

MATHS

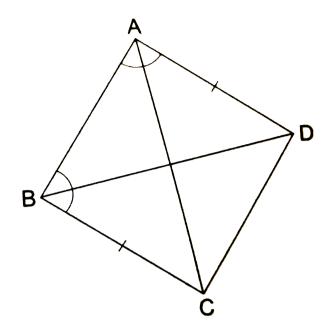
BOOKS - NAVBODH MATHS (HINGLISH)

TRIANGLES

Exercise 7 1

- 1. In quadrilateral ACBD, AC= AD and AB bisects
- L A . Show that triangle ABC is congruent to

triangle ADB. What can you say about BC and BD?


Watch Video Solution

2. In the given figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$.

Prove that (i) $\Delta ABD\cong\Delta BAC$,

(ii) BD = AC,

(iii) $\angle ABD = \angle BAC$.

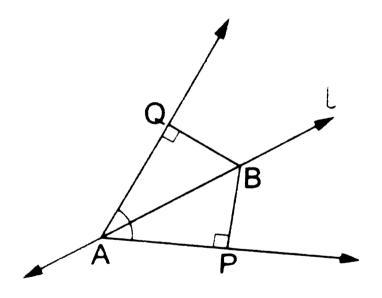
3. AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD

bisects AB.

Watch Video Solution

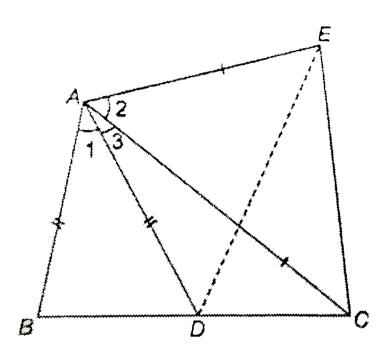
4. I and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\Delta ABC\cong \Delta CDA$.

Watch Video Solution


5. In the given figure, line I is the bisector of an angle $\angle A$ and B is any point on I. If BP and BQ

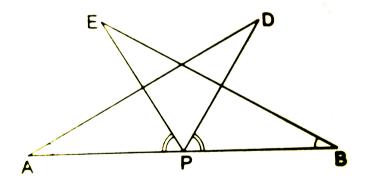
are perpendiculars from B to the arms of $\angle A$,

show that


(i)
$$\Delta APB\cong\Delta AQB$$

(ii) BP = BQ, i.e., B is equidistant from the arms of $\angle A$.

6. In the given figure, AC=AE, AB=AD and $\angle BAD=\angle EAC$. Prove that BC=DE.



7. AB is a line segment and P is its midpoint. D and E are points on the same side of AD such that

$$egin{aligned} igtriangledown BAD &= igtriangledown ABE \ ext{and} \ igtriangledown ZEPA &= igtriangledown DPB. \end{aligned}$$
 Show that (i) $\Delta DAP \cong \Delta EBP,$

$$(ii)AD = BE.$$

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM=CM. Point D is joined to point B (see Fig. 7.23). Show that:(i) $\Delta AMC\cong\Delta BMD$ (ii)

1. In an isosceles triangle ABC, with $AB \setminus = \setminus AC$, the bisectors of B and C intersect each other at O. Join A to O. Show that : (i) $OB \setminus = \setminus OC$ (ii) AO bisects A

Watch Video Solution

2. In ΔABC , AD is the perpendicular bisector of BC (see Fig. 7.30). Show that ΔABC is an isosceles triangle in which AB=AC.

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Watch Video Solution

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32).

Show that(i) $\Delta ABE \cong \Delta ACF$ (ii)

AB = AC, i.e., ABC is an isosceles triangle

5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that

$$\angle ABD = \angle ACD$$

6. DABC is an isosceles triangle in which $AB \setminus = \setminus AC$. Side BA is produced to D

such that $AD \backslash = \backslash AB$ (see Fig. 7.34).

Show that $\angle BCD$ is a right angle.

7. ABC is a right angled triangle in which

$$ngle A ackslash = ackslash \ 90o$$
 and $AB ackslash = ackslash \ AC$. Find

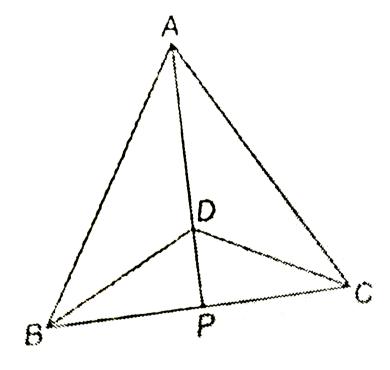
$$\angle B \setminus and \angle C$$

8. Show that the angles of an equilateral triangle are 60oeach.

Watch Video Solution

Exercise 7 3

1. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show

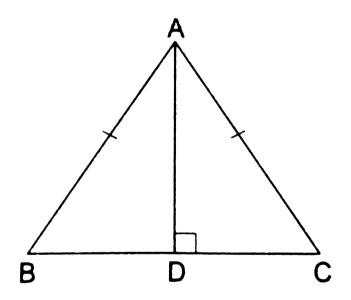

that:

(i) $\Delta ABD\cong\Delta ACD$

(ii) $\Delta ABP\cong\Delta ACP$

(iii) AP bisects $\angle A$ as well as $\angle D$

(iv) AP is the perpendicular bisector of BC.



2. AD is an altitude of an isosceles ΔABC in which AB = AC.

Show that (i) AD bisects BC,

(ii) AD bisects $\angle A$.

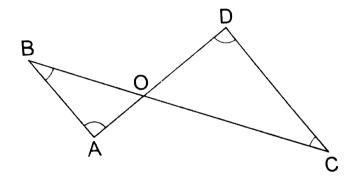
3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of $\Delta ABC\cong\Delta PQR$ (see Fig. 7.40). Show that:(i) $\Delta ABM\cong\Delta PQN$ (ii) $\Delta ABC\cong\Delta PQR$

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

5. ABC is an isosceles triangle with $AB \setminus = \setminus AC$. Draw $AP \perp BC$ to show that $\angle B \setminus = \angle C$.

Watch Video Solution

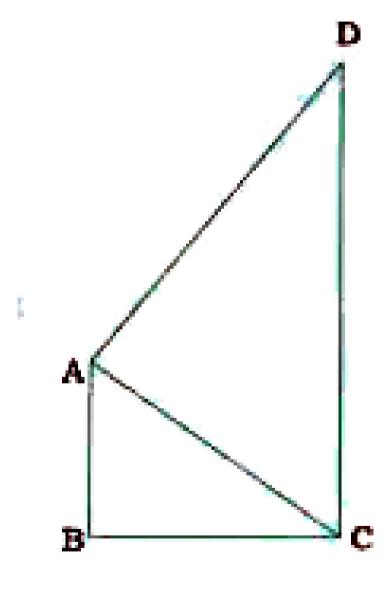
Exercise 7 4


1. Show that in a right angled triangle, the hypotenuse is the longest side.

2. In the given figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show

that AC > AB

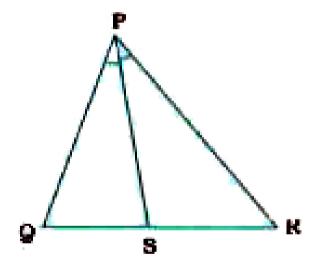
3. In the given figre, $\angle B < \angle A \text{ and } \angle C < \angle D.$ Show that

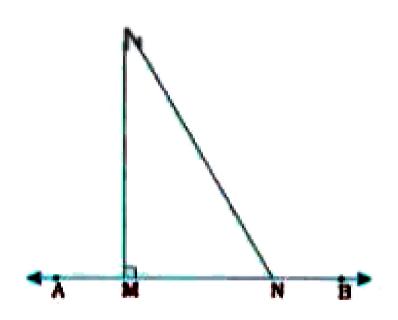

Watch Video Solution

AD < BC.

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see th e

given figure). Show that $\angle A > \angle C$ and


$$\angle B > \angle D$$


5. In the given figure, PR > PQ and PS bisects

 \angle QPR. Prove that $\angle PSR > \angle PSQ$.

6. Show that of all line segments drawn from a given point on a given line, the perpendicular line segment is the shortest.

Exercise 7 5

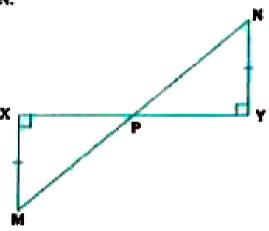
1. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle

Watch Video Solution

2. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle

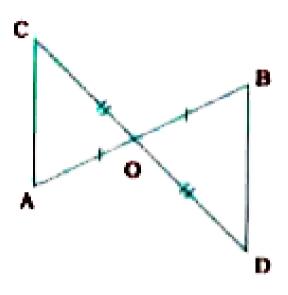
3. In a huge park, people are concentrated at three points (see Fig. 7.52): A: where there are different slides and swings for children, B: near which a man-made lake is situated, C: which is near to a large parking and exit. Where should a

4. Complete the hexagonal and star shaped Rangolies [see Fig. 7.53 (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?


Watch Video Solution

Skill Testing Exercise

- 1. In the given figure, XM and YN are both <
- perpendicular to line segment XY and XM = YN.
- 4 Prove that P is the midpoint of XY as well as

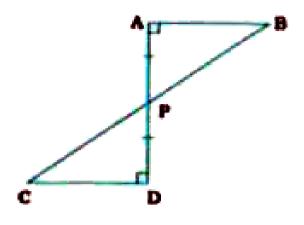

MN

as MN.

2. In the given figure AB and CD bisect each other at O. Prove that AC = BD.

Watch Video Solution

3. In rectangle ABCD, E is the midpoint of side


BC. Prove that, AE = DE.

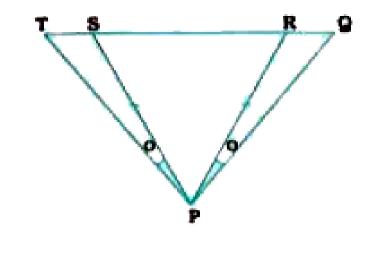
4. Prove that the medians of an equilateral triangle are equal.

5. In the given figure, AB and DC are both perpendicular to line segment AD. BC intersects AD at P and P is the midpoint of AD. Prove that, (1) AB = CD (2) P is the midpoint

of BC.

Watch Video Solution

6. In \triangle ABC, the bisectors of \angle B and \angle C intersect at I. A line drawn through I and parallel to BC intersects AB at P and AC at Q. Prove that PQ = BP + CQ.


7. In a triangle ABC , AB = AC and $\angle A=36^\circ$ If the internal bisector of angle C meets AB at D . Prove that AD = BC.

Watch Video Solution

8. In the given figure, PS=PR and

 $\angle TPS = \angle QPR$. Prove that PT = PQ.

Watch Video Solution

9. In \triangle ABC, D is the midpoint of BC. DFZAB and DE \perp AC, where points F and E lie on AB and AC respectively. If DF = DE, prove that \land ABC is an isosceles triangle.

10. In parallelogram ABCD, diagonals AC and BD are equal. Find the measure of \angle ABC and prove that the quadrilateral ABCD is a rectangle.

Watch Video Solution

11. \triangle ABC and \triangle DBC are isosceles triangles on the same base BC. Prove that line AD bisects BC at right angles

12. $AD,\ BE\ and\ CF,\$ the altitudes of ABC are equal. Prove that ABC is an equilateral triangle.

Watch Video Solution

13. In quadrilateral ABCD, BA = BC and DA = DC.

Prove that BD bisects \angle ABC as well as \angle ADC.

14. In $\triangle ABC, AB > AC$ and D is any point on BC. Prove that, AB > AD.

Watch Video Solution

15. In $\triangle ABC$, AC > AB. AB is extended to P and AC is extended to Q. Prove that, $\angle PBC < \angle QCB$.

16. In \triangle ABC, AD, BE and CF are altitudes.

Prove I, that,

$$AD + BE + CF < AB + BC + CA$$

17. S is any point in the interior of a $\ \triangle \ PQR$.

Prove that SQ + SR < PQ + PR

18. In \triangle ABC, AD is a median. Prove that AB +

AC > 2AD

19. Prove that the perimeter of a triangle is greater than the sum of its three medians.

Multiple Choice Questions

- **1.** In $\triangle ABC, \angle A=\angle C, AC=5$ and BC =
- 4. Then, the perimeter of \triangle ABC is
 - A. 9
 - B. 14
 - C. 13
 - D. 15

Answer: option 3

2. In \triangle PQR, PQ = PR, QR is extended to S and

$$\angle PRS = 110^{\circ}$$
 . Then, $\angle PQR$ =

- A. 30°
- B. 50°
- C. 80°
- D. 70°

Answer: option 4

3. In $\triangle ABC$ and \triangle DEF, AB = DE, BC = EF and $\angle B = \angle E$. If the perimeter of \triangle ABC is 20, then the perimeter of \triangle DEF is

- A. 10
- B. 20
- C. 15
- D. 40

Answer: B

4.

 $\triangle \ ABC \ ext{and} \ \ \triangle \ PQR, AB = PQ, \angle A = \angle P$

In

and $\angle B = \angle Q$. If $\angle A + \angle C = 130^\circ$, then

∠Q =

A. 65°

B. 130°

C. 50°

D. $100\,^\circ$

Answer: option 3

5. In $\triangle PQR, \angle P = \angle Q = \angle R$. If PQ = 6,

then the perimeter of $\ \triangle$ PQR is

A. 12

B. 9

C. 18

D. 24

Answer: 18

6. In $\Delta ABC, AB < AC$. Then, holds good

A.
$$\angle A < \angle B$$

B.
$$\angle B < \angle C$$

$$\mathsf{C}. \angle C < \angle A$$

D.
$$\angle C < \angle B$$

Answer: A::B::C

7. In $\ \bigtriangleup \ PQR$, if $\angle R > \angle Q$ then

$$\mathrm{A.}\,PQ>PR$$

$$\operatorname{B.}QR>PQ$$

$$\mathsf{C}.\,PR < PQ$$

$$\mathrm{D.}\,PQ>QR$$

Answer:

8. In $\triangle ABC, AB > BC$ and BC > AC.

Then, the smallest angle of \triangle ABC is

- A. $\angle A$
- B. $\angle C$
- $\mathsf{C}. \angle B$
- D. $\angle A$ or $\angle C$

Answer: option 1

9. cannot be the measures of the sides of a triangle.

- A. 10,12,14
- B. 2,3,4
- C. 8,9,10
- D. 2,4,10

Answer: A::B::D

10. In $\triangle PQR, PQ=4, QR=6$ and PR = 5.

Then, is the angle with greatest measure in \triangle PQR.

- A. $\angle P$
- B. $\angle Q$
- $\mathsf{C}. \angle R$
- $\mathsf{D}.\, \angle QPR$

Answer: A

11. In $\triangle XYZ, \angle X=45^{\circ}$ and $\angle Z=60^{\circ}.$

Then, is the longest side of \triangle XYZ.

- A. XY
- B. YZ
- C. XZ
- D. XY or YZ

Answer:

12. The perimeter of an isosceles triangle is 100 cm. If the base is 36 cm, find the length of the equal sides.

Watch Video Solution

13. In \triangle ABC, AB = 4 and BC = 7, Then , holds good.

A.
$$AC < 7$$

$$\mathsf{B.}\,AC>4$$

$$\mathsf{C.}\,4 < AC < 7$$

D.3 < AC < 11

Answer: A::C

Watch Video Solution

14. In $\Delta PQR, PQ=3$ and QR=7 Thenholds good.

A. PR=4

 $\mathrm{B.}\,PR=10$

C. 10 > PR > 4

D.
$$7 > PR > 3$$

Answer:

Watch Video Solution

15. In \triangle ABC the bisectors of $\angle B$ and $\angle C$ intersect at I if $\angle A=70^\circ$ then $\angle BIC=\dots$

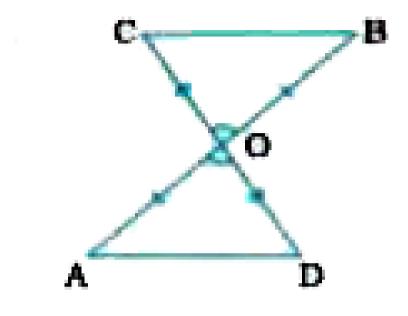
A. $35\,^\circ$

B. 75°

C. 100°

D. 125°

Answer: A::B


Watch Video Solution

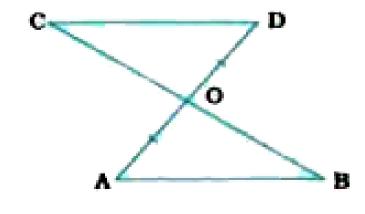
Sums To Enrich Remember

1. In the given figure, OA = OB and OD = OC.

Show that

(i) $\Delta AOD \cong \Delta BOC$ and (ii) $AD \mid \mid BC$

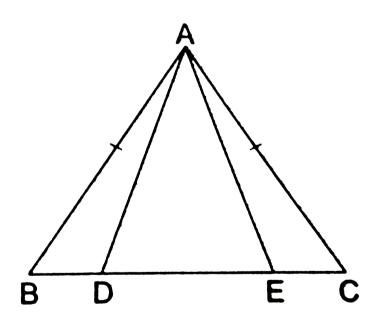
2. AB is a line segment and line l is its perpendicular bisector. If a point P lies on l,


show that P is equidistant from A and B.

3. Line segment AB is parallel to another line segment CD. O is the midpoint of AD (see the given figure). Show that

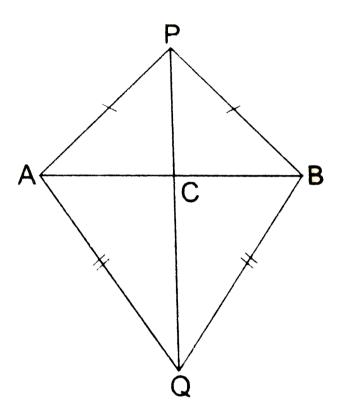
(i)
$$\triangle AOB = \triangle DOC$$

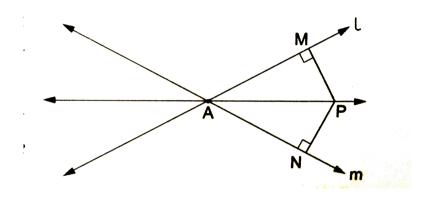
(ii) O is also the midpoint of BC


4. In D ABC, the bisector AD of A is perpendicular to side BC (see Fig. 7.27). Show

that $AB \setminus = \setminus AC$ and ΔABC is isosceles

5. E and F are respectively the mid-points of equal sides AB and AC of ΔABC (see Fig. 7.28). Show that $BF \setminus = \setminus CE$.


6. In an isosceles ΔABC with AB = AC, D and E are point on BC such that BE = CD. Show that AD = AE.


7. In the given figure, AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line PQ is the

perpendicular bisector of AB.

8. P is a point equidistant from two lines I and m intersecting at a point A, as shown in the given figure. Show that the line AP bisects tha angle between them.

9. D is a point on side BC of ΔABC such that

$$AD = AC$$
(see Fig. 7.47).Show that

$$AB > AD$$
.

