

India's Number 1 Education App

MATHS

BOOKS - NAVBODH MATHS (HINGLISH)

VECTORS

Solved Examples

1. If \bar{a},\bar{b},\bar{c} are the position vectors of the points A, B, C respectively and $2\bar{a}+3\bar{b}-5\bar{c}=\bar{0}$, then find the ratio in which the point C divides line segment AB.

Watch Video Solution

2. ar a and ar b are non-collinear vectors. If ar c=(x-2)ar a+ar b and ar d=(2x+1)ar a-ar b are collinear, then find the value of x.

3. If
$$ar a=\hat i+2\hat j, b=-2\hat i+\hat j, ar c=4\hat i+3\hat j$$
 find x and y such $ar c=xar a+yar b.$

4. If the origin is the centroid of the triangle whose vertices are A (2,p,-3), B(q,-2,5) and C(-5,1,r), then find the values of p,q and r.

5. Find the corrdinates of the point which divides the line segment joining the points A(2,-6,8) and B(-1,3,-4) externally in the ratio 1:3.

- 6. If the points A(3,0,p),B(-1,q,3) and C(-3,3,0) are collinear, then find
- (1) the ratio in which the points C divides the line segment AB
- (2) the value of p and q.
 - Watch Video Solution

7. Express $-\,\hat{i}\,-\,3\hat{j}\,+\,4\hat{k}$ as the linear combination of the vectors

$$2\hat{i}+\hat{j}-4\hat{k}$$
, $2\hat{i}-\hat{j}+3\hat{k}$ and $3\hat{i}+\hat{j}-2\hat{k}$.

- **8.** If $ar{a}, ar{b}, ar{c}$ are non coplanar vectors, then show the vectors
- $-ar{a}+3ar{b}-5ar{c},\; -ar{a}+ar{b}+ar{c}$ and $2ar{a}-3ar{b}+ar{c}$ are coplanar.
 - **Watch Video Solution**

9. If A, B, C and D are four non-collinear points in the plane such that

 $\overline{AD}+\overline{BD}+\overline{CD}=ar{0}$, then prove that the points D is the centroid of the triangle ABC.

10. If G and G' are the centroids of the triangle ABC and A'B'C', then the value of $\overline{AA'} + \overline{BB'} + \overline{CC'}$ equals

11. Let \Box PQRS be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS+QR=

12. If $ar a=3\hat i-2\hat j+7\hat k$, $ar b=5\hat i+\hat j-2\hat k$ and $ar c=\hat i+\hat j-\hat k$, then find $ar a\cdot(ar b imesar c)$.

13. Find the volume of the parallelopiped whose coterminus edges are given by vectors $2\hat{i}+3\hat{j}-4\hat{k}, 5\hat{i}+7\hat{j}+5\hat{k}$ and $4\hat{i}+5\hat{j}-2\hat{k}$.

14. If the vectors $-3\hat{i}+4\hat{j}-2\hat{k},\,\hat{i}+2\hat{k},\,\hat{i}-p\hat{j}$ are coplanar, then the value of p is

- **15.** If $ar{c}=3ar{a}-2ar{b}$, then prove that $\left[ar{a}ar{b}ar{c}
 ight]=0$.
 - Watch Video Solution

16. If $ar{a}, ar{b}$ and $ar{c}$ are any three vectors, prove that (1)

$$\left[ar{a}+ar{b}ar{b}+ar{c}ar{c}+ar{a}
ight]=2ig[ar{a}ar{b}ar{c}ig]$$
 (2) $\left[ar{a}ar{b}+ar{c}ar{a}+ar{b}+ar{c}
ight]=0$

Watch Video Solution

17. \bar{a} , \bar{b} , \bar{c} are three non-coplanar vectors.

If
$$ar{p} = rac{ar{b} imes ar{c}}{ar{a} \cdot \left(ar{b} imes ar{c}
ight)}, ar{q} = rac{ar{c} imes ar{a}}{ar{a} \cdot \left(ar{b} imes ar{c}
ight)}, ar{r} = rac{ar{a} imes ar{b}}{ar{a} \cdot \left(ar{b} imes ar{c}
ight)}$$
,

show that $ar{a}\cdotar{p}+ar{b}\cdotar{q}+ar{c}\cdotar{r}=3.$

18. If A,B,C,D are (1,1,1), (2,1,3), (3,2,2),(3,3,4) respectively, then find the volume of the parallelopiped with AB,AC and AD as the concurrent edges.

19. Show that the points A(2,1,-1),B(0,-1,0),C(4,0,4) and (2,0,1) are coplanar.

20. Find the value of p if the points A(2,-1,1),B(4,0,p),C(1,1,1) and D(2,4,3) are coplanar.

21. Find the value of a tetrahedrn whose vertices are A(-1,2,3),B(3,-2,1),C(2,1,3) and D(-1,-2,4).

22. If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar unit vectors each including the angle of measure 30° with the other, then find the volume of tetrahedron whose co-terminal edges are $\bar{a}, \bar{b}, \bar{c}$.

Watch Video Solution
23. Prove using vectors: Medians of a triangle are concurrent.
Watch Video Solution
24. Prove that the altitudes of a triangle are concurrent.
Watch Video Solution
25. Show that the perpendicular bisectors of the sides of a triangle are
concurrent.
Watch Video Solution
26. If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

27. Using vector method, find the incentre of the triangle whose vertices are P(0,4,0),Q(0,0,3) and R(0,4,3).

28. By method, show that the quadrilateral with vertices A(1,2,-1),

B(8,-3,-4), C(5,-1,1), D(-2,1,4) is a parallelogram.

29. Prove that the line segment joining the mid points of two side of a triangle is parallel to the third side and equal to half of it.

Theory Questions

1. If $ar{a}$ and $ar{b}$ any two non-collinear vectors lying in the same plane, then prove that any vector \bar{r} coplanar with them can be uniquely expressed as $\bar{r} = t_1 \bar{a} + t_2 \bar{b}$, where t_1 and t_2 are scalars.

Watch Video Solution

2. Theorem 2: If a; b and c are non coplanar vectors; then any vector r can be expressed as linear combination: xa+yb+zc

3. Three non - zero vectors $\bar{a}, \bar{b}, \bar{c}$ are complanar if and only if there scalars x,y,z, not all zero simultaneously such exist that $x\bar{a} + y\bar{b} + z\bar{c} = \bar{0}.$

4. Derive the expression for the volume of the prallelopiped whose coterminus edges are vectors $\bar{a}, \bar{b}, \bar{c}.$

Watch Video Solution

Examples For Practics

- **1.** If $ar{a}, ar{b}$ and $ar{c}$ are the position vectors of the points A,B and C respectively, such that
- (1) $3ar{a}+5ar{b}=8ar{c}$, find the ratio in which C divides line segment AB.
- (2) $3\bar{a}+5\bar{b}-8\bar{c}=\bar{0}$, find the ratio in. which A divides BC.
 - Watch Video Solution

2. Find the coordinates of the points R which divides the line segment joining the point $P(2,\ -2,\ -4)$ and $Q(3,\ -2,5)$ externally in the

ratio 3:2.

Watch Video Solution

3. If the vectors $3\hat{i}-5\hat{j}+\hat{k}$ and $9\hat{i}-15\hat{j}+p\hat{k}$ are collinear, then find the value p.

4. If $\bar{p}=\hat{i}-2\hat{j}+\hat{k}$ and $\bar{q}=\hat{i}+4\hat{j}-2\hat{k}$ are position vectors points P and Q. find the position vector of the points R which divides segment PQ internally in the ratio 2:1.

5. Find the position vector of R which divides the line segment joining the points $A(1,\ -2,1)$ and $B(1,4,\ -2)$ internally in the ratio 2:1

View Text Solution

6. If \bar{a},\bar{b},\bar{c} are the position vectors of the points A(1,3,0),B(2,5,0),C(4,2,0) respectively and $\bar{c}=t_1\bar{a}+t_2\bar{b}$, then find values of t_1 and t_2 .

7. If G(a,2,-1) is the centroid of the triangle with vertices P(1,3,2),Q(3,b,-4) and R(5,1,c), then find the values of a,b and c.

- 8. If the points A(2,p,1),B(1,2,q) and C(3,2,1) are collinear, then find
- (1) the ratio in which the points C divides the line segment AB
- (2) the values of p and q.

9. Express ar p as a linear combination of ar a, ar b and ar c, where $ar p = \hat i + 4\hat j - 4\hat k, ar a = 2\hat i - \hat j + 3\hat k, ar b = \hat i - 2\hat j + 4\hat k, ar c = -\hat i + 3\hat j - 5\hat k$

10. Express the vector $ar{a}=9\hat{i}+\hat{j}+2\hat{k}$ as a linear combination of the

11. If $ar{a},\,ar{b},\,ar{c}$ are non-zero, non -coplanar vectors, then show that the

vectors $2\bar{a}-5\bar{b}+2\bar{c}$, $\bar{a}+5\bar{b}-6\bar{c}$ and $3\bar{a}-4\bar{c}$ are coplanar.

vectors
$$ar{q}=-\hat{i}-\hat{j}+2\hat{k}$$
 and $ar{r}=3\hat{i}+\hat{j}-\hat{k}.$

12. If $ar a+\lambdaar b+3ar c,\ -2ar a+3ar b-4ar c,\ ar a-3ar b+5ar c$ are coplanar, then find value of λ

13. D, E, F are the midpoints of the sides BC, CA and AB respectively of \triangle ABC and O is any point in the plane of \triangle ABC. Show that (1) $\overline{AD}+\overline{BE}+\overline{CF}=\bar{0}$

14. Show that if $\overline{AB}=\overline{DC}$, then the figure ABCD is a parallelogram.

15. If G is the centroid of $\ \triangle \ ABC$ and O is any point in the plane of $\ \triangle \ ABC$, show that

(1)
$$\overline{GA}+\overline{GB}+\overline{GC}=ar{0}$$

- $(2) \overline{OA} + \overline{OB} + \overline{OC} = 3\overline{OG}.$
 - Watch Video Solution

16. Find $\left[ar{a}ar{b}ar{c}
ight]$ where :

(1)
$$ar{a} = 2\hat{i} + \hat{j} - \hat{k}, \, ar{b} = 3\hat{i} - \hat{j} - \hat{k}, \, \hat{c} = \hat{j} + 3\hat{k}$$

(2)
$$ar{a} = 7\hat{i} - \hat{j} + 2\hat{k}, \, ar{b} = \hat{i} + 3\hat{j} - \hat{k}, \, ar{c} = 4\hat{i} + 5\hat{k}.$$

17. If $ar a=\hat i+\hat j+\hat k, ar b=2\hat i+q\hat j+\hat k, \hat c=\hat i-\hat j+4\hat k$ and $ar a\cdotar (ar b imesar c)=1$, then find the value of q.

18. Show that the vectors $\hat{i}-\hat{j}-6\hat{k},\,\hat{i}-3\hat{j}+4\hat{k}$ and $2\hat{i}-5\hat{j}+3\hat{k}$ are coplanar.

Watch Video Solution

- 19. Find the volume of the parallelopiped whose coterminus edges are:
- (1) $3\hat{i} + 5\hat{k}$, $4\hat{i} + 2\hat{i} 3\hat{k}$, $3\hat{i} + \hat{i} + 4\hat{k}$
- (2) $\bar{a} = \hat{i} + \hat{j}, \bar{b} = \hat{j} + \hat{k}, \bar{c} = \hat{k} + \hat{i}$
- (3) $2\hat{i} + 5\hat{j} 4\hat{k}$, $5\hat{i} + 7\hat{j} + 5\hat{k}$, $4\hat{i} + 5\hat{j} 2\hat{k}$.
 - Watch Video Solution

 λ , Find if the 20. vectors

$$ar{a}=\hat{i}+\hat{j}+\hat{k},$$
 $ar{b}=\hat{i}-\hat{j}+\hat{k}$ and $ar{c}=2\hat{i}+3\hat{j}+\lambda\hat{k}$ are coplanar.

21. If $ar{a}, ar{b}, ar{c}$ are any three vectors, prove that (1)

$$egin{bmatrix} ar{a} + ar{b} & ar{a} + ar{c} & ar{b} \end{bmatrix} = egin{bmatrix} ar{a} & ar{c} & ar{b} \end{bmatrix}$$
 (2) $ar{a} - ar{b} & ar{b} - ar{c} & ar{c} - ar{a} \end{bmatrix} = 0.$

Watch Video Solution

22. Find the volume of the parallelopiped with segments AB, AC and AD as concurrent edges, where : (1)

$$A \equiv (3,7,4), B \equiv (5,\,-2,3), C \equiv (\,-4,5,6) \,\,\,{
m and}\,\,\, D \equiv (1,2,3)$$

- (2) the position vectors of A,B,C,D are
- $\hat{i} + \hat{j} + \hat{k}, 2\hat{i} \hat{j}, 3\hat{i} 2\hat{j} 2\hat{k} \ ext{and} \ 3\hat{i} + 3\hat{j} + 4\hat{k}.$
 - Watch Video Solution

- **23.** Find the volume of the tetrahedron whose vertices are A(3,7,4),B(5,-2,3)C(-4,5,6) and D(1,2,3).
 - Watch Video Solution

24. Find the volume tetrahedron whose coterminus edges are

$$7\hat{i} + \hat{k}, 2\hat{i} + 5\hat{j} - 3\hat{k} \text{ and } 4\hat{i} + 3\hat{j} + \hat{k}.$$

25. Show that the following sets of points are coplanar:

- (1) (3,9,4),(0,-1,-1),(-4,4,4) and (4,5,1)
- (2) (1,-1,-1),(3,1,-1),(0,2,1) and (-2,0,1).

26. Find the value of x, if the points A(3,2,1),B(4,x,5),C(4,2,2) and D(6,5,-1) are coplanar.

27. If the origin and the points P(2,3,4), Q(1,2,3) and R(x,y,z) are coplanar, then

Watch Video Solution

28. If $\bar{u}=\bar{i}-2\bar{j}+\bar{k}, \bar{v}=3\bar{i}+\bar{k}$ and $\bar{w}=\bar{j}-\bar{k}$, are given vectors, then find (1) $[\bar{u}\times\bar{v}\ \bar{u}\times\bar{w}\ \bar{v}\times\bar{w}]$ (2) $(\bar{u}+\bar{w})\cdot[(\bar{u}\times\bar{v})\times(\bar{v}\times\bar{w})].$

Multiple Choice Question

1. If
$$ar a=\hat i+2\hat j=-2\hat i+\hat j, ar c=4\hat i+3\hat j$$
 find x and y such $ar c=xar a+yar b.$

A. 1, 1

B.
$$2, -1$$

$$\mathsf{C.}-1,\,2$$

Answer: B

Watch Video Solution

- **2.** If the vectors $2\hat{i}-q\hat{j}+3\hat{k}$ and $4\hat{i}-5\hat{j}+6\hat{k}$ are collinear, then of q is
 - A. 5
 - B. 10
 - C. $\frac{5}{2}$ D. $\frac{5}{4}$

Answer: C

3. If the points A(2,1,1,), B(0,-1,4) and C(k,3,-2)collinear, then k=

4. If $\bar{a}=3\hat{i}-\hat{j}+4\hat{k}, \quad \bar{b}=2\hat{i}+3\hat{j}-\hat{k}, \quad \bar{c}=-5\hat{i}+2\hat{j}+3\hat{k},$

B. 1

C. 4

 $\mathsf{D.}-4$

Answer: C

Watch Video Solution

then $ar{a}\cdot\left(ar{b} imesar{c}
ight)$ = \dots

A. 100

B. 101

C. 110

D. 109

Answer: C

Watch Video Solution

5. If $ar{a}, \, ar{b}, \, ar{c}$ are the position vectors of the points A,B,C respectively such

that $3ar{a}+5ar{b}=8ar{c}$, the ratio in which A divides BC is

A. 8:5 internally

B. 8:5 externally

C. 5:8 internally

D. 5:8 externally.

Answer: B

6. If the vectors $-3\hat{i}+4\hat{j}-2\hat{k},\,\hat{i}+2\hat{k},\,\hat{i}-p\hat{j}$ are coplanar, then the value of p is

$$\mathsf{A.}-2$$

B. 1

 $\mathsf{C.}-1$

D. 2

Answer: D

Watch Video Solution

7. If the vectors $\hat{i}-2\hat{j}+\hat{k},$ $a\hat{i}+5\hat{j}-3\hat{k}$ and $5\hat{i}-9\hat{j}+4\hat{k}$ are coplanar, then the value of a is

A. 3

B.-3

C. 2

D.-2

Answer: D

Watch Video Solution

- **8.** If vectors $a\,\hat{i}\,+\,\hat{j}\,+\,\hat{k},\,\hat{i}\,+\,b\,\hat{j}\,+\,\hat{k},\,\hat{i}\,+\,\hat{j}\,+\,c\hat{k}$ are coplanar, then $a + b + c - abc = \dots$
 - A.-2

B.-1

- C. 2
- D. 1

Answer: C

The value of 9. when the points Χ

$$A(2,\;-1,1), B(4,0,3), C(x,1,1) \;\; {
m and} \;\; D(2,4,3)$$
 are coplanar is

- A. 1
- B. 0
- C. 2
- D. $\frac{1}{2}$

Answer: A

Watch Video Solution

 $\textbf{10.} \quad \text{If} \quad \left[\bar{a}\bar{b}\bar{c}\right] \neq 0 \ \text{and} \ \bar{p} = \frac{\bar{b} \times \bar{c}}{\left\lceil \bar{a}\bar{b}\bar{c}\right\rceil}, \bar{q} = \frac{\bar{c} \times \bar{a}}{\left\lceil \bar{a}\bar{b}\bar{c}\right\rceil}, \bar{r} = \frac{\bar{a} \times \bar{b}}{\left\lceil \bar{a}\bar{b}\bar{c}\right\rceil},$ $ar{a}\cdotar{p}+ar{b}\cdotar{q}+ar{c}\cdotar{r}$ is equal to

A. 0

- B. 1
- C. 2
- D. 3

Answer: D

