribution of the number of aces.

5. The probability distrubtion of a discrete random variable X is as below :

X = x	1	2	3	4	5
P(X=x)	k	2 <i>k</i>	3 <i>k</i>	4 <i>k</i>	5k

Find $(PX \leq 4)$

Watch Video Solution

6. Obtain the expected value and variance of X for the following probability distribution:

X = x	-2	- 1	0	1	2
P(X=x)	0.2	0.3	0.1	0.15	0.25

Watch Video Solution

7. A r.v X has the following probability distribution:

X = x	-2	- 1	0	1	2	3
P(X=x)	0.1	k	0.2	2 <i>k</i>	0.3	k

Find the value of k and calculate mean and varieance of X.

Watch Video Solution

8. The probability mass funciton (p.m.f) of X is given below :

X = x	1	2	3
P(X=x)	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{2}{5}$

Find $E(X^2)$

Watch Video Solution

9. A player tosses 2 fair coins. He wins 5 if 2 heads apper, 2if 1 head appers and 1 if no head appers. Find his expected winning amount and variance of winning amount.

10. Find k so that the function f(x) defined by

$$f(x)=ke^{\,-\,3x},x>0$$

= 0, otherwise.

is a probability density function.

11. Find k, if the function f defined by
$$f(x) = kx, 0 < x < 2$$
 =0 , otherwise is the p.d.f of a random variable X

JIII Valiable A.

12. The p.d.f of a random variable X is given by $f(x)=3ig(1-2x^2ig), 0< x<1$ = 0, otherwise Find $Pig(rac{1}{4}< X<rac{1}{3}ig)$

Watch Video Solution

13. Let X = amount of time for which a book is taken out of a collage library by a randomly selected student and suppose X has p.d.f.

$$f(x) = egin{cases} & 0.5x & 0 \leq x \leq 2 \ & 0 & ext{otherwise} \end{cases}$$

Calculate (1) $P(X \leq 1)$ (2) $P(0.5 \leq X \leq 1.5)$

14. Find k if the function f(x) is defined by

 $f(x) = k x (1-x), {
m for } \ \ 0 < x < 1$

=0, otherwise, is the probability density function (p.d.f.)

of a random varible (r.v) X. Also find P $\left(X < rac{1}{2}
ight)$

Watch Video Solution

15. The following is the p.d.f of continuous random variable X. $f(x) = rac{x}{8}, 0 < x < 4$

=0, otherwise.

Find the expression for c.d.f of X

16. The following is the p.d.f of continuous random variable X. $f(x) = rac{x}{8}, 0 < x < 4$

=0 , otherwise.

Also , find its value at x = 0.5 , 1.7 and 5

Watch Video Solution

17. Given the p.d.f of a continous r.v.X was
$$f(x)=rac{x^2}{3},\ -1< x<2$$
 =0, Otherwise Determine the c.d.f of X and hence find . $P(X<1), P(X\leq -2), P(X>0), P(1\leq X\leq 2)$

18. The following is the p.d.f (Probability Density Function

) of a continous random variable X :

$$f(x)=rac{x}{32}, 0< x<8$$

= 0, otherwise

Find the expression for c.d.f (Cumulative Distribution

Function) of X

Watch Video Solution

19. The following is the p.d.f (Probability Density Function

) of a continous random variable X :

$$f(x)=rac{x}{32}, 0< x<8$$

= 0 , otherwise

Also, find its value at x = 0.5 and 9.

Multiple Choice Questions

1. c.d.f F(x) of a continous random variable X is defined as .

A.
$$F(x) = \int\limits_{-\infty}^x f(x) dx$$

B.
$$F(x) = \int\limits_{1}^{x} f(x) dx$$

C. $F(x) = \int\limits_{-\infty}^{\infty} f(x) dx$

D.
$$F(x) = P[X = x]$$

Answer:
$$F(x) = \int\limits_{-\infty}^{x} f(x) dx$$

2. The expected value of the number of heads obtained when three coins are tossed simultaneously is

C. 0

D. - 1

Answer: A

Watch Video Solution

3. Let the p.m.f. of a random variable X be -

$$P(x)=rac{3-x}{10} \ \ ext{for} \ \ x=\ -1,0,1,2$$

= 0 otherwise

Then E(X) is

A. 1

B. 2

C. 0

 $\mathsf{D.}-1$

Answer:

Watch Video Solution

4. A random variable X has the following probability

distribution:

X = x	-2	· — 1	0	1	2	3
P(x)	0.1	0.1	0.2	0.2	0.3	0.1

Then E(X) =

A. 0.8

B. 0.9

C. 0.7

D. 1.1

Answer:

Watch Video Solution

5. For a random variable X, if $E(X^2)$ = 31 , Var(X) = 6, then

E(X)=.....

A. 2

B. 4

C. 5

D. 25

Answer:

6. If the function
$$f(x) = rac{x^2}{3}, \ -1 < x < 2$$

= 0 , otherwise is a p.d.f of X, then P(X < 0) is

A.
$$\frac{1}{9}$$

B. $\frac{2}{9}$
C. $\frac{3}{9}$
D. $\frac{4}{9}$

Answer: A

7. If X is the a random variable with probability mass function P(x) = kx, for x = 1,2,3 = 0 , otherwise

then k =

A.
$$\frac{1}{5}$$

B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{2}{3}$

Answer: C

8. The p.d.f of a continuous random variable X is $f(x)=rac{x^2}{3},\ -1< x< 2$ 0 = otherwise Then the c.d.f of X is

A.
$$\frac{x^3}{9} + \frac{1}{9}$$

B. $\frac{x^3}{9} - \frac{1}{9}$
C. $\frac{x^2}{4} + \frac{1}{4}$
D. $\frac{1}{9x^3} + \frac{1}{9}$

Answer: A::C

9. Detemine k such that the following funciton is a p.m.f

$$P(X=x)=kigg(rac{2^x}{x!}igg),x=0,1,2,3$$

=0 otherwise .

A.
$$\frac{1}{19}$$

B. $\frac{2}{19}$
C. $\frac{3}{19}$
D. $\frac{4}{19}$

Answer: A::C

